Teste 1 de Análise Matemática I
Informações gerais
 O teste é constituído por 20 questões de escolha múltipla.
 A duração do teste é 120 minutos.
Instruções de preenchimento da folha de respostas








legível na folha de respostas fornecida.
Não responda neste questionário. Assinale com uma ou mais cruzes as alíneas que
considerar certas na folha de respostas fornecida.
Se quiser emendar uma resposta errada faça um círculo na resposta errada.
Não escreva fora dos campos de resposta.
Não apresente cálculos nem justificações.
Não serão esclarecidas dúvidas durante a resolução.
Não é permitida a utilização de máquinas de calcular.
O papel de rascunho é fornecido pelo professor.
Devolver a folha de respostas, a folha de rascunho e a brochura com as questões.
Cotação
 Cada resposta certa: 1.
 Cada questão não respondida ou anulada: 0
 Cada questão incorrectamente respondida: − 13 .
Versão A
 Preencha o nome, número, curso e versão do teste (A, B, C, etc) de forma bem
1 Qual das seguintes funções reais de variável real transforma a expressão proposicional
∀x 1 , x 2 ∈ D f : x 1  x 2  fx 1   fx 2  numa proposição verdadeira?
(A) fx
(B) fx
(C) fx
(D) fx
 e −x
 ln x
 1x
 x3
2 Qual das seguintes proposições é falsa?
e −3x
,x  0
e 2x
, 0  x ≤ 2 uma função real de variável real. Qual das
3 Seja hx 
ln2x , x  2
seguintes afirmações é falsa?
(A) lim hx  lim hx  1
x→0 −
x→0 
(B) lim hx  
x→−
(C) lim hx  lim hx
x→2 −
x→2 
2
(D) lim hx  e
x→1
4 O valor do lim
x→1
4−4x 3
x 3 −x 2 −4x4
é:
(A) −4
(B) 44
(C) 4
(D) Nenhuma das respostas anteriores
5 O valor do lim
x→
x3 − x−3
é:
(A) 
(B) 3
(C) 0
(D) Nenhuma das respostas anteriores.
Versão A
(A) ∀x ∈ ℕ ∃y ∈  : 0  xy
(B) ∃x ∈  ∃y ∈ ℕ : x  y  1
(C) ∃x ∈  ∀y ∈ ℕ : x  y  1
(D) ∀x ∈ ℕ ∃y ∈  : y  x  1
x  5a , x ≤ 2
e x−1 −e
x−2
(A) f é contínua em x
(B) f é contínua em x
(C) f é contínua em x
(D) f é contínua em x
7 Calcule cos
(A)
(B)
(C)
(D)
3 3
2 5
3 3
2 5

6




2 se a
2 se a
2 se a
2 se a
 arccos
−
1 2
2 5
−
1
2
3 3
− 12
2 5
3
 35
2
,x2
1−
3
5
, a ∈ . Qual das seguintes afirmações é verdadeira?
 − 25
 2−e
5
 2−e
 e−2
5
:
3
5
1 −  35 
2
8 Seja fx  e 3x . Qual das seguintes afirmações é falsa?
(A) f ′ 2 lim
h→0
(B) f ′ 2 lim
h→2
(C) f ′ 2 lim
x→2
(D) f ′ 2 lim
x→2
e 3h6 −e 6
h
e 3h −e 6
h
e 3x −e 6
x−2
e 6 −e 3x
2−x
9 Qual das seguintes afirmações é falsa?
(A) A derivada de fx  2x em qualquer ponto do seu domínio é negativa
(B) A derivada de gx  2 − x 2 é positiva em qualquer ponto do intervalo 0, 1
(C) A segunda derivada de ln2x é negativa em qualquer do intervalo 0, 
(D) A derivada de e 4x em x  2 é positiva
10 Calcule a derivada de fx 
(A) −
16x
2
x 2 4
(B) − x16x
2 4
16x
(C) 2 2
x 4
(D) − 28x 2
x 4
8
x 2 4
:
Versão A
6 Seja fx 
11 Calcule a derivada de fx 
(A)
(B)
(C)
ln 2x
x
:
1−ln2x
x
ln2x
x2
1−ln2x
x2
(D) Não é nenhuma das respostas anteriores.
(A) y −
(B) y 
(C) y −
(D) y −
5
−2
5
2
13 Seja fx 
x  0:
(A) y
(B) y
(C) y
(D) y




2  x no ponto
 5 x − 3
5 x − 3
 −2 5 x − 3
 2 5 x − 3
1 − 7x . Determine uma aproximação linear da função f em torno de
1 − 7x2
x−7
1 − 7x
1 − 7x
14 A função fx  x 5  10x  18 tem pelo menos um zero no intervalo:
(A) 0, 1
(B) −10, −1
(C) 1, 10
(D) −1, 0
2
15 Qual o valor de lim cos 5x 3/x ?
x→0
(A) 1
75
(B) e − 2
75
(C) e 2
(D) 
Versão A
12 Determine a equação da recta normal ao gráfico da função fx 
3, f3 :
16 Determine a derivada de ordem 3 da função fx 
(B)
(C)
(D)
:
36
−2x 4
18
−2x 4
18
−2x 3
48
−2x 4
17 Determine a fórmula de Mac-Laurin da função fx  ln1  x com resto de Lagrange
de ordem 1:
x2
2

2
x3
1 3 3!
(B) x −
1
2
x2
para algum  entre 0 e x.
(C) x −
1
x2
2 2
1
1x 2
(A) x −
(D) x 
2
1 2
para algum  entre 0 e x.
para algum  entre 0 e x.
para algum  entre 0 e x.
18 Calcule a área do triângulo que é formado pela recta tangente à curva de equação
y  e 2x no ponto de abcissa x  −1 e os eixos coordenados:
(A)
(B)
(C)
(D)
9
2e 2
9
4e 2
3
4e 2
9
4e
19 Qual das seguintes afirmações é verdadeira?
(A) Se uma função tiver derivada nula no seu domínio então é constante no seu
domínio
(B) Se a velocidade de um objecto for constante então a sua aceleração é nula
(C) O produto de duas funções crescentes é crescente
(D) Se f ′′ 2  0 então o gráfico de f tem um ponto de inflexão em x  2
Versão A
(A)
3x
2−x
20 Na vizinhança de x  4, a função fx 
x−3
x − 4 4 x  2 4
apresenta-se
graficamente como:
(B)
(C)
(D)
Versão A
(A)
Download

Versão A