Blocos aleatorizados, quadrados latinos e experimentos relacionados Aula #09 Quadrado Latino • É usado para eliminar duas fontes de variação devido à fatores de ruído. • Permite a blocagem em duas dimensões. • Um quadrado latino pxp é tal que cada uma de suas p2 celas contém uma das p letras correspondentes aos p tratamentos e cada letra ocorre somente uma vez em cada linha e coluna. Alguns exemplos de quadrados latinos Statistical Analysis of the Latin Square Design • The statistical (effects) model is i 1, 2,..., p yijk i j k ijk j 1, 2,..., p k 1, 2,..., p • The statistical analysis (ANOVA) is much like the analysis for the RCBD. • See the ANOVA table, page 140 (Table 4.9) Chapter 4 Design & Analysis of Experiments 7E 2009 Montgomery 4 Statistical Analysis of the Latin Square Design • The statistical (effects) model is i 1, 2,..., p yijk i j k ijk j 1, 2,..., p k 1, 2,..., p • The statistical analysis (ANOVA) is much like the analysis for the RCBD. • See the ANOVA table, page 140 (Table 4.9) Chapter 4 Design & Analysis of Experiments 7E 2009 Montgomery 5 Tabela ANOVA para o quadrado latino pxp Exemplo Coded data: y *ijk yijk 25 • O conceito de pares de quadrados latinos ortogonais formando um quadrado grego-latino pode ser estendido. • Um hiperquadrado pxp é um planejamento no qual três ou mais quadrados latinos ortogonais pxp são sobrepostos. • Em geral, até p+1 fatores podem ser estudados se um conjunto completo de p-1 quadrados latinos ortogonais está disponível. • Tal plano utilizaria todos (p+1)(p-1)=p2-1 graus de liberdade, tal que uma estimativa independente da variância do erro e necessária. • Novamente, não deve haver interação entre fatores quando usa-se hiperquadrados. Exemplo Exercícios Capítulo 4 • 1 a 7, 13 a 15, 17, 23 e 27.