Matemática e suas Tecnologias - Matemática Ensino Fundamental, 6º Ano Operações com números naturais: potenciação MATEMÁTICA, 6º Ano Operações com números naturais: potenciação O que se espera do educando durante o desenvolvimento do conceito de potência no 6º Ano do Ensino Fundamental : Um dos objetivos da Matemática para o terceiro ciclo do Ensino Fundamental, visando ao desenvolvimento do pensamento numérico por meio da exploração de situações de aprendizagem, é “resolver situações-problema envolvendo números naturais, inteiros, racionais e a partir delas ampliar e construir novos significados da adição, subtração, multiplicação, divisão, potenciação e radiciação”(PCN, terceiro e quarto ciclos do Ensino Fundamental, Matemática, 1998, página 64). CONCEITOS E PROCEDIMENTOS -Compreensão da potência com expoente inteiro positivo como produto reiterado de fatores iguais, identificando e fazendo uso das propriedades da potenciação em situações-problema. - Atribuição de significado à potência de expoente nulo e negativo pela observação de regularidades e pela extensão das propriedades das potências com expoente positivo.(PCN, terceiro e quarto ciclos do Ensino Fundamental, Matemática, página 72,1998) MATEMÁTICA, 6º Ano Operações com números naturais: potenciação LEIA O TEXTO COM MUITA ATENÇÃO E TENTE SOLUCIONAR OS PROBLEMAS PROPOSTOS O professor de Matemática convidou seus alunos a participarem de um jogo composto por 3 fases, e cada uma possui um problema a ser solucionado: 1ª FASE: Dois amigos, Petrúcio e Pedro, estão doentes e foram ao médico, que prescreveu a seguinte medicação: Petrúcio precisa tomar dois comprimidos durante seis dias, e Pedro, três comprimidos durante três dias. Quantos comprimidos cada um deve tomar? Problema inspirado em um problema dos PCN, Ensino Fundamental, Matemática, Página 109. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação SOLUÇÃO PETRÚCIO: 2 COMPRIMIDOS DURANTE 6 DIAS 2 + 2 + 2 + 2 + 2 + 2 = 12 ou 6 X 2 = 12 ou 6 . 2 = 12 PEDRO: 3 COMPRIMIDOS DURANTE 3 DIAS 3+3+3=9 ou 3 X 3 = 9 ou 3 . 3 =9 RESPOSTA: Petrúcio deve tomar 12 comprimidos, e Pedro, 9. Observação: 1- No contexto do problema que foi apresentado, apenas a escrita 6 x 2 traduz o problema, embora 2 x 6 = 6 x 2. 2-Essa atividade é uma boa oportunidade para se refletir sobre a seguinte pergunta: Por que os médicos utilizam em suas prescrições de medicamentos intervalos de hora do tipo: de 4 em 4 horas, 6 em 6 horas, 8 em 8 horas, 12 em 12 horas? MATEMÁTICA, 6º Ano Operações com números naturais: potenciação 2ªFASE: Para se preparar para os jogos escolares, Robério precisa melhorar seu condicionamento físico, por isso pediu ajuda a Issac, seu professor de Educação Física. Este lhe recomendou um programa de condicionamento físico que é iniciado com uma caminhada, durante 5 semanas, na pista do campo de futebol próximo à casa de Robério, de modo que o número de voltas deve dobrar a cada semana. Quantas voltas Robério dará na 5ª semana? PERÍODO NÚMERO DE VOLTAS NA PISTA 1ª semana 2 2ª semana 2.2 = 4 3ª semana 2.2.2 = 8 4ª semana 2.2.2.2 = 16 5ª semana ? Observação: As atividades físicas devem ser orientadas por um profissional da área de Educação Física, que determinará a frequência e a intensidade dos exercícios . MATEMÁTICA, 6º Ano Operações com números naturais: potenciação SOLUÇÃO PERÍODO NÚMERO DE VOLTAS NA PISTA 1ª semana 2 2ª semana 2.2 = 4 3ª semana 2.2.2 = 8 4ª semana 2.2.2.2 = 16 Continuando o raciocínio da tabelas, temos: 5ª semana = 2 . 2 . 2 . 2 . 2 = 32 Portanto, na 5ª semana, Robério dará 32 voltas. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação 3ª FASE: Kleison é um estudante muito aplicado e sempre faz suas tarefas de casa. Ele gosta bastante das tarefas relacionadas às operações matemáticas. Seu professor de Matemática, sabendo disso, chamou-o para resolver, no quadro da sala de aula, as seguintes operações: 10.10.10.10 = 2.3.4.5 = Quais foram os resultados encontrados por Kleison? (A) 40 e 14 respectivamente (B) 100 e 29 respectivamente (C) 10000 e 120 respectivamente MATEMÁTICA, 6º Ano Operações com números naturais: potenciação SOLUÇÃO Para resolver esse problema, Kleison realizou as multiplicações da seguinte forma: 2.3.4.5= 10 . 10 . 10 . 10 = = 100 . 10 . 10 = = 1000 . 10 = = 6 .4.5= = 24 . 5 = 10000 Resposta: 10000 e 120. Letra c. = 120 MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Ao término do desafio, o professor apresentou aos estudantes um quadro com as multiplicações que apareceram durante a solução de cada uma das 3 fases. 1ªFASE: 6 . 2 e 3 . 3 2ªFASE: 2.2.2.2.2 3ªFASE: 10. 10. 10 .10 e 2.3.4.5 Em seguida, fez o seguinte questionamento: - Poderíamos separar essas operações em dois grupos? O que seria levado em consideração nessa separação? 1º GRUPO 6.2 2.3.4.5 Após o debate, tem-se: 2º GRUPO 3.3 2.2.2.2.2 10.10.10.10 Parabéns! Observa-se que o 1º grupo é formado por multiplicações com fatores diferentes, e o 2º grupo é formado por MULTIPLICAÇÕES DE FATORES IGUAIS. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação - No segundo grupo, está acontecendo uma coisa muito especial, diz o professor. Em cada multiplicação, TODOS OS FATORES SÃO IGUAIS. Em seguida, o professor lançou mais um desafio: - Vamos criar uma maneira mais sucinta, ou seja, simples , de representar as multiplicações apresentadas no 2º grupo? - Para iniciar, disse o professor com intenção de ajudar os alunos nesse desafio, vou fazer algumas observações. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Cada multiplicação está baseada em um único número, ou seja, tem como BASE apenas um número. Exemplo: 3.3 ( tem como BASE o número 3) 2 . 2 . 2 . 2 ( tem como BASE o número 2) 10.10.10.10.10 ( tem como BASE o número 10) MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Cada multiplicação nos EXPÕE uma certa quantidade de fatores. Exemplo: 3.3 2.2.2.2.2 10.10.10.10 Expõe dois fatores Expõe cinco fatores Expõe quatro fatores MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Em seguida, o professor analisou: Se tem como BASE o número 2, Se tem como BASE o número 3, 3.3 nos EXPÕE dois fatores. 2.2.2.2.2 nos EXPÕE cinco fatores. Se tem como BASE o número 10, 10.10.10.10 nos EXPÕE quatro fatores. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação - Então, diz o professor, podemos representar essas multiplicações assim: 2.2.2.2.2=2 5 3 . 3 = 3² 3 é o número BASE dessa multiplicação, e o 2, a quantidade de fatores que ela nos EXPÕE. O número 2 é a BASE dessa multiplicação, e o número 5 é a quantidade de fatores EXPOSTO por essa operação 4 10.10.10.10= 10 10 é a BASE e 4, o EXPOENTE. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Seguindo, o professor questiona: - Quem pode dar outros exemplos aqui no quadro? Qual a quantidade mínima de fatores? E a máxima? MAIS EXEMPLOS: Nota: Preparando para generalizar a ideia . 0.0 = 0² 7.7.7 = 7³ 6 4 5.5.5.5 = 5 1.1.1.1.1.1 = 1 5 12.12.12.12.12 = 12 MATEMÁTICA, 6º Ano Operações com números naturais: potenciação O professor conclui: Essa multiplicação de fatores iguais é uma operação matemática que recebe o nome de POTENCIAÇÃO. O símbolo que representa essa multiplicação é denominado POTÊNCIA. - EXEMPLO: 5 . 5 = 5² = 25 POTENCIAÇÃO Nota: Consultar no dicionário o significado da palavra potência. POTÊNCIA EXPOENTE 5² BASE RESULTADO ou POTÊNCIA DE 5 Pesquisa na Internet: Qual(is) o(s) matemático(s) responsável (is)pela criação da potência? Sugestão de sites: http://www.educ.fc. ul.pt/docentes/jpon te/artigos_pt.htm MATEMÁTICA, 6º Ano Operações com números naturais: potenciação LEITURA DAS POTÊNCIAS - Agora surgiu uma dúvida, diz o professor, como essas potências são lidas? 3 2 Lê-se: Três elevado à segunda potência. 2 5 Lê-se: Dois elevado à quinta potência. 4 10 Lê-se: Dez elevado à quarta potência. 710 Lê-se: Sete elevado à décima potência. Agora é sua vez, leia as potências: 12 5² 06 1013 20³ 1820 8 7 8 4 3418 MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Vamos agora escrever uma potência de um modo mais amplo, generalizado, isto é, vamos defini-la. Considerando p e n números naturais, sendo n maior que 1, temos: pn é o produto de n fatores iguais a p. p n = p . p . p . p . ... . p Lê-se: p elevado a n n vezes MATEMÁTICA, 6º Ano Operações com números naturais: potenciação O estudante Antônio Luiz, pedindo licença, indagou: - Professor, o que acontece se o expoente for 0 ou 1? O professor respondeu: - Antônio Luiz, para saber o que acontece quando o expoente é 0 ou 1, observe ATENTAMENTE a tabela a seguir e tente completar as células vazias com o auxílio de seus colegas. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação POTÊNCIA RESULTADO 24 16 23 8 22 4 21 ?2 20 ?1 POTÊNCIA 16 dividido por 2 = 8 8 dividido por 2 = 4 RESULTADO 34 33 32 31 81 27 9 ?3 30 ?1 Dividido por 3 Dividido por 3 De acordo com o que observamos nas tabelas, podemos concluir que: MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Toda potência com base diferente de zero e expoente zero é igual a 1. Exemplos: 2°=1 3°=1 4°=1 8°=1 Toda potência de expoente 1 é igual à própria base. Exemplos: 2¹=2 5¹=5 14¹=14 0¹=0 MATEMÁTICA, 6º Ano Operações com números naturais: potenciação De um modo geral, para todo número natural p diferente de zero (p ǂ 0) e n menor que 2 (n < 2), temos: p¹ = p p° = 1 OBSERVAÇÃO: 0° = INDETERMINAÇÃO Leia mais sobre indeterminação no endereço eletrônico: pt.wikipedia.org Sugestão para revisão: assista aos 9 primeiros minutos do Novo telecurso 2000, Ensino fundamental, Matemática, Aula 53. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação O professor segue apresentando POTÊNCIAS ESPECIAIS. Há potências que podem ser representadas por uma figura. Exemplos: Por estar associada a essas figuras ao lado, as potências de expoente 2 e de expoente 3 são lidas de uma forma diferente, especial: 3² Lê-se: Três elevado ao quadrado ou quadrado de 3. 5³ Lê-se: Cinco elevado ao cubo ou cubo de 5. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação DICA DE AULA AO AR LIVRE Como atividade complementar, pode ser desenvolvida uma situação-problema ao ar livre, a qual consiste em medir os lados de quadrados de tamanhos variados formados no chão com fita crepe e, em seguida, calcular suas respectivas áreas. Nessa atividade, os alunos devem perceber que todas as áreas das figuras podem ser escritas por uma potência cuja base é igual à medida do lado do quadrado e, na sequência, devem generalizar essa ideia, escrevendo a fórmula da área de um quadrado. Em seguida, farão uma atividade que consiste em formar quadrados com grãos (sementes) separados com a mesma distância (malha pontilhada), para que entendam porque os resultados das potências que representam as áreas dos quadrados são chamados de “quadrados perfeitos” e também porque a potência de expoente 2 pode ser lida de forma diferente, especial (elevado ao quadrado). MATEMÁTICA, 6º Ano Operações com números naturais: potenciação DICA DE AULA EM LABORATÓRIO Com os blocos de cubos, os alunos devem construir cubos partindo de um único cubinho, que será tomado como unidade de volume, e assim observar os volumes, ao construírem cubos com oito cubinhos e 27 cubinhos. Nessa atividade, os alunos devem perceber que todos os volumes das figuras espaciais podem ser escritos por uma potência cuja base é igual à medida da aresta do cubo. Em seguida, devem generalizar essa ideia, escrevendo a fórmula de volume de um cubo e percebendo, assim, porque os resultados das potências que representam os volumes dos cubos são chamados de “cubos perfeitos” e também porque a potência de expoente 3 pode ser lida de forma diferente, especial (elevado ao cubo). MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Exemplo de aplicabilidade de potência na Informática. As potências são muito utilizadas para representar números grandes: 9 1.000.000.000 = 10.10.10.10.10.10.10.10.10 = 10 100.000.000 = 10.10.10.10.10.10.10.10 = 108 10.000.000 = 10.10.10.10.10.10.10 = 107 1.000.000 = 10.10.10.10.10.10 = 10 6 100.000 = 10.10.10.10.10 = 105 10.000 = 10.10.10.10 = 104 Nota: Utilizar calculadora simples ou de celular, para verificar alguns desses números (os de expoente menores ou iguais a 7). Observe que o número de zeros determina o valor do expoente: 1.000.000.000.000 = 10 Lê-se: Um trilhão 12 zeros 12 MATEMÁTICA, 6º Ano Operações com números naturais: potenciação O computador é bastante utilizado para armazenamento e processamento de informações de maneira precisa e rápida e tem como unidade de medida de informação o byte (lê-se: baite). VEJA ALGUNS MÚLIPLOS DO BYTE: Kb = 1.000 bytes Mb = 1.000.000 bytes Gb = 1.000.000.000 bytes Observe uma configuração básica de um computador: Processador de 2 GHz, memória de 128Mb, HD de 120 Gb, monitor de 18”, placa de vídeo de 8Mb. Nota: Pesquisar: a)em revistas, jornais, etc, outras configurações de computadores e fazer um debate: qual o melhor computador a ser comprado? O que influencia o preço? Etc. b)Como é medida a polegada no monitor? c)O que é configuração de um computador? MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Passando para forma de potência, temos: Agora, vamos ler: MEDIDA LÊ-SE 2 GHz Dois gigahertz ou dois bilhões de hertz. 120 GB Cento e vinte gigabytes ou cento e vinte bilhões de bytes. 128 MB Cento e vinte e oito megabytes ou cento e vinte e oito milhões de bytes. 8 MB Oito megabytes ou oito milhões de bytes. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação Para agilizar cálculos com potências, utilizamos algumas propriedades da potenciação. PRODUTO DE POTÊNCIAS DE MESMA BASE: 7 4 2³ . 2 = 2 . 2 . 2 . 2 . 2 . 2 . 2 = 2 3 fatores Outro modo: 2³ . 24 = 2 3+4 = 2 7 4 fatores Observe que, para multiplicar potências de bases iguais, conservamos a base e somamos os expoentes. Outro exemplo: 5² . 5³ . 5 = 5 (2+3+1) = 56 Atenção! 5=51 4=41 MATEMÁTICA, 6º Ano Operações com números naturais: potenciação DIVISÃO DE POTÊNCIAS DE MESMA BASE 3 2 5 : 2 2 = (2 . 2 . 2 . 2 . 2) : (2 . 2) = 2 . 2 . 2 . 2 . 2 = 2 . 2 . 2 = 2 2.2 5 fatores 2 fatores Outro modo: 5 2 : 2² = 2 (5-2) = 2³ Observe que, para dividir potências de bases iguais, não-nulas, conservamos a base e subtraímos os expoentes. Outro exemplo: 5³ : 5 = 5(3-1) = 5² MATEMÁTICA, 6º Ano Operações com números naturais: potenciação POTÊNCIA DE UMA POTÊNCIA 3+3 3 6 OUTRO MODO: (3³)² = 3 3.2 =3 6 Para elevar uma potência a um expoente, conservamos a base e multiplicamos os expoentes. 5 Outro exemplo: [(5³)²] = 5 3 . 2. 5 = 5 30 MATEMÁTICA, 6º Ano Operações com números naturais: potenciação POTÊNCIA DE UMA PRODUTO: (2 . 5)³ = (2 . 5) . (2 . 5) . (2 . 5) = Aplicando a propriedade comutativa da multiplicação, temos: = (2 . 2 . 2) . (5 . 5 . 5) = 2³ . 5³ 3 fatores 3 fatores Para elevar um produto a um expoente, basta elevarmos cada um dos fatores do produto a esse expoente. MATEMÁTICA, 6º Ano Operações com números naturais: potenciação REFERÊNCIAS BIBLIOGRÁFICAS -Behrens, Marilda Aparecida, O paradigma emergente e a prática pedagógica, 4ª edição, Petrópolis-RJ, Vozes, 2010. -Parâmetros curriculares nacionais: Matemática /Secretaria de Educação Fundamental. – Brasília : MEC /SEF, 1998.148 p.1. -Projeto Araribá, Matemática/obra coletiva, Editora responsável: Juliane Matsubara, São Paulo, Moderna, 2006. -Logen, Adilson, Matemática em movimento, 5ª série, São Paulo, Editora do Brasil, 1999. -www.somatematica.com.br -Novo telecurso, ensino fundamental, Matemática, aula 09( Propriedades da multiplicação). -http://www.educ.fc.ul.pt/docentes/jponte/artigos_pt.htm -http://tvescola.mec.gov.br/