Exercícios 1. Em uma classe há 30 alunos, cada um dos quais realizou 4 provas com pesos distintos. Dados como entrada pelo usuário os pesos das 4 provas e as notas de cada aluno, calcular a média ponderada das provas para cada aluno e a média aritmética da classe em cada uma das provas. 2. Elabore um algoritmo que calcule o determinante de uma matriz 3x3. 3. Dizemos que uma matriz quadrada de números inteiros é um quadrado mágico se a soma dos elementos de cada linha, de cada coluna, da diagonal principal, bem como da diagonal secundária, são todas iguais. A matriz a seguir, por exemplo, é um quadrado mágico: . Escreva um algoritmo para verificar se uma matriz quadrada de ordem N é, ou não, um quadrado mágico.