A
Filosofia surgiu na Grécia antiga
por volta dos séculos VII e VI a.C.,
conhecida como pré-socrática,
representou um esforço de
racionalização para desvincular-se
do pensamento mítico.
 Questões cosmológicas.
 Naquele período filosofia e ciência
ainda estavam vinculadas.
No Egito, os funcionários do faraó sabiam
redividir as terras após o refluxo das cheias
do Nilo, o que supõe conhecimento de
geometria.
 Hindus e chineses também distinguiam
diversas propriedades geométricas, mas
sempre visando aplicação prática.
 Foram os filósofos pré-socráticos os
primeiros a transformarem o
conhecimento empírico por meio de

de demonstrações racionais, desenvolvendo
assim a geometria de forma abstrata.
 Com a medicina ocorreu semelhante
processo de racionalização da prática, ao
desvincular-se das superstições e da
magia, a partir da atuação de Hipócrates
(séc. V a.C.), conhecido como o “pai da
medicina”.
 Ainda hoje ele é lembrado no tradicional
“juramento hipocrático”, o
comprometimento ético dos profissionais
da saúde no exercício de sua atividade.
A concepção científica de Platão (427-347
a.C.) baseia-se na sua teoria das ideias.
 Para que o processo do conhecimento seja
alcançado, é necessário o estudo da
matemática.
 “Não entre aqui quem não souber
geometria”.
 A matemática descreve as realidades não
sensíveis e é capaz de se dissociar dos
sentidos e da prática.

Conciliou as teorias de Heráclito (tudo
está em constante movimento) e a de
Parmênides (o ser é imóvel).
 Para os gregos antigos a matéria é
eterna, não criada, e Platão atribui a um
Demiurgo, princípio divino que organiza
a matéria preexistente, a função de pôr
ordem no caos inicial.
 Para transformar o caos em cosmo, o
Demiurgo contempla os modelos do
mundo das ideias para criar a Alma do
Mundo.

Isso significa que, para Platão, o mundo
sensível é cópia do mundo inteligível.
 Platão descreve o Universo como um ser
vivo, esférico, uno e indivisível.
 No centro encontra-se a Terra, imóvel, em
torno da qual giram o Sol, a Lua e os
planetas, em movimentos circulares e
uniformes.
 Platão enfatiza a ligação do microcosmo
com o macrocosmo.

Aristóteles (384-322 a.C.), discípulo de
Platão, foi suficientemente crítico para ir
além do mestre.
 Recusou o mundo separado das ideias
platônicas, voltando-se para a
realidade concreta.
 Para ele, a matemática só nos diz sobre
a quantidade, mas não explica a
natureza das coisas.


Recorre à observação, habilidade que
desenvolveu nos seus estudos de física,
astronomia e biologia e a um
instrumento que ele próprio aperfeiçoou
para garantir o rigor de sua
argumentação: a lógica.
A física grega abrange todos os seres da
natureza.
 Segundo Aristóteles, o movimento é a
transição do corpo que busca o estado
de repouso, no seu lugar natural.
 Utiliza-se da teoria dos quatro elementos
para explicar como os corpos se
encontram em constante movimento
retilíneo em direção ao centro da Terra ou
em sentido contrário a ele.

Ou seja:
 Os corpos pesados (graves), como a
terra e a água, tendem para baixo, pois
esse é o lugar natural;
 Os corpos leves, como o ar e o fogo,
tendem para cima.


A partir dessa teoria, Aristóteles explica a
queda dos corpos: um corpo cai porque
sua essência é tender para baixo e seu
movimento só é interrompido se algo
impedir seu deslocamento.
Enquanto o movimento natural é o da
pedra que cai, do fogo que sobe, o
movimento violento é o da pedra
lançada para cima, da flecha
arremessada pelo arco.
 Esse movimento necessita, durante toda
sua duração, de um motor unido ao
móvel, já que, suprimido o motor, o
movimento cessará.
 Ao lançar a pedra, a mão comunica o
seu próprio poder ao ar próximo a ela,
provocando um turbilhão que mantém
a pedra em movimento.

Esse poder, comunica-se por contiguidade
e, como a intensidade diminui a cada
transmissão, o movimento acaba
cessando.
 Assim, pelo movimento natural, o corpo
retorna ao lugar natural.
 A ciência grega é, portanto, qualitativa –
não faz uso da matemática, como
ocorrerá na modernidade - , porque sua
argumentação baseia-se na análise das
propriedades intrínsecas dos corpos, nas
suas essências.

Diante do fenômeno da queda dos
corpos, Aristóteles pergunta “por que
um corpo cai?” e não “como cai?”.
 Se fizesse essa última pergunta,
procederia à descrição do fenômeno,
processo que só foi iniciado por Galileu,
no século XVII.
 Explique por que essa diferença é
fundamental para distinguir a ciência
antiga da contemporânea.

Criado em uma família de médicos,
herdou o gosto pelo assunto e em suas
viagens observou atentamente uma
infinidade de animais.
 Um dos grandes estudiosos da filosofia
grega, o escocês William D. Ross, diz que
Aristóteles estava muito adiantado para
a época devido ao seu poder de
observação, e lembra o testemunho
elogioso de Charles Darwin sobre o
talento daquele filósofo.

É
notável o trabalho pelo qual
classificou cerca de 540 espécies de
animais, estabeleceu relação entre
eles, embora reconhecesse as
dificuldades representadas por essa
tarefa.
 A partir de dois grandes grupos, dos
animais sanguíneos e não sanguíneos
– que correspondem ao que
chamamos de vertebrados e
invertebrados -, Aristóteles identificou
os diversos gêneros e, nestes, as
diversas espécies.
Devemos a Aristóteles a descrição da
evolução embrionária do pinto, os
costumes das abelhas, o acasalamento
dos insetos.
 Realizou inúmeras observações sobre a
vida marinha e descobriu que a baleia é
um mamífero.
 Não obteve tanto sucesso na fisiologia
humana, porque na época não se
faziam dissecações em cadáveres.

 Do
mesmo modo que todo corpo
pesado tende para baixo, que é seu
lugar natural, para Aristóteles também
os seres vivos tendem a atingir a forma
que lhes é própria e o fim a que se
destinam.
 Assim, a semente tem em potência a
árvore que virá a ser, as raízes
adentram no solo com o fim de nutrir a
planta, os patos têm pés com
membranas porque têm como fim
nadar.
 O fim explica o meio – essa teoria
marca a ciência grega como sendo
teleológica.
A observação do movimento dos astros
é muito antiga.
 Povos como os babilônios já
manifestavam esse interesse dois ou três
mil anos antes de Cristo.
 Com frequência esses conhecimentos
eram usados na astrologia para prever o
destino, fundamentados na relação
entre os astros e o comportamento
humano.

Os gregos privilegiam o círculo como
forma perfeita, diferente do movimento
retilíneo dos corpos terrestres.
 O movimento circular não tem início
nem fim, porque volta sobre si mesmo e
continua sempre, é movimento sem
mudança.
 Acrescente-se a isso a concepção do
Universo finito, limitado pela esfera do
Céu, fora do qual não há lugar, nem
vácuo, nem tempo.

Contudo, de onde vem o movimento
inicial?
 Só pode ser de Deus, o Primeiro Motor
Imóvel e Ato Puro e que determina o
movimento da última esfera, a esfera
das estrelas fixas, transmitido por atrito às
esferas contíguas, até a Lua, na última
esfera interna.
 No centro acha-se a Terra, também
esférica, mas imóvel.

 Essa
tradição começou com
Eudoxo (séc. IV a.C.), um dos
discípulos de Platão.
 Foi confirmada por Aristóteles e
mais tarde por Cláudio Ptolomeu
(séc. II).
Além do geocentrismo, outra
característica importante na cosmologia
aristotélica é a hierarquização do
cosmo: o Céu tem uma natureza
superior à da Terra.
 Sob essa perspectiva, o Universo está
dividido em:
 Mundo supralunar - constituído pelos
Céus, que incluem, na ordem, a Lua,
Mercúrio, Vênus, Sol, Marte, Júpiter,
Saturno e, finalmente, a esfera das
estrelas fixas: esses corpos são formados

por uma substância desconhecida por
nós, o éter cristalino, inalterável,
imperecível, transparente e imponderável
(que não se confunde com a substância
química hoje conhecida);
 O éter é também chamado de quintaessência, em contraposição aos quatro
elementos.
 Os corpos celestes são incorruptíveis,
perfeitos, não sujeitos a transformações.
 O movimento das esferas é circular, o
movimento perfeito.

Mundo sublunar – corresponde à região
da Terra que, embora imóvel, é o local
dos corpos em constante mudança,
portanto perecíveis, corruptíveis, sujeitos
a movimentos imperfeitos, como o
retilíneo para baixo e para cima; os
elementos constitutivos são os quatro
elementos (terra, água, ar e fogo).
Ao hierarquizar Céu e Terra os antigos
tornavam a astronomia e a física duas
ciências distintas.
 Na Idade Moderna, Galileu, Descartes e
Newton “igualam Céu e Terra” e
explicam as duas ciências pelas mesmas
leis.
 Embora tenha feito observações
pertinentes, Aristóteles não recorreu à
experimentação.
 Metafísica aristotélica.

A partir de 338 a. C. Alexandre Magno, ao
expandir as fronteiros do império, levou a
cultura grega para pontos distantes.
 Após sua morte e a divisão do império, foi
fundado em Alexandria, na foz do Nilo, um
avançado centro de estudos formado por
escolas de diversas ciências, um museu e a
famosa biblioteca, que por muitos séculos
atraiu intelectuais de vários locais do
mundo.

Euclides (320-260 a.C.) fundou e dirigiu a
escola de matemática.
 Sistematizou o conhecimento teórico,
dando-lhe os fundamentos ao
estabelecer os princípios da geometria.
 Conceitos primitivos são o ponto, a reta
e o plano, que não se definem,
enquanto os postulados são enunciados
que devem ser aceitos sem
demonstração.


Exemplo: “uma linha reta pode ser traçada
de um para outro ponto qualquer”.
A mecânica de Arquimedes
Foi outra ciência que se desenvolveu no
centro cultural de Alexandria.
 Suas bases foram estabelecidas por
Arquimedes (287-212 a.C.).
 Construção engenhos mecânicos
(catapultas) e incendiando navios por
meio de um sistema de lentes de grande
alcance.

 Ao
descobrir o princípio da
hidrostática, (lei do empuxo),
Arquimedes passou da dimensão
puramente técnica ou prática para a
especulação teórica e científica, que
lhe permitiu descobrir princípios
fundamentais da mecânica.
 Redigiu um tratado de estática,
formulou a lei de equilíbrio das
alavancas e fez estudos sobre o
centro de gravidade dos corpos.
O matemático, geômetra e astrônomo,
Cláudio Ptolomeu representa o mais
importante referencial da astronomia
geocêntrica da Antiguidade, que
exerceria influência durante toda a
Idade Média até ser contestada por
Copérnico e Galileu.
 Após o século II d.C. o centro de
Alexandria sofreu inevitável estagnação,
sendo sua destruição total no século V.

Com a queda do Império Romano no
Ocidente (séc. V), a religião cristã
impôs-se como elemento agregador dos
inúmeros reinos bárbaros formados após
sucessivas invasões.
 Seus chefes pouco a pouco
converteram-se ao cristianismo e a
Igreja tornou-se soberana absoluta da
vida espiritual do mundo ocidental.

A cultura greco-romana quase
desapareceu durante a implantação do
modo feudal de produção.
 Os monges, os únicos letrados
guardaram nos mosteiros essa herança
cultural.
 O período medieval estende-se do
século V ao XV, no entanto, nem toda a
Idade Média é de obscuridade
intelectual, uma época de “Trevas”,
como se costumou chamar.

A expansão árabe teve início no séc. VII,
com o movimento islâmico iniciado por
Maomé.
 Do séc. XI ao XV, os reis cristãos do norte
expulsaram pouco a pouco os invasores
até findar em 1492.

Médico, astrônomo e filósofo, respeitado
comentarista de Aristóteles, promoveu a
retomada do pensamento aristotélico
no Ocidente cristão.
 A cultura árabe exerceu indiscutível
influência no desenvolvimento da
ciência, inclusive no ocidente, no
período do séc. VIII ao XII.

Nota-se uma constante no pensamento
medieval: a conciliação entre razão e
fé.
 A máxima predominante é “Crer para
compreender e compreender para
crer”
 A especulação filosófica, embora
distinta da fé, é instrumento dela, é
“serva da teologia”.

Valorizava o conhecimento teórico em
detrimento das atividades práticas.
 Os instrumentos disponíveis eram
rudimentares: não havia dispositivos
rigorosos para medir o tempo, os quais
se restringiam a ampulhetas, clepsidras
(relógios-d’água) e relógios de sol.
 Nada havia sido inventado para medir a
temperatura ou para ampliar a
visibilidade.

Por isso, a ciência medieval recusou a
experimentação e permaneceu
qualitativa, como na Antiguidade, mesmo
porque os recursos disponíveis da
matemática ainda eram incipientes para
que se procedesse à matematização.
 Exemplo: a divisão de MDCXXXII (1.632)
por IV é impossível de ser resolvida sem o
auxílio do ábaco.
 Já os algarismos arábicos, apesar de
conhecidos desde o séc. X, só tiveram seu
uso generalizado no Renascimento.

A atividade prática de alquimia surgiu de
especulações de artesãos metalúrgicos e
constituiu o prelúdio da ciência química.
 Havia intolerância religiosa para com suas
práticas.
 Muito em voga no séc. XIII, a alquimia foi
responsável pela descoberta de novas
substâncias químicas, do processo para a
extração de mercúrio e das fórmulas para
preparar vidro e esmalte, bem como
noções sobre ácidos e seus derivados.

As técnicas descobertas eram guardadas
em segredo e os documentos de difícil
leitura, envoltos em uma áurea mística.
 Teorias antropomórficas (características
de seres vivos às substâncias inorgânicas).
 Por aceitarem que as características e as
propriedades de uma substância são
determinadas por seu espírito, os
alquimistas acreditavam na
transmutação, a transferência do espírito
de um metal para a matéria de metais
comuns.

Surgiu daí a busca da “pedra filosofal”,
que permitiria transformar qualquer
substância em ouro.
 Outro projeto da alquimia medieval foi a
procura do “elixir da longa vida”.
 Para a Igreja, essas práticas tinham
caráter herético e foram proibidos por
bula papal em 1317.
 A Inquisição perseguia os infratores com
rigor e muitas vezes condenava-os à
fogueira sob acusação de bruxaria.

Representou a renovação da filosofia e
das ciências medievais.
 Grosseteste (1175-1253) viveu na
Inglaterra e estimulou a mentalidade
científica experimental na primeira
metade do séc. XIII.
 Foi professor em diversas universidades,
e em Oxford deu aulas a frades
franciscanos.

Ensinou matemática e ciência natural e
escreveu textos sobre astronomia, som e
óptica, campo em que desenvolveu
original teoria sobre a luz.
 Estimulou a pesquisa, fez uma
classificação das ciências e esboçou os
passos da pesquisa científica.
 Utilizou lentes de aumento e de
diminuição para ajudar a vista fraca e
talvez até para telescópio.

No final da Idade Média a escolástica
padecia com o autoritarismo de seus
principais seguidores.
 Posturas dogmáticas, contrárias à
reflexão, obstruíam as pesquisas e a livre
investigação.
 O princípio da autoridade impedia
qualquer inovação (proibição leitura
dos livros de Aristóteles).

O rigor do controle da Igreja era
exercido nos julgamentos do Santo
Ofício (Inquisição), órgão que
examinava se as doutrinas eram
heréticas ou não.
 Conforme o caso, os livros eram
colocados no Index (Índice), lista de
obras proibidas ou, quando aprovadas,
eram Nihil obstat (nada obsta, nada
contra).
 Foi trágico o desfecho do processo
contra Giordano Bruno (séc. XVI).

Download

Cap 29 - Ciência antiga e medieval