www.prof2000.pt/users/pjca
A história dos números
Aparecimento dos números reais
Adaptado por Paulo Almeida @ 2005
Como é que surgiu a noção de número?
Alguma vez parou para pensar nisso?
Certamente já imaginou que um dia alguém teve uma ideia genial e de repente
inventou o número.
Mas, não foi bem assim.
A descoberta do número não aconteceu de repente, nem foi uma única pessoa
a responsável por essa façanha.
O número surgiu da necessidade que as pessoas tinham de contar objectos e
seres.
Nos primeiros tempos da humanidade, para contar eram usados os dedos,
pedras, os nós de uma corda, marcas num osso...
Como é que surgiu a noção de número?
Com o passar do tempo, este sistema foi-se aperfeiçoando até dar origem ao número.
Hoje nós já sabemos lidar com os mais diferentes tipos de números
Até ao final da história saberá em que época e porque é que o homem inventou cada
um desses números.
Contando objetos com outros objetos
Há mais de 30.000 anos, o homem vivia em pequenos grupos, morando em grutas e
cavernas para se esconder dos animais selvagens e proteger-se da chuva e do frio.
Veja estes caçadores.
Contando objetos com outros objetos
Para registar os animais mortos numa caçada, eles limitavam-se a fazer
marcas numa vara. Nessa época o homem alimentava-se daquilo que a
natureza oferecia: caça, frutos, sementes, ovos. Quando descobriu o fogo,
apreendeu a cozinhar os alimentos e a proteger-se melhor contra o frio.
A escrita ainda não tinha sido criada. Para contar, o homem fazia riscos num
pedaço de madeira ou em ossos de animais.
Um pescador, por exemplo, costumava levar consigo um osso de lobo. A cada
peixe que conseguia tirar da água, fazia um risco no osso.
Contando objetos com outros objetos
Mais ou menos há 10.000 anos, o homem começou a modificar bastante o
seu sistema de vida. Em vez de apenas caçar e apanhar frutos e raízes, passou a
cultivar algumas plantas e criar animais. Era o início da agricultura, graças à qual
aumentava muito a variedade de alimentos de que podia dispor.
E para dedicar-se às actividades de plantar e criar animais, o homem não podia
continuar a deslocar-se de um lugar para outro como antes. Passou então a fixarse num determinado lugar, geralmente nas margens de rios e cavernas e
desenvolveu uma nova habilidade: a de construir sua própria moradia.
Começaram a surgir as primeiras
comunidades organizadas, com
chefe, divisão do trabalho entre as
pessoas, etc..
Com a lã das ovelhas eram
tecidos panos para a roupa.
Contando objetos com outros objetos
O trabalho de um pastor primitivo era muito simples. De manhã bem
cedo, ele levava as ovelhas para pastar. À noite recolhia as ovelhas,
guardando-as dentro de uma cerca.
Mas como controlar o rebanho? Como Ter certeza de que nenhuma
ovelha havia fugido ou sido devorada por algum animal selvagem?
O jeito que o pastor arranjou para controlar o seu rebanho foi contar as
ovelhas com pedras. Assim:
Cada ovelha que saía para pastar correspondia a uma pedra. O pastor
colocava todas as pedras num saquinho. No fim do dia, à medida que as
ovelhas entravam no cercado, ele ia retirando as pedras do saquinho.
Que susto levaria se após todas as ovelhas estarem no cercado, sobrasse
alguma pedra!
Esse pastor jamais poderia imaginar que milhares de anos mais tarde,
haveria um ramo da Matemática chamado Cálculo, que em latim quer
dizer contas com pedras.
Construindo o conceito de número
Foi contando objectos com outros objectos que a humanidade
começou a construir o conceito de número.
Para o homem primitivo o número cinco, por exemplo, estaria
sempre ligado a alguma coisa concreta: cinco dedos, cinco
peixes, cinco bastões, cinco animais, e assim por diante.
A ideia de contagem estava relacionada com os dedos da
mão.
Assim, ao contar as ovelhas, o pastor separava as pedras em
grupos de cinco.
Do mesmo modo os caçadores contavam os animais
abatidos, traçando riscos na madeira ou fazendo nós numa corda,
também de cinco em cinco.
Para nós, hoje, o número cinco representa a propriedade
comum de infinitas colecções de objectos: representa a
quantidade de elementos de um conjunto, não importando se trata
de cinco bolas, cinco skates, cinco discos ou cinco aparelhos de
som.
É por isso que esse número, que surgiu quando o homem
contava objectos usando outros objectos, é um número concreto.
Os egípcios criam os símbolos (?)
Por volta do ano 4.000 a.C., algumas
comunidades primitivas aprenderam a
usar ferramentas e armas de bronze.
Aldeias situadas nas margens de rios
transformaram-se em cidades. A vida ia
ficando cada vez mais complexa. Novas
actividades iam surgindo, graças
sobretudo ao desenvolvimento do
comércio.
Os agricultores passaram a produzir
alimentos em quantidades superiores às
suas necessidades. Com isso algumas
pessoas puderam dedicar-se a outras
actividades, tornando-se artesãos,
comerciantes, sacerdotes,
administradores...
Os egípcios criam os símbolos (?)
Como consequência desse
desenvolvimento surgiu a escrita. Era o fim
da Pré-História e o começo da História.
Os grandes progressos que marcaram o
fim da Pré-História verificaram-se com
muita intensidade e rapidez no Egipto.
Para fazer os projectos de construção das
pirâmides e dos templos, o número
concreto não era nada prático.
Ele também não ajudava muito na
resolução dos difíceis problemas criados
pelo desenvolvimento da indústria e do
comércio.
Os egípcios criam os símbolos (?)
Como efectuar cálculos rápidos e precisos com pedras, nós ou riscos num osso?
Foi partindo dessa necessidade imediata que estudiosos do Antigo Egipto passaram a
representar a quantidade de objectos de uma colecção através de desenhos – os
símbolos.
A criação dos símbolos foi um passo muito importante para o desenvolvimento da
Matemática.
Na Pré-História, o homem juntava 3 bastões com 5 bastões para obter 8 bastões.
Hoje sabemos representar esta operação por meio de símbolos.
3+5=8
Muitas vezes não sabemos nem que objectos estamos a somar. Mas isso não importa:
a operação pode ser feita da mesma maneira.
Mas como eram os símbolos que os egípcios criaram para representar os números?
Os egípcios criam os símbolos (?)
Há mais ou menos 3.600 anos, o faraó do Egipto tinha um súbdito chamado Aahmesu,
cujo nome significa “Filho da Lua”.
Aahmesu ocupava na sociedade egípcia uma posição muito mais humilde que a do
faraó: provavelmente era um escriba. Hoje Aahmesu é mais conhecido do que muitos
faraós e reis do Antigo Egipto. Entre os cientistas, ele é chamado de Ahmes. Foi ele quem
escreveu o Papiro Ahmes.
O papiro Ahmes é um antigo manual de Matemática. Contém 80 problemas, todos
resolvidos.
A maioria envolve assuntos do dia-a-dia, como o preço do pão, a armazenagem de
grãos de trigo, a alimentação do gado.
Observando e estudando como eram
efectuados os cálculos no Papiro Ahmes,
não foi difícil aos cientistas
compreenderem o sistema de numeração
egípcio. Além disso, a decifração dos
hieróglifos – inscrições sagradas das
tumbas e monumentos do Egipto – no
século XVIII também foi muito útil.
Os egípcios criam os símbolos (?)
O sistema de numeração egípcio baseava-se em sete números-chave:
1 10 100 1.000 10.000 100.000 1.000.000
Os egípcios usavam símbolos para representar esses números.
Um traço vertical representava 1 unidade:
Um osso de calcanhar invertido representava o número 10:
Um laço valia 100 unidades:
Uma flor de lótus valia 1.000:
Um dedo dobrado valia 10.000:
Com um girino os egípcios representavam 100.000 unidades:
Uma figura ajoelhada, talvez representando um deus, valia 1.000.000:
Todos os outros números eram escritos combinando os números-chave.
Na escrita dos números que usamos actualmente, a ordem dos algarismos é muito
importante.
Os egípcios criam os símbolos (?)
Se tomarmos um número, como por
exemplo:
256
e trocarmos os algarismos de lugar,
vamos obter outros números
completamente diferentes:
265 526 562 625 652
Ao escrever os números, os egípcios
não se preocupavam com a ordem
dos símbolos.
Observe no desenho que apesar de
a ordem dos símbolos não ser a
mesma, os três garotos do Antigo
Egipto estão escrevendo o mesmo
número:
45
A técnica de calcular dos egípcios
Com a ajuda deste sistema de numeração, os egípcios conseguiam efectuar todos os
cálculos que envolviam números inteiros.
Para isso, empregavam uma técnica de cálculo muito especial: todas as operações
matemáticas eram efectuadas através de uma adição.
Por exemplo, a multiplicação 13 * 9 indicava que o 9 deveria ser adicionado treze
vezes.
13 * 9 = 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9
A tabela abaixo ajuda a compreender como os egípcios concluíam a muliplicação:
A técnica de calcular dos egípcios
Número de parcelas
Resultado
1
9
2
18
4
36
8
72
Eles procuravam na tabela um total de 13 parcelas; era simplesmente a soma das três
colunas destacadas:
1 + 4 + 8 = 13
O resultado da multiplicação 13 * 9 era a soma dos resultados desta três colunas:
9 + 36 + 72 = 117
Os egípcios eram realmente muito habilidosos e criativos nos cálculos com números
inteiros.
Mas, em muitos problemas práticos, eles sentiam necessidade de expressar um pedaço
de alguma coisa através de um número.
E para isso os números inteiros não serviam…
Descobrindo a fracção
Por volta do ano 3.000 a.C., um antigo faraó de nome Sesóstris...
“... repartiu o solo do Egito nas margens do rio Nilo entre os seus habitantes. Se o rio
levava qualquer parte do lote de um homem, o faraó mandava funcionários examinarem
e determinarem por medida a extensão exacta da perda.”
Estas palavras foram escritas pelo historiador
grego Heródoto, há cerca de 2.300 anos.
O rio Nilo atravessa uma vasta planície.
Uma vez por ano, na época das cheias, as
águas do Nilo sobem muitos metros acima do
seu leito normal, inundando uma vasta região ao
longo das suas margens. Quando as águas
baixam, deixam descoberta uma estreita faixa
de terras férteis, prontas para o cultivo.
Desde a Antiguidade, as águas do Nilo fertilizam os campos, beneficiando a agricultura
do Egipto. Foi nas terras férteis do vale deste rio que se desenvolveu a civilização
egípcia.
Cada metro de terra era precioso e tinha de ser muito bem cuidado.
Descobrindo a fracção
Sesóstris repartiu estas preciosas terras entre uns poucos agricultores privilegiados.
Todos os anos, durante o mês de Junho, o nível das águas do Nilo começava a
subir. Era o início da inundação, que durava até Setembro.
Ao avançar sobre as margens, o rio derrubava as cercas de pedra que cada
agricultor usava par marcar os limites do terreno de cada agricultor.
Usavam cordas para fazer a medição.
Havia uma unidade de medida assinalada na própria corda. As pessoas
encarregadas de medir esticavam a corda e verificavam quantas vezes aquela
unidade de medida estava contida nos lados do terreno. Daí, serem conhecidas
como estiradores de cordas.
No entanto, por mais adequada que fosse a unidade de medida escolhida,
dificilmente cabia um número inteiro de vezes no lados do terreno.
Foi por essa razão que os egípcios criaram um novo tipo de número: o número
fraccionário.
Para representar os números fraccionários, usavam fracções.
Contando com os Romanos
De todas as civilizações da Antiguidade, a dos romanos foi sem dúvida a mais
importante.
O seu centro era a cidade de Roma. Desde da sua fundação, em 753 a.C., até ser
ocupada por povos estrangeiros em 476 d.C., os seus habitantes enfrentaram um número
incalculável de guerras de todos os tipos. Inicialmente, para se defenderem dos ataques
de povos vizinhos; mais tarde nas campanhas de conquista de novos territórios.
Foi assim que, pouco a pouco, os romanos foram conquistando a península Itálica e
o restante da Europa, além de uma parte da Ásia e o norte de África.
Apesar de a maioria da população viver na miséria, em Roma havia luxo e muita riqueza, usufruídas
por uma minoria rica e poderosa. Roupas luxuosas, comidas finas e festas grandiosas faziam parte do
dia-a-dia da elite romana.
Foi nesta Roma de miséria e luxo que se desenvolveu e aperfeiçoou o número concreto, que
vinha sendo usado desde a época das cavernas.
Como foi que os romanos conseguiram isso?
O sistema de numeração Romana
Os romanos foram espertos. Eles não inventaram símbolos novos para representar os
números; usaram as próprias letras do alfabeto.
I V X LC D M
Como será que eles combinaram estes símbolos para formar o seu sistema de
numeração?
O sistema de numeração romano baseava-se em sete números-chave:
I tinha o valor 1.
V valia 5.
X representava 10 unidades.
L indicava 50 unidades.
C valia 100.
D valia 500.
M valia 1.000.
Quando apareciam vários números iguais juntos, os romanos somavam os seus valores.
II = 1 + 1 = 2
XX = 10 + 10 = 20
XXX = 10 + 10 + 10 = 30
O sistema de numeração Romana
Quando dois números diferentes vinham juntos, e o menor vinha antes do maior,
subtraíam os seus valores.
IV = 4 porque 5 - 1 = 4
IX = 9 porque 10 – 1 = 9
XC = 90 porque 100 – 10 = 90
Mas se o número maior vinha antes do menor, eles somavam os seus valores.
VI = 6 porque 5 + 1 = 6
XXV = 25 porque 20 + 5 = 25
XXXVI = 36 porque 30 + 5 + 1 = 36
LX = 60 porque 50 + 10 = 60
O sistema de numeração Romana
Ao lermos o cartaz, ficamos a saber que o exército de Roma fez numa certa época
MCDV prisioneiros de guerra. Para ler um número como MCDV, veja os cálculos
que os romanos faziam:
Em primeiro lugar buscavam a
letra de maior valor.
M = 1.000
Como antes de M não
tinha nenhuma letra,
buscavam a segunda letra de
maior valor.
D = 500
Depois tiravam de D o valor da
letra que vem antes.
D – C = 500 – 100 = 400
Somavam 400 ao valor de M,
porque CD está depois e M.
M + CD = 1.000 + 400 = 1.400
Sobrava apenas o V.
Então:
MCDV = 1.400 + 5= 1.405
O sistema de numeração Romana
Como acabou de ver, o número 1.000 era representado pela letra M.
Assim, MM correspondiam a 2.000 e MMM a 3.000.
E os números maiores que 3.000?
Para escrever 4.000 ou números maiores que ele, os romanos usavam um traço
horizontal sobre as letras que representavam esses números.
Um traço multiplicava o número representado abaixo dele por 1.000.
Dois traços sobre o M davam-lhe o valor de 1 milhão.
O sistema de numeração romano foi adoptado por muitos povos. Mas ainda
era difícil efectuar cálculos com este sistema.
Por isso, matemáticos de todo o mundo continuaram a procurar intensamente
símbolos mais simples e mais apropriados para representar os números.
E como resultado dessas pesquisas, aconteceu na Índia uma das mais notáveis
invenções de toda a história da Matemática: O sistema de numeração decimal.
Afinal nos nossos dias…
No século VI foram fundados na Síria alguns centros de cultura grega.
Consistiam numa espécie de clube onde os sócios se reuniam para discutir
exclusivamente a arte e a cultura vindas da Grécia.
Ao participar numa conferência num destes clubes, em 662, o bispo
sírio Severus Sebokt, profundamente irritado com o facto de as pessoas
elogiarem qualquer coisa vinda dos gregos, explodiu dizendo:
“Existem outros povos que também sabem alguma coisa! Os hindus, por
exemplo, têm valiosos métodos de cálculos. São métodos fantásticos! E
imaginem que os cálculos são feitos por apenas nove sinais!”.
A referência a nove, e não dez símbolos, significa que o passo mais
importante dado pelos hindus para formar o seu sistema de numeração – a
invenção do zero - ainda não tinha chegado ao Ocidente.
A ideia dos hindus de introduzir uma notação para uma posição vazia
– um ovo de ganso, redondo – ocorreu na Índia, no fim do século VI . Mas
foram necessários muitos séculos para que esse símbolo chegasse à Europa.
Com a introdução do décimo sinal – o zero – o sistema de numeração
tal qual o conhecemos hoje estava completo.
Até chegar aos números que nós aprendemos a ler e escrever, os
símbolos criados pelos hindus mudaram bastante.
Hoje, estes símbolos são chamados de algarismos indo-arábicos.
Se foram os matemáticos hindus que inventaram o nosso sistema de
numeração, o que é que os árabes têm a ver com isso?
E por que é que os símbolos
chamam-se algarismos?
0 1 2 3 4 5 6 7 8 9
Afinal nos nossos dias…
Simbad, o marujo, Aladim e sua lâmpada maravilhosa, Harum al-Raschid são
nomes familiares para quem conhece os contos de As mil e uma noites. Mas
Simbad e Aladim são apenas personagens do livro, Harum al-Raschid realmente
existiu. Foi o califa de Bagdá, do ano 786 até 809.
Durante o seu reinado os povos árabes travaram uma série de guerras de
conquista. E como prémios de guerra, livros de diversos centros científicos foram
levados para Bagdá e traduzidos para a língua árabe.
Em 809, o califa de Bagdá passou a ser al-Mamum, filho de Harum al-Rahchid.
Al-Mamum era muito vaidoso. Dizia com toda a convicção.
“Não há ninguém mais culto em todos os ramos do saber do que eu”.
Como era um apaixonado da ciência, o califa procurou tornar Bagdá o maior
centro científico do mundo, contratando os grandes sábios muçulmanos da época.
Afinal nos nossos dias…
Entre eles estava o mais brilhante matemático árabe de todos
os tempos: al-Khowarizmi.
Estudando os livros de Matemática vindos da Índia e
traduzidos para a língua árabe, al-Khowarizmi surpreendeu-se a
princípio com aqueles estranhos símbolos que incluíam um ovo
de ganso!
Logo, al-Khowarizmi compreendeu o tesouro que os
matemáticos hindus haviam descobertos. Com aquele sistema
de numeração, todos os cálculos seriam feitos de um modo
mais rápido e seguro. Era impossível imaginar a enorme
importância que essa descoberta teria para o desenvolvimento
da Matemática.
Al-Khowarizmi decidiu contar ao mundo as boas nova.
Escreveu um livro chamado Sobre a arte hindu de calcular,
explicando com detalhes como funcionavam os dez símbolos
hindus.
Com o livro de al-Khowarizmi, matemáticos do mundo todo
tomaram conhecimento do sistema de numeração hindu.
Os símbolos – 0 1 2 3 4 5 6 7 8 9 – ficaram conhecidos como
a notação de al-Khowarizmi, de onde se originou o termo latino
algorismus. Daí o nome algarismo.
São estes números criados pelos matemáticos da Índia e
divulgados para outros povos pelo árabe al-Khowarizmi que
constituem o nosso sistema de numeração decimal conhecidos
como algarismos indo-arábicos.
Os números racionais
Com o sistema de numeração hindu ficou fácil escrever qualquer número, por
maior que ele fosse.
0 13 35 98 1.024 3.645.872
Como estes números foram criados pela necessidade prática de contar as
coisas da natureza, eles são chamados de números naturais.
Os números naturais simplificaram muito o trabalho com números
fraccionários.
Não havia mais necessidade de escrever um número fraccionário por meio de
uma adição de dois fraccionários, como faziam os matemáticos egípcios.
O número fraccionário passou a ser escrito como uma razão de dois números
naturais.
A palavra razão em matemática significa divisão. Portanto, os números inteiros
e os números fraccionários podem ser expressos como uma razão de dois números
naturais. Por isso, são chamados de números racionais.
A descoberta dos números racionais foi um grande passo para o
desenvolvimento da Matemática.
Os números irracionais…
Os pitagóricos são confrontados com os números
irracionais.
Depois de durante milénios ter utilizado os números para contar,
medir, calcular, o homem começou a especular sobre a natureza
e propriedades dos próprios números. Desta curiosidade nasceu a
Teoria dos Números, um dos ramos mais profundos da
matemática.
A Teoria dos Números nasceu cerca de 600 anos antes de Cristo
quando Pitágoras e os seus discípulos começaram a estudar as
propriedades dos números inteiros. Os pitagóricos rendiam
verdadeiro culto místico ao conceito de número, considerando-o
como essência das coisas. Acreditavam que tudo no universo
estava relacionado com números inteiros ou razões de números
inteiros (em linguagem actual, números racionais). Aliás, na
antiguidade a designação número aplicava-se só aos inteiros
maiores do que um. Esta crença foi profundamente abalada
quando usaram o Teorema de Pitágoras para calcular a medida
da diagonal de um quadrado unitário.
Como eles apenas conheciam os números racionais (naturais e
fracções de naturais) foi com grande surpresa e choque que
descobriram que havia segmentos de recta cuja medida não
pode ser expressa por um número racional. Essa descoberta é
atribuída a um aluno de Pitágoras que tentava descobrir a medida
da diagonal de um quadrado de lado 1.
Os números irracionais…
Ao descobrirem que a diagonal de um quadrado de lado 1 não era uma razão
entre dois inteiros (em linguagem actual, que a raíz quadrada de 2 é um número
irracional) os Pitagóricos consideraram quebrada a harmonia do universo, já que
não podiam aceitar a raíz quadrada de dois como um número, mas não podiam
negar que esta raíz era a medida da diagonal de um quadrado unitário.
Convencidos de que os deuses os castigariam caso divulgassem aquilo que lhes
parecia uma imperfeição divina, tentaram ocultar a sua descoberta. Segundo reza
a lenda, o primeiro membro da seita Pitagórica que divulgou esta descoberta
morreu afogado num naufrágio sendo a sua alma açoitada pelas ondas para todo
o sempre.
Assim, o número terá sido o primeiro número irracional com que a humanidade se
deparou. O número de ouro é outro irracional…
A raiz quadrada de 2 não é um número racional: -Demonstração
O número irracional
A história do número irracional
A história do número irracional
A história do número irracional
A história do número irracional
A história do número irracional
A história do número irracional
A história do número irracional
A história do número irracional
A história do número irracional
Conjuntos de números

0

Dízimas infinitas periódicas
Dízimas infinitas periódicas
Números Reais
Resumindo…



Uma construção geométrica
Peloteorema de Pitágoras
d 2  12  12
d  2
2
0
1
1
2
Download

Romana - Universidade Castelo Branco