Aula 5 - Método experimental ou de seleção aleatória Material Elaborado por Betânia Peixoto Modificado por Guilherme Irffi e Francis Petterini Plano de Aula Definição de seleção aleatória Avaliação de impacto com seleção aleatório- instrumental teste de diferença de médias Aleatorização O "padrão ouro" na avaliação dos efeitos das intervenções Permite-nos para formar um "tratamento" e "controle“ grupos características idênticas diferem apenas pela intervenção. Melhor aproximação contrafactual Atribuição aleatória Cada unidade elegíveis tem a mesma chance de receber a intervenção. Nos permite comparar o "tratamento" e "grupo de controle" Atribuição aleatória vs Amostra Aleatória Atribuição aleatória • São os resultados observados devido à intervenção, em vez de outros fatores de predisposição. (validade interna) Amostra aleatória • Que os resultados encontrados na amostra se aplicam à população em geral, ou seja, são generalizáveis. (validade externa) Exemplo de Aleatorização Qual é o impacto de fornecer livros gratuitos aos alunos sobre os resultados dos testes? Aleatoriamente atribuir um grupo de crianças da escola para qualquer um: - Grupo de Tratamento - recebe livros gratuitos - Grupo de controle - não receber livros gratuitos) Como você Aleatoriza? Em que nível? • • • • • Individual Grupo Escola Comunidade Distrito Quando você usaria Aleatorização? Universo de indivíduos elegíveis geralmente maiores que os recursos disponíveis em um único ponto no tempo. Forma justa e transparente para atribuir Dá uma chance igual a todos na amostra. Bons momentos para randomize: • Programas-piloto • Programas com orçamento / capacidade • Fase em programas benefícios Realizar a avaliação de impacto quando a seleção entre tratados e não-tratados foi aleatória. Problema da avaliação Relembrando: Impacto = ATT = E[Yp, P=1] - E[Ysp, P=1] Não observamos Ysp quando P=1. Se E[Ysp, P=1] ≠ E[Yc, P=0] Erro: ε= E[Ysp, P=1] - E[Yc, P=0] (1) O ATT é dado por: ATT = E[Yp, P=1] - E[Yc, P=0] + ε (2) Viés ou erro Substituindo (1) em (2) ATT = E[Yp, P=1] - E[Yc, P=0] + {E[Ysp, P=1] - E[Yc, P=0] } Método experimental ou de seleção aleatória No método experimental, a avaliação de impacto já é desenhada antes da implementação do programa. Tendo em mãos um conjunto de pessoas desejosas de participar do programa e com as características esperadas do público-alvo, dividimos aleatoriamente esse conjunto de pessoas em dois grupos: tratamento e controle. Conseqüência do sorteio Se temos um número grande de participantes, quando fazemos o sorteio esperamos que a única diferença entre os grupos seja a participação no programa. Tratamento: participam do programa. Controle: não participam do programa. Sob seleção aleatória Quando um grupo controle é selecionado de forma aleatória, podemos considerar que, em média, o grupo tratado e o grupo controle são semelhantes – por causa da propriedade probabilística. Assim: E[Ysp, P=1] = E[Yc, P=0] ↔ E[Ysp, P=1] - E[Yc, P=0]=0 ATT = E[Yp, P=1] - E[Yc, P=0] + {E[Ysp, P=1] - E[Yc, P=0] } o ATT é dado por: ATT = E[Yp, P=1] - E[Yc, P=0] Viés ou erro = 0 Neste caso... ATT = E[Yp, P=1] - E[Yc, P=0] Basta comparar a média do grupo de tratamento e o de controle. No entanto, não basta comparar os valores das médias das duas amostras (tratado e controle) para saber se houve impacto. Para sabermos se, de fato, o programa teve impacto, é preciso saber se as médias populacionais são diferentes. Como comparar duas médias populacionais com base nas amostras? Resposta: A partir de um “teste de diferença de médias”. Teste de diferença de médias Suponha agora que estamos interessados em comparar a média de uma variável aleatório com base em duas amostras diferentes. Para isto podemos fazer o teste de diferenças entre médias Como as médias são calculadas a partir de uma amostra da população, a diferença matemática observada entre elas pode ser apenas devido a um erro amostral. Portanto, uma diferença entre duas médias amostrais não representa uma verdadeira diferença entre as médias populacionais. Teste de diferenças entre médias Hipótese Nula: Não há diferença entre as Médias Populacionais H0: μ 1= μ 2 μ 1= média na população 1 μ 2= média na população 2 Hipótese experimental: há diferença entre as Médias Populacionais H1: μ 1≠ μ 2 Para testarmos esta hipótese com uma probabilidade conhecida de acerto, precisamos calcular os chamados escores Z, supondo que a distribuição da variável é normal. Z X1 X 2 dif 2 dif Onde: s1 N1 2 s2 N2 é a média amostral é a diferença do erro padrão de cada média s é a variancia da amostra N é o tamanho da amostra X dif Z de teste Uma vez encontrado o Z de teste calculado pela fórmula do slide anterior, utilizamos uma tabela de Porcentagem da Área sob a Curva Normal - Z, para obtermos a probabilidade de não rejeitarmos H0. Fazendo 100- 2 vezes a probabilidade calculada na tabela, temos a estatística conhecida como P-valor, que nos fornece a probabilidade de erro ao rejeitarmos H0. Z de teste- Exemplo Ex: Considere o teste de diferença de média entre duas amostras com o Z=0,68. Olhando na tabela encontramos a probabilidade 25,17, multiplicando por 2 temos 50,34% de acerto. O P-valor é de 49,66% (100-50,34) Isto significa que se rejeitarmos H0 estariamos errando a uma probabilidade de 49,66%. Assim, não rejeitamos H0 e dizemos que a diferença entre as médias amostrais não é significativa. Obs: estas médias podem ser matematicamente diferentes, mas esta diferença é devida a erro amostral. Passos para o teste de diferença de médias 1o passo: Obter as médias amostrais 2o passo: achar o desvio padrão de cada amostra 3o passo: Calcular o erro padrão de cada média 4o passo:Achar a diferença do erro padrão das médias 5o passo: Achar a estatística Z 6o passo: Usando a tabela obter a probabilidade de acerto 7o passo: subtrair de 100% a probabilidade de acerto para achar o P-valor. Comentários Finais Aula de hoje: aprendemos a realizar a avaliação de impacto quando a seleção entre tratados e não-tratados foi aleatória. Próxima aula: iremos aprender a fazer a avaliação de impacto quando a seleção entre tratados e não-tratados não foi aleatória.