Revisão PA e PG
Exercício 1: (ITA/2000) O valor de n que torna a seqüência (2 + 3n; –5n;
1 – 4n) uma progressão aritmética pertence ao intervalo:
a) [– 2, –1]
b) [– 1, 0]
c) [0, 1]
d) [1, 2]
e) [2, 3]
Solução:
Para que a seqüência se torne uma PA de razão r é necessário que
seus três termos satisfaçam as igualdades (aplicação da definição
de PA):
(1) -5n = 2 + 3n + r (a2 = a1 + r)
(2) 1 - 4n = -5n + r (a3 = a2 + r)
Determinando o valor de r em (1) e substituindo em (2):
(1): r = -5n - 2 - 3n = -8n - 2
(2): 1 - 4n = -5n - 8n - 2 => 1 - 4n = -13n - 2
=> 13n - 4n = -2 - 1 => 9n = -3 => n = -3/9 = -1/3
Ou seja, -1 < n < 0 e, portanto, a resposta correta é a b).
Exercício 2: (UFLA/99) A soma dos elementos da seqüência numérica
infinita (3; 0,9; 0,09; 0,009; …) é:
a) 3,1
b) 3,9
c) 3,99
d) 3,999
e) 4
Solução:
Sejam S a soma dos elementos da sequência e S1 a soma da PG
infinita (0,9; 0,09; 0,009; …) de razão q = 10-1 = 0,1.
Assim:
S = 3 + S1
Como -1 < q < 1 podemos aplicar a fórmula da soma de uma PG
infinita para obter S1:
S1 = 0,9/(1 - 0,1) = 0,9/0,9 = 1
Portanto: S = 3 + 1 = 4
Exercício 3: (STA. CASA) A soma dos vinte primeiros termos de uma
progressão aritmética é -15. A soma do sexto termo dessa P.A., com o
décimo quinto termo, vale:
Solução:
Aplicando a fórmula da soma dos 20 primeiros termos da PA,
teremos:
S20 = 20( a1 + a20)/2 = -15
Na PA finita de 20 termos, o sexto e o décimo quinto são
equidistantes dos extremos, uma vez que:
15 + 6 = 20 + 1 = 21
E, portanto:
a6 + a15 = a1 + a20
Substituindo este valor na primeira igualdade vem:
20(a6 + a15)/2 = -15 => 10(a6 + a15) = -15
a6 + a15 = -15/10 = -1,5
Exercício 4: (MACK) O sexto termo de uma PG, na qual dois meios
geométricos estão inseridos entre 3 e -24, tomados nessa ordem, é:
Solução:
Para determinar os dois meios geométricos da PG cujos extremos
são 3 e -24 precisamos calcular, primeiro, sua razão q, com n = 4.
Pela fórmula do termo geral temos que:
a4 = a1 .q4-1 → -24 = 3q3 → q3 = -24/3 = -8
Logo: q = -2
Portanto a PG é (3; -6; 12; -24; …) e seu sexto termo é obtido,
também, através da fórmula do termo geral:
a6 = a1. q6-1 → a6 = 3(-2)5 = -3.32
Finalmente: a6 = -96
Exercício 5: Sendo Sn a soma dos termos de uma PA de razão 4, em
que a1 = 6, determine n tal que Sn é igual a 1456.
Solução:
Sabemos que:
(1) Sn = (a1 + an )n/2 = (6 + an )n/2 = 1456 → (6 + an )n = 2912
Para determinar n basta expressarmos an em função de n, o que é
feito através da fórmula do termo geral de uma PA:
(2) an = 6 + (n - 1).4 = 6 + 4n - 4 = 4n + 2
Substituindo (2) em (1):
(6 + 4n + 2)n = 2912 => 4n2 + 8n - 2912 = 0
Resolvendo a equação do segundo grau obtemos:
n1 = 26 e n2 = -28
Exercício 6: A soma dos infinitos termos da P.G (x/2; x2/4; x3/8; …) é
igual a 1/10. Qual o valor de x?
Solução:
Note que, pela lei de formação da PG, a razão é q = x/2. Como uma
PG infinita converge somente se -1 < q < 1, o valor de x deve ser tal
que esta condição seja satisfeita. Aplicando, então, a fórmula da
soma vem que:
Para que a solução esteja completa falta verificar se q satisfaz a
condição de convergência
Como -1 < q < 1 a solução está concluída e x = 2/11
FIM
Download

Slide 1 - nordesttino