Exercícios e exemplos de suo de Diagrama de Venn Fonte: Diagramas de Venn: Questões resolvidas Os diagramas de Venn são utilizados na melhor visualização das propriedades dos conjuntos, facilitando cálculos e a interpretação de situações problema. A relação entre tais conteúdos pode ser feita através da união de conjuntos envolvendo número de elementos. Primeiramente, explique as propriedades do número de elementos da união de dois conjuntos e posteriormente da união de três conjuntos. Número de elementos da união de dois conjuntos Consideremos dois conjuntos A e B, iremos determinar os elementos de A por n(A), os elementos de B por n(B), a união de A com B por n(A U B) e a intersecção de A com B por n(A ∩ B). Demonstre a relação utilizando o diagrama: n(A U B) = n(A) + n(B) – n(A ∩B) Número de elementos da união de três conjuntos Considerando os conjuntos A, B e C teremos a seguinte relação na determinação do número de elementos: n(A U B U C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(A ∩ C) – n(B ∩ C) + n(A U B U C) 1) ( UFSE) Os senhores A, B e C concorriam à liderança de certo partido político. Para escolher o líder, cada eleitor votou apenas em dois candidatos de sua preferência. Houve 100 votos para A e B, 80 votos para B e C e 20 votos para A e C. Em consequência: a) venceu A, com 120 votos. b) venceu A, com 140 votos. c) A e B empataram em primeiro lugar. d) venceu B, com 140 votos. e) venceu B, com 180 votos. Resolução: Votos recebidos pelo candidato A = 100 + 20 = 120 Votos recebidos pelo candidato B = 100 + 80 = 180 Votos recebidos pelo candidato C = 80 + 20 = 100 Resposta letra e. 2) (Unifap) O dono de um canil vacinou todos os seus cães, sendo que 80% contra parvovirose e 60% contra cinomose. Determine o porcentual de animais que foram vacinados contra as duas doenças. Resolução: 80 – x + x + 60 – x = 100 140 – 2x + x = 100 – x = 100 – 140 – x = – 40 x = 40 O porcentual de animais vacinados contra as duas doenças é de 40%. 3) Dez mil aparelhos de TV foram examinados depois de um ano de uso e constatou-se que 4.000 deles apresentavam problemas de imagem, 2.800 tinham problemas de som e 3.500 não apresentavam nenhum dos tipos de problema citados. Então o número de aparelhos que apresentavam somente problemas de imagem é: a) 4 000 b) 3 700 c) 3 500 d) 2 800 e) 2 500 Resolução: Observe o diagrama construído com base no enunciado, onde I é o conjunto dos que apresentavam defeito na imagem, S o conjunto dos que apresentavam problemas de som e N o conjunto daqueles que não apresentavam nenhum defeito citado. Temos que 4000 - x + x + 2800 - x + 3500 = 10000, onde x é o números de televisores que apresentavam, ao mesmo tempo, os dois problemas citados. Segue que x = 10300 - 10000 = 300. Então o número de aparelhos que apresentavam somente problemas de imagem é 4000 - x = 4000 - 300 = 3700. resposta letra B. 4) (PUC) Numa comunidade constituída de 1800 pessoas há três programas de TV favoritos: Esporte (E), novela (N) e Humanismo (H). A tabela abaixo indica quantas pessoas assistem a esses programas. Programas E N H E e N E e H N e H E, N e H Nenhum Número de telespectadores 400 1220 1080 220 180 800 100 x Através desses dados verifica-se que o número de pessoas da comunidade que não assistem a qualquer dos três programas é: (A) 200 (B) os dados do problema estão incorretos. (C) 900 (D) 100 (E) n.d.a. Resolução: No diagrama de Venn-Euler colocamos a quantidade de elementos dos conjuntos, começando sempre pela interseção que tem 100 elementos. Então, 100 + 120 + 100 + 80 +700 + 200 + 300 + x = 1800. Segue que, 1600 + x = 1800. Logo, o número de pessoas da comunidade que não assistem a qualquer dos três programas é: x = 1800 - 1600 = 200. Assim, (A) é a opção correta. 5) Em uma prova discursiva de álgebra com apenas duas questões, 470 alunos acertaram somente uma das questões e 260 acertaram a segunda. Sendo que 90 alunos acertaram as duas e 210 alunos erraram a primeira questão. Quantos alunos fizeram a prova? Resolução: Temos que 90 acertaram as duas questões. Se 260 acertaram a segunda, então, 260 - 90 = 170 acertaram apenas a segunda questão. Se 470 acertaram somente uma das questões e 170 acertaram apenas a segunda, segue que, 470 - 170 = 300 acertaram somente a primeira. Como 210 erraram a primeira, incluindo os 170 que também erraram a primeira, temos que, 210 - 170 = 40 erraram as duas. Assim podemos montar o diagrama de Venn-Euler, onde: P1 é o conjunto dos que acertaram a primeira questão; P2 é o conjunto dos que acertaram a segunda e N é o conjunto dos que erraram as duas. Observe a interseção P1∩ P2 é o conjunto dos que acertaram as duas questões. Logo, o número de alunos que fizeram a prova é: 300 + 90 + 170 + 40 = 600. 6) Numa pesquisa sobre as emissoras de tevê a que habitualmente assistem, foram consultadas 450 pessoas, com o seguinte resultado: 230 preferem o canal A; 250 o canal B; e 50 preferem outros canais diferente de A e B. Pergunta-se: a) Quantas pessoas assistem aos canais A e B? b) Quantas pessoas assistem ao canal A e não assistem ao canal B? c) Quantas pessoas assistem ao canal B e não assistem ao canal A? d) Quantas pessoas não assitem ao canal A? Resolução: Seja o diagrama a seguir: Temos que 230 - x + x + 250 - x + 50 = 450. a) O número de pessoas que assistem aos canais A e B é x = 530 - 450 = 80 b) O número de pessoas que assistem ao canal A e não assistem ao canal B é 230 - x = 150. c) O número de pessoas que assistem ao canal B e não assistem ao canal A é 250 - x = 170. d) O número de pessoas que não assitem ao canal A é 250 - x + 50 = 250 - 80 + 50 = 220. 7) Em uma escola foi realizada uma pesquisa sobre o gosto musical dos alunos. Os resultados foram os seguintes: 458 alunos disseram que gostam de Rock 112 alunos optaram por Pop 36 alunos gostam de MPB 62 alunos gostam de Rock e Pop Determine quantos alunos foram entrevistados. Gostam somente de Rock = 396 Gostam somente de Pop = 50 Gostam de Rock e Pop = 62 Gostam de MPB = 36 396 + 50 + 62 + 36 = 544 Através da distribuição dos dados no diagrama constatamos que o número de alunos entrevistados é igual a 544.