FUNÇÃO COMPOSTA Fonte: Brasil Escola: http://www.brasilescola.com/matematica/funcao-composta.htm Vídeo: http://www.youtube.com/watch?v=cX2SovwDk4k A função composta pode ser entendida pela determinação de uma terceira função C, formada pela junção das funções A e B. Matematicamente falando, temos que f: A → B e g: B → C, denomina a formação da função composta de g com f, h: A → C. Dizemos função g composta com a função f, representada por . Exemplo 1 Ao considerarmos as funções f(x) = 4x e g(x) = x² + 5, determinaremos: a) ()(x) = g(f(x)) g(x) = x² + 5 g(4x) = (4x)² + 5 g(4x) = 16x² + 5 ()(x) = g(f(x)) = 16x² + 5 b) ()(x) = f(g(x)) f(x) = 4x f(x² + 5) = 4 * (x² + 5) f(x² + 5) = 4x² + 20 ()(x) = f(g(x)) = 4x² + 20 Exemplo 2 Vamos determinar g(f(x)) e f(g(x)), em relação às funções f(x) = x + 2 e g(x) = 4x² – 1. ()(x) = g(f(x)) g(x) = 4x² – 1 g(x + 2) = 4 * (x + 2)² – 1 g(x + 2) = 4 * (x + 2) * (x + 2) – 1 g(x + 2) = 4 * (x² + 2x + 2x + 4) – 1 g(x + 2) = 4 * (x² + 4x + 4) – 1 g(x + 2) = 4x² + 16x + 16 – 1 g(x + 2) = 4x² + 16x + 15 ()(x) = g(f(x)) = 4x² + 16x + 15 ()(x) = f(g(x)) f(x) = x + 2 f(4x² – 1) = (4x² – 1) + 2 f(4x² – 1) = 4x² – 1 + 2 f(4x² – 1) = 4x² + 1 ()(x) = f(g(x)) = 4x² + 1 Por Marcos Noé Graduado em Matemática