GEOMETRIA DESCRITIVA A 11.º Ano Perpendicularidade entre Planos © antónio de campos, 2009 Perpendicularidade entre Planos Um plano é perpendicular a outro plano, se contiver uma recta perpendicular ao outro plano. Planos Perpendiculares - Geral Pretendem-se os traços de um plano δ, perpendicular ao plano α e passando pelo ponto P. F2 fα p2 fδ P2 x H2 F1 Uma recta p que pertence ao plano δ é perpendicular ao plano α. P1 hα hδ p1 H1 Qualquer outro plano que contenha a recta p é perpendicular ao plano α. Os traços de um plano oblíquo α são concorrentes num ponto com 2 cm de abcissa e fazem com o eixo x, ângulos de 30º (a.d.) e 45 (a.e.), respectivamente o traço frontal e o traço horizontal. Desenha as projecções de um plano de rampa ρ, perpendicular ao plano α e passando pelo ponto M (-2; 2; 1). y≡ z fρ fα F2 p2 M2 F1 x hρ hα H2 M1 H1 p1 Um plano de topo δ faz um diedro de 40º (a.e.) com o Plano Horizontal de Projecção e corta o eixo x num ponto com –3 cm de abcissa. Determina os traços de um plano θ, em que o seu traço horizontal faz um ângulo de 70º (a.d.) com o eixo x, passa pelo ponto T (2; 3; 2) e é perpendicular com o plano δ. fδ y≡ z fθ p2 T2 x H2 p1 H1 T1 hθ hδ Uma recta frontal auxiliar p, que pertence ao plano θ vai permitir determinar os traços do plano. É dado um plano horizontal ν, com 4 cm de cota. Determina os traços de um plano perpendicular ao plano ν e contendo o ponto P (3; 2). Que outras soluções são possíveis? v2 fα fν P2 x hα P1 ≡ ( v1) Nesta solução, uma recta vertical auxiliar v foi utilizada. Qualquer plano vertical que passe pelo ponto P será perpendicular ao plano v. Ainda seria possível como solução, um plano frontal ou um plano de perfil. Planos Perpendiculares aos Planos Bissectores A mesma regra geral é aplicada: de que um plano é perpendicular a outro plano, se contiver uma recta perpendicular ao outro plano. Com os bissectores é necessário ter em conta as características das rectas contidas nos bissectores. Os planos bissectores são planos de rampa (passante), e portanto contém rectas fronto-horizontais, rectas oblíquas (passantes) e rectas de perfil (passantes). No caso de rectas fronto-hrizontais, será sempre um plano de perfil que será perpendicular à recta. Assim os planos de perfil serão sempre perpendiculares aos bissectores. Planos Perpendiculares ao Bissector β1,3 Pretendem-se os traços de um plano α, perpendicular ao bissector β1,3; utilizando uma recta oblíqua (passante) r, pertencente ao bissector. fα r2 Uma recta r pertence ao bissector β1,3, por ser passante (passa pelo eixo x) e ser simétrica. O plano α acaba por ser uma plano simétrico. x r1 hα Caso a recta do bissector β1,3 fosse uma recta de perfil (passante), o plano perpendicular a essa recta seria um plano de rampa, com os seus traços simétricos em relação ao eixo x. Planos Perpendiculares ao Bissector β2,4 Pretendem-se os traços de um plano δ, perpendicular ao bissector β2,4; utilizando uma recta oblíqua (passante) s, pertencente ao bissector. fδ ≡ hδ s1 ≡ s2 x Uma recta s pertence ao bissector β2,4, por ter as suas projecções coincidentes. O plano δ acaba por ser uma plano oblíquo com os seus traços coincidentes entre si, e concorrentes com o eixo x. Caso a recta do bissector β2,4 fosse uma recta de perfil (passante), o plano perpendicular a essa recta seria um plano de rampa, com os seus traços coincidentes entre si. Uma recta frontal f faz um ângulo de 30º (a.e.) com o Plano Horizontal de Projecção, e tem 3 cm de afastamento. Determina os traços do plano α, perpendicular ao β1,3, e que contém a recta f. f2 fα H2 x f1 H1 hα O traço frontal do plano é paralelo à projecção frontal da recta, porque o plano α contém a recta f. Pelo facto do plano α ser perpendicular ao β1,3 têm os seus traços simétricos, fα é simétrico com hα em relação ao eixo x. Uma recta frontal f faz um ângulo de 30º (a.e.) com o Plano Horizontal de Projecção, e tem 3 cm de afastamento. Determina os traços do plano α, perpendicular ao β2,4, e que contém a recta f. f2 fα ≡ hα H2 x f1 H1 O traço frontal do plano é paralelo à projecção frontal da recta, porque o plano α contém a recta f. Pelo facto do plano α ser perpendicular ao β2,4 têm os seus traços coincidentes, fα é coincidente com hα. Um plano α é perpendicular ao β2,4, e o traço frontal do plano faz um ângulo de 60º (a.d.) com o eixo x. Determina as projecções do ponto A (3; 4), contido no plano. f2 fα ≡ hα A2 H2 x f1 H1 A1 Para o ponto ertencer a um plano tem que pertencer a uma recta do plano. Uma recta frontal do plano com 3 cm de afastamento será utilizada.