Universidade Federal de Ouro Preto
Instituto de Ciências Exatas e Biológicas – Departamento de Matemática
MTM 151 – Estatística e Probabilidade – Turma 76
Professor: Rodrigo Luiz Pereira Lara
LISTA DE EXERCÍCIOS 1 – 3ª PROVA
Testes de significância para 1 média populacional
Observações:
Teste bilateral:
H 0 :   0
H a :   0
vcalc  vtab  rejeita-se H 0 .
Teste unilateral:
H 0 :   0
H a :   0
vcalc  vtab  rejeita-se H 0 .
Teste unilateral:
H 0 :   0
H a :   0
vcalc  vtab  rejeita-se H 0 .
Questão 1 – Consumo de combustível. Uma montadora de automóveis localizada na
região do Grande ABC Paulista, por intermédio do seu gerente de marketing, durante o
lançamento de um novo carro do tipo popular, afirma que esse novo carro consome, em
média, 10 litros de combustível a cada 100 km, com desvio-padrão de 1,17 litros.
Posteriormente, uma revista especializada em assuntos automobilísticos conduziu
pesquisa com uma amostra de 43 veículos da referida marca e modelo em condições
normais de uso e tráfego, quando constatou consumo médio de 10,6 litros a cada 100
km. Ao nível de significância de 5%, pede-se o que a revista pode concluir sobre a
hipótese levantada pelo gerente de marketing?
Questão 2 – Segurança no trânsito. Proprietários de casas afirmam que a velocidade
média de veículos que passam por sua rua é maior que o limite de velocidade de 35
milhas por hora. Uma amostra aleatória de 100 automóveis tem média de velocidade de
36 milhas por hora e desvio-padrão de 4 milhas por hora. Há evidência suficiente para
apoiar a afirmação para   0,01 ? Justifique.
Questão 3 – Sistema de chuveiros de incêndio. Um fabricante de chuveiros para
proteção contra incêndios afirma que a média de temperatura de ativação é de pelo
menos 135 ºF. Para testar a informação, você seleciona uma amostra de 32 sistemas e
descobre que a média de temperatura de ativação é de 133 ºF com desvio-padrão de 3,3
ºF. No nível de significância   0,10 , você tem evidência suficiente para apoiar a
afirmação do fabricante?
Questão 4 – Os registros dos últimos anos de um colégio atestam para os calouros
admitidos uma nota média de 115 (teste vocacional). Para testar a hipótese de que a
média de uma nova turma é a mesma das anteriores, retirou-se, ao acaso, uma amostra
de 20 notas, obtendo-se média 118 e desvio-padrão 20. Admita   0,05 para realizar o
teste.
Questão 5 – Uma amostra de 25 elementos, extraída de uma população normal, resultou
média 13,5 com desvio-padrão 4,4. Efetuar o teste ao nível de 0,05 para a hipótese
H 0 :   16 contra H a :   16 .
Questão 6 – Retirada uma amostra aleatória de 15 parafusos. Obtiveram as seguintes
medidas para seus diâmetros:
10
10
10
11
11
12
12
12
Utilizando   0,05 , teste H 0 :   12,5 contra:
a) H a :   12,5 .
b) H a :   12,5
12
13
13
14
14
14
15
c) H a :   12,5
Questões 7 – Recentemente muitas empresas fizeram experiências com o teletrabalho,
que permite aos funcionários trabalharem em casa usando seus computadores. Entre
outras coisas, supõe-se que o teletrabalho reduz o número de dias e afastamento médico.
Suponha que, em uma empresa, sabe-se que nos últimos anos houve uma média de 5,4
dias de afastamentos médicos. Este ano a empresa introduziu o teletrabalho. A gerência
obtém uma amostra aleatória simples de 80 funcionários para monitorar e, no final do
ano, esses funcionários tiveram uma média de 4,5 dias de afastamentos médicos com
um desvio padrão de 2,7 dias. Seja  o número médio de dias de afastamento médico
para todos os funcionários da empresa.
Determine para 1% de significância se a adoção do teletrabalho diminuiu o número de
dias de afastamentos.
Questão 8 – O pH de uma solução ácida usada para gravação em alumínio varia um
pouco de um lote para outro. Em uma amostra de 50 lotes, o pH médio foi de 2,6 com
um desvio-padrão de 0,3. Seja   2,5 o pH médio por lote dessa solução.
a) Levando em consideração as possíveis amostras que podem ser obtidas, qual dos
níveis de significância é mais provável haver rejeição da hipótese H 0 (   2,5 ):
  0,05 ou   0,01? Justifique.
b) A partir de qual nível de significância a amostra certamente proporcionará aceitação
de H 0 ? (Obs.: esse nível de significância é chamado de p-valor).
RESPOSTAS:
Questão 1 – Pelo teste bilateral: ztab, 2,5%  1,96 . Pelo teste unilateral: ztab, 5%  1,65 .
zcalc  3,36 . Para ambos os testes rejeita-se H 0 .
Questão 2 – H 0 :   135 , H a :   135 , ztab, 1%  2,33 , zcalc  2,5 . ( zcalc  ztab ). Há
evidência suficiente para apoiar os proprietários.
Questão 3 – H 0 :   35 , H a :   35 , ztab, 10%  1,28 , zcalc  3,43 . ( zcalc   ztab ). Há
evidência suficiente para rejeitar a afirmação do fabricante.
Questão 4 – H 0 :   115 , H a :   115 , t2,5%, 19gl  2,0930 , tcalc  0,6708 . Não se pode
rejeitar a hipótese de que a média dos calouros admitidos permanece em 115.
Questão 5 – tcalc  2,8409 , t2,5%, 24gl  2,0639 . ( | tcalc |  ttab ). Rejeita-se H 0 .
Questão 6 – tcalc  0,7206 .
a) t2,5%, 14gl  2,1448 .
b) t5%, 14gl  1,7613 .
Aceita-se H 0 .
Aceita-se H 0 .
Questão 7 – zcalc  2,9814 , ztab, 1%  2,33 . Rejeita-se H 0 .
Questão 8 – b)   0,01%
c) t5%, 14gl  1,7613 .
Aceita-se H 0 .
Download

Questão 1) Um órgão do governo do estado está interessado