Economia e Gestão ESAPL - IPVC Breves Notas sobre Teoria da Decisão O que é decidir É o acto de seleccionar uma linha de acção preferida entre várias alternativas existentes. Existem diversos instrumentos que podem contribuir para a tomada de decisões, dependentes do ambiente cultural e organizacional e das situações envolvidas, e mais ou menos polarizados por suportes racionais, como modelos matemáticos, por meios computacionais ou por questões e conhecimentos de psicologia. Claro que muitos outros factores podem influenciar e contribuir para o processo decisório, como a experiência, a intuição e aspectos emotivos. A teoria da Decisão Representa uma abordagem geral a problemas decisórios, oferecendo um conjunto de conceitos e técnicas para apoiar o decisor a enfrentar problemas de decisão, mais ou menos complexos. Visa a tomada de decisões racionais e consistentes, nomeadamente em condições de aleatoriedade ou incerteza. Modelos do processo de decisão que disponibilizem informação podem ser de grande utilidade. Dois modelos comuns são matrizes de decisão e as árvores de decisão. Caracterização de Problemas de Decisão Os processos de análise e exploração envolvidas na tomada de decisão contêm, normalmente, um conjunto de características gerais. Definição dos objectivos; Enumeração dos eventos ou cenários possíveis; Selecção do conjunto de acções alternativas possíveis ou estratégias Determinação do valor Vij decorrente de cada combinação de acções Ai com o cenário j; Formulação da matriz de decisão Determinação das probabilidades j, associadas à ocorrência de cada um dos cenários ou eventos; Aplicação das regras ou critérios que melhor conduzem aos objectivos estabelecidos. Decisor / Acções/ Estados de Natureza / Consequências O decisor é o responsável pela tomada de decisões. Pode ser um único indivíduo, um grupo, uma empresa ou mesmo uma nação. O decisor deve conseguir construir uma lista exaustiva e mutuamente exclusiva de todas as suas possíveis acções alternativas. Os Estados de Natureza são acontecimentos que podem ocorrer e que não podem ser controlados pelo decisor. Eles devem ser mutuamente exclusivos e devem descrever exaustivamente todas as situações possíveis. As consequências são as medidas do benefício obtido pelo decisor. Elas dependem da decisão e dos estados da natureza. A cada par “decisão tomada - estado da natureza” associa-se um valor correspondente à consequência para o decisor. Com esses valores pode preencher-se uma tabela de duas entradas a que se chama “matriz de Decisão” Estados de Natureza Acções 1 2 3 ... n A1 V11 V12 V13 ... V1n A2 V21 V22 V23 ... V2n ... ... ... ... ... ... Am Vm1 Vm2 Vm3 ... Vmn Ambiente de decisão Certeza – o decisor sabe qual o acontecimento que vai ocorrer – uma previsão precisa é possível; Risco – O decisor não sabe qual o acontecimento que vai ocorrer mas pode estimar a probabilidade de ocorrência de um qualquer acontecimento; Incerteza – O decisor nem sequer tem informação suficiente para estimar as probabilidades dos diferentes acontecimentos. Outro modo de definir Incerteza A incerteza pode ser definida como o “conhecimento imperfeito”. Decisões que, devido a forças que estão para além do controlo do decisor, não conduzem a um único resultado seguro, são conhecidas como decisões incertas. Mas tais decisões têm uma gama de resultados possíveis, que podem ser especificados pelo decisor na forma de uma distribuição de probabilidades subjectivas, as quais correspondem aos seus graus pessoais de crença na ocorrência dos possíveis resultados. Definição de Probabilidades Subjectivas Se o gestor acredita que há n resultados possíveis, R1, R2,..., Rn, para uma determinada decisão, ele pode associar a cada um uma probabilidade de ocorrência P(Ri), com i = 1, 2, ..., n, que corresponda à sua convicção pessoal sobre a possibilidade que cada um daqueles resultados tem de vir de facto a verificar-se. Ficam assim definidas as Probabilidades Subjectivas, que devem obedecer às Leis Gerais das Probabilidades. Leis das Probabilidades: Os resultados R1, R2,..., Rn, para uma dada decisão devem ser mutuamente exclusivos e devem abarcar todos os resultados possíveis, de tal forma que: P(Ri) esteja compreendido entre zero e um: 1 ≤ P(Ri) ≤ 0; A probabilidade de ocorrência do resultado i ou do resultado j seja igual à soma das respectivas probabilidades de ocorrência: P(Ri ou Rj) = P(Ri) + P(Rj). A probabilidade de que ocorra um dos resultados é unitária, isto é: P(R1 ou R2 ... ou Rn) = P(R1) + P(R2) + ... + P(Rn) = ΣP(Ri) = 1. Outro modo de definir Risco Da forma que acabámos de ver, ainda que a incerteza esteja sempre presente num processo de tomada de decisão, o risco pode não estar. O Risco só está presente quando os resultados incertos de uma decisão são significativos ou merecem a preocupação do decisor, ou seja, quando eles afectam o seu bem-estar. Risco e Probabilidades Num problema de tomada de decisão em condições de incerteza e em que os resultados são tidos como significativos, isto é, num problema de decisão “arriscado”, o risco presente é especificado pela globalidade do conjunto das distribuições de probabilidades subjectivas do decisor para o contingente de resultados que podem ocorrer. Só uma distribuição de probabilidades completa, para os possíveis resultados de uma escolha particular, podem realçar perfeitamente o risco que essa mesma escolha acarreta para o decisor. Decisão com incerteza Quatro critérios de decisão possíveis: Maximin, pessimista ou Wald; Maximax, optimista; Perda de oportunidade, mínimo arrependimento ou regra de Savage; Laplace (ou da média). Maximin, pessimista ou Wald Determinar o pior resultado possível para cada alternativa, e depois escolher a alternativa com o “melhor pior” Maximax ou optimista Determinar o melhor resultado possível, e escolher a alternativa correspondente. Mínimo arrependimento ou regra de Savage Determinar o valor máximo de V em cada coluna j (Vj); Calcular para cada combinação (Ai, j), o valor R = Vij – Vj; Apresentar para cada acção i, o valor máximo de Rij j = 1, ...,n Escolher a acção com o menor valor assim encontrado. Laplace Determinar a média dos resultados para cada alternativa, e escolher a alternativa com a melhor média. Decisão com risco A distinção entre risco e incerteza apoia-se, como vimos, na ideia do uso de probabilidades que, em certos casos, poderão ser estimadas objectivamente mas, em muitos outros, corresponderão a probabilidades subjectivas definidas pelo decisor. Em todo o caso, elas estão directamente relacionadas ou com a frequência conhecida ou com a frequência suposta dos acontecimentos (com a impressão e o conhecimento que temos sobre os conhecimentos). Os critérios mais utilizados são: Máximo Valor Esperado; Mínimo Arrependimento Esperado. Note-se que ambos conduzem sempre ao mesmo resultado. Máximo valor esperado Determinar o valor esperado para cada alternativa, e escolher a alternativa que tiver o melhor valor esperado. Mínimo arrependimento esperado Determinar a matriz de Savage; Calcular, a partir desta matriz, o valor esperado de cada acção; Escolher a acção com o menor valor esperado. Árvore de decisão A árvore de decisão é uma forma alternativa de estruturação de um problema de decisão. As árvores de decisão são muito úteis para representar problemas de decisão complexos, com sequências de acções e estados da natureza que ocorrem ao longo do tempo. Árvore de decisão Os quatro elementos fundamentais de uma decisão com risco – acções disponíveis, acontecimentos incertos, resultados incertos e respectivas probabilidades subjectivas de ocorrência – podem ser especificados / mostrados / modelados na forma de uma árvore de decisão. A árvore de decisão mostra precisamente: (1) as escolhas alternativas; (2) os acontecimentos incertos que afectam cada escolha; (3) os possíveis resultados para cada alternativa e (4) as probabilidades de ocorrência de cada uma. Construção da Árvore de Decisão Desenhar as possíveis decisões e os possíveis resultados incertos num esquema claramente sujeito a uma sequência temporal, da esquerda para a direita, desenhando ramos sucessivos que emanam ou de nós de decisão, ou de nós de acaso. A cada ramo terminal atribuir um Valor ou Resultado esperado (normalmente um valor monetário). Trabalhar depois em sentido contrário, da direita para a esquerda, a partir de cada ramo terminal, no sentido de determinar o Valor Monetário Esperado de cada decisão, em função das probabilidades atribuídas. Escolher, “podando a árvore”, a decisão que melhor satisfaz os objectivos ou as expectativas do decisor (normalmente aquela que maximiza o Valor Monetário Esperado). Tipos de nós Nós de decisão (assinalados com quadrados) – escolha do caminho feita pelo decisor (acções escolhidas pelo decisor); Nós de acaso (assinalados com círculos) – caminho determinado por factores que o decisor não controla (estados da natureza). Um exemplo (descrição do problema) Suponhamos que um empresário agrícola tinha estudado os possíveis ganhos ou perdas que teria por cada hectare de uma das suas actividades, consoante gastasse 40, 80, 120 ou 160 € por hectare em fertilizantes e o ano agrícola viesse a ser “fraco”, “razoável”, “bom” ou “excelente”. Para estes quatro acontecimentos incertos, ele formulou probabilidades de ocorrência (subjectivas, baseadas por exemplo na sua experiência passada) de 10%, 20%, 50% e 20% respectivamente. A Matriz de Resultados a que chegou foi a seguinte: Estado do Ano Agrícola Acções Alternativas Probabilidade Subjectiva Gastar 40 € Fraco 0,1 (10%) -160 -240 -320 -400 Razoável 0,2 (20%) -40 -160 -240 -320 Bom 0,5 (50%) 40 80 120 160 Excelente 0,2 (20%) 240 400 480 480 Gastar 80 € Gastar 120 € Gastar 160 € Possíveis Ganhos ou Perdas (€) Um exemplo (a Árvore) Decisão Acontecimento € em Fertilização / ha Tipo de Ano Fraco Razoável Bom Excelente 40 € Fraco Razoável 80 € Bom Excelente 120 € Fraco Razoável 160 € Bom Excelente Fraco Razoável Bom Excelente Probabilidade Resultado € 0,1 -160 € 0,2 -40 € 0,5 40 € 0,2 240 € 0,1 -240 € 0,2 -160 € 0,5 80 € 0,2 400 € 0,1 -320 € 0,2 -240 € 0,5 120 € 0,2 480 € 0,1 -400 € 0,2 -320 € 0,5 160 € 0,2 480 € Um exemplo (a Resolução) Decisão Acontecimento Cálculo do Valor € em Fertilização / ha Tipo de Ano Monetário Esperado Fraco VME = 44 € Razoável Bom Excelente Fraco 40 € VME = 64 € Razoável Bom 80 € Excelente Fraco 120 € Razoável 160 € Bom VME = 76 € Excelente Fraco A melhor solução será, portanto, a de gastar 120 € por hectare em fertilização. Razoável Bom VME = 72 € Excelente 0,1 x -160 € = -16 € 0,2 x -40 € = -8 € 0,5 x 40 € = 20 € 0,2 x 240 € = 48 € 0,1 x -240 € = -24 € 0,2 x -160 € = -32 € 0,5 x 80 € = 40 € 0,2 x 400 € = 80 € 0,1 x -320 € = -32 € 0,2 x -240 € = -48 € 0,5 x 120 € = 60 € 0,2 x 480 € = 96 € 0,1 x -400 € = -40 € 0,2 x -320 € = -64 € 0,5 x 160 € = 80 € 0,2 x 480 € = 96 € Σ = 44 € Σ = 64 € Σ = 76 € Σ = 72 € Vantagens da Árvore de Decisão (1) Forçar o decisor a, explicitamente, considerar acções alternativas e possíveis acontecimentos que influenciam os seus resultados; (2) Permitir ao decisor exprimir uma situação complexa numa sequência de decisões; (3) Ajuda o decisor a quantificar os processos de decisão; (4) Facilita uma escolha óptima, baseada num determinado critério objectivo (por exemplo, o Valor Monetário Esperado).