Propriedades Físicas dos Compostos Orgânicos - Forças Intermoleculares - Ponto de Fusão - Ponto de Ebulição - Polaridade - Solubilidade Polaridade A polaridade de uma molécula refere-se às concentrações de cargas da nuvem eletrônica em volta da molécula. É possível uma divisão em duas classes distintas: moléculas polares e apolares. Polaridade Molécula polar - A soma Molécula apolar - A soma vetorial, dos vetores de polarização é diferente de zero. Moléculas polares possuem maior concentração de carga negativa numa parte da nuvem e maior concentração positiva noutro extremo. vetorial, dos vetores de polarização é nula. Nas moléculas apolares, a carga eletrônica está uniformemente distribuída, ou seja, não há concentração. Propriedades Físicas Forças Intermoleculares Forças intermoleculares são as Forças intermoleculares forças que ocorrem entre uma têm origem eletrônica: molécula e a molécula vizinha. surgem de uma atração eletrostática entre nuvens Durante as mudanças de de elétrons e núcleos estado da matéria ocorre atômicos. somente um afastamento ou uma aproximação das São fracas, se comparadas moléculas, ou seja, forças às ligações covalentes ou moleculares são rompidas ou iônicas. formadas. Propriedades Físicas Forças Intermoleculares Força ou atração de Van der Waals Podem surgir de 3 fontes: 1. Dipolo-dipolo (ou Dipolo permanente - Dipolo permanente) 2. Dipolo-dipolo induzido (ou Dipolo induzido – Dipolo induzido) ou ainda Forças de dispersão ou Forças de London ** 3. Pontes de Hidrogênio ou Ligação de Hidrogênio ** reconhecida pelo físico polonês Fritz London Propriedades Físicas Força de Van der Walls Esta força é produzida pela correlação dos movimentos dos elétrons de um átomo com os movimentos dos elétrons de outro átomo tendendo a se aproximar para atingir a distância de energia mínima. Quanto maior o número de elétrons de que a molécula dispõe, mais polarizável será e portanto maior será a atração de Van der Waals. Propriedades Físicas Representação das principais forças de Van der Waals Dipolo- Dipolo São características de moléculas polares. As moléculas de alguns materiais, embora eletricamente neutras, podem possuir um dipolo elétrico permanente. Devido a alguma distorção na distribuição da carga elétrica, um lado da molécula e ligeiramente mais "positivo" e o outro é ligeiramente mais "negativo". A tendência é destas moléculas se alinharem, e interagirem umas com as outras, por atração eletrostática entre os dipolos opostos. Propriedades Físicas O CH 3 – Dipolo Dipolo + H3C + O oxigênio é mais eletronegativo - que o carbono. Isto torna a ligação C-O polar. O CH 3 + H3C + Propriedades Físicas Dipolo – Dipolo Induzido Ocorre quando a molécula é apolar. Estas podem distorcer a distribuição de carga elétrica em outras moléculas vizinhas, mesmo as que não possuem dipolos (apolares), através de uma polarização induzida. Propriedades Físicas Dipolo – Dipolo Induzido Normalmente hidrocarbonetos (substâncias formadas apenas por Hidrogênio e Carbono) são consideradas apolares: apesar do átomo de carbono ser mais eletronegativo que o átomo de hidrogênio, esta diferença de eletronegatividade não é significativa. Nesta situação (interação dipolo induzido-dipolo induzido) o que importa é a área superficial. Quanto maior for esta área, maior será a interação. CH 3 CH 3-CH2-CH2-CH2-CH3 CH 3-CH2-CH2-CH2-CH3 CH 3-C-CH 3 CH 3 CH 3 CH 3-C-CH 3 CH 3 Dipolo – Dipolo Induzido Forças de Dispersão de London Transforma as moléculas apolares, tal como os HC, em dipolos. Estes dipolos instantâneos não podem orientar-se para um alinhamento de suas moléculas, mas eles podem induzir a polarização das moléculas adjacentes, resultando em forças atrativas. Propriedades Físicas Pontes de Hidrogênio Quando um átomo de hidrogênio liga-se a um átomo mais eletronegativo mantém uma afinidade residual por outro átomo eletronegativo, apresentando uma tendência à carga positiva. Por exemplo, um átomo de hidrogênio (receptor de elétrons) pode atuar como uma ponte entre dois átomos de oxigênio (doador de elétrons), ligando-se a um deles por ligação covalente e ao outro por forças eletrostáticas. Propriedades Físicas Pontes de Hidrogênio H O Ocorre quando existe um átomo de H deficiente em elétrons e um par eletrônico disponível (principalmente em grupos -OH e -NH ). H O O H H H O O H Propriedades Físicas H H H H Forças Intermoleculares 3. Pontes de Hidrogênio Ligação Hidrogênio: ocorre entre átomos de hidrogênio ligados a elementos como o oxigênio, flúor ou nitrogênio, com átomos de O, N ou F de outras moléculas. Esta interação é a mais intensa de todas as forças intermoleculares Propriedades Físicas Ligações de Hidrogênio Forças Intemoleculares 3. Pontes de Hidrogênio - Água Água A água, deve possuir um tipo de interação diferenciado. O que acontece é que os hidrogênios ligados ao oxigênio é que formam o lado "positivo" do dipolo permanente desta molécula. O átomo de hidrogênio é formado por apenas um próton e um elétron. Como o elétron é fortemente atraído pelo oxigênio, na água, este próton encontra-se desprotegido. A água possui, então, um dipolo bastante forte, com uma das cargas (positiva) bastante localizada. Este próton pode interagir com as regiões negativas (o oxigênio) de outras moléculas de água, resultando em uma forte rede de ligações intermoleculares. Propriedades Físicas Resumo:Ligações Intermoleculares ou Ligações de Van der Waals, ou Forças de Van der Waals I - atração dipolo induzido: dipolo induzido ou forças de dispersão de London II - atração dipolo permanente: dipolo permanente III - ponte de hidrogênio ou ligação de hidrogênio -> Substâncias apolares estabelecem somente ligações intermoleculares I. -> Substâncias polares sem ligações H - F, O - H e N - H estabelecem ligações intermoleculares I e II. -> Substâncias polares com ligações H - F, O - H e N - H estabelecem ligações intermoleculares I e III. Quanto maior for o tamanho da molécula, mais fortes serão as forças de dispersão de London. Propriedades Físicas Resumo Hierarquia das Forças Intermoleculares: Ponte de Hidrogênio é uma força > força dipolodipolo > força dipolo-dipolo induzido PH >> DD>> DDI Propriedades Físicas Ponto de Ebulição Quanto mais fortes forem as intermoleculares, mais elevada temperatura de ebulição. ligações será a Quanto mais “esférica” for a molécula, menor será seu ponto de ebulição, já que as forças de Van der Waals são mais eficientes quanto maior for a superfície de contato. Propriedades Físicas Ponto de Ebulição A água tem comportamento excepcional quando comparado aos pontos de ebulição de substâncias moleculares semelhantes. Podemos notar que, caso a água mantivesse a linearidade do gráfico, sendo essa linearidade ditada pela massa molecular dos compostos da mesma família, teria um ponto de ebulição próximo de 100 C!. Caso isso fosse verdade, a Terra não teria lagos, rios ou oceanos, e a água existiria na Terra somente no estado gasoso, mesmo nos pólos do Norte e Sul! Propriedades Físicas Ponto de Ebulição Ao contrário da água, o sulfeto de hidrogênio, bem como H2Se e o H2Te, são incapazes de formar ligações intermoleculares fortes. Ligações de hidrogênio, de forma apreciável, só são encontradas nas moléculas que contêm os elementos mais eletronegativos, como o flúor, o oxigênio e o nitrogênio. As propriedades das substancias com ligação H-X de polaridade elevada, semelhante à da água, como a amônia e o fluoreto de hidrogênio, são também influenciadas pelas ligações de hidrogênio, e muitas de suas propriedades, nos estados sólidos e líquidos, resultam das interações dipolodipolo entre suas moléculas. Propriedades Físicas Ponto de Fusão As substâncias iônicas tem P.F , P.E elevados e são geralmente sólidas porque os cátions e os ânions se atraem fortemente e a dificuldade de afastar os cátions e os ânions se traduz na dificuldade de fundir e de ferver as substâncias iônicas. Pelo contrário , as substâncias orgânicas são em geral covalentes e freqüentemente apolares; em conseqüência tem P.F e P.E. baixos e são geralmente líquidos ou gases. Propriedades Físicas Solubilidade A solubilidade é largamente afetada pela estrutura química dos compostos, sendo que o grau de solubilidade em água dos éteres glicólicos varia de acordo com o comprimento da cadeia do grupo alquila e o número de átomos de oxigênio presentes na molécula. Porém, isômeros podem apresentar diferenças. "O semelhante dissolve o semelhante.” Substância polar dissolve substância polar e não dissolve ou dissolve pouca quantidade de substância apolar. Substância apolar dissolve substância apolar e não dissolve ou dissolve pouca quantidade de substância polar. “Água – água/ solvente – solvente” Propriedades Físicas Solubilidade Existem basicamente dois meios de substância no que diz respeito a polaridade: polares e apolares. O termo "polar" nos dá a idéia de opostos, onde um dado ponto é negativo e o outro é positivo. Isso é resultado da diferença de contribuição na ligação entre elementos químicos diferentes. O mais eletronegativo atrai para perto de si o par de elétrons que estabelece a ligação com o outro átomo. Um exemplo de substância polar é água, considerada um solvente universal. Propriedades Físicas Solubilidade A água é um excelente solvente polar para compostos orgânicos polares de baixo peso molecular, como o metanol, etanol, ácido fórmico, ácido acético, dentre outros. Possuindo um dipolo bastante acentuado, atrai por eletrostática o dipolo da outra molécula, de forma a potencializar a solubilização. Porém, essas moléculas orgânicas possuem uma parte polar, solúvel em água e uma parte apolar, insolúvel em água. Propriedades Físicas Solubilidade A medida que aumenta-se o número de carbonos no grupo dos álcoois e ácidos carboxílicos por exemplo, a solubilidade, em meio aquoso vai diminuindo. Propriedades Físicas Solubilidade No caso do álcool, a parte apolar não possui influência negativa na solubilidade em meio polar, já o ácido propanóico, com sua parte da molécula apolar, compromete a solubilidade total de composto em água. Mesmo assim, perceba que o número de pólos no ácido é maior do que no etanol. Propriedades Físicas Hidrocarbonetos Quanto maior o n.º de Carbonos maior o PM (peso molecular) , maior o PF (ponto de fusão) e PE (ponto de ebulição) ( maior a FVW ) Dois hidrocarbonetos de mesmo nº de C , quanto menos ramificada , maior a superfície de contato, maior a FVW, maior PF e PE. Não são polares, não são solúveis em água ( ou são pouco solúveis), são solúveis em solventes orgânicos. Hidrocarbonetos São menos denso que a água. PF e PE dos compostos cíclicos são maiores que dos não cíclicos. PE e PF dos alcenos são maiores que dos alcanos correspondentes. Álcoois Formam pontes de Hidrogênio entre si (tem - OH) Quanto maior o PM maior o PE ( maior a FVW). PE (álcool) > PE (Hidrocarboneto correspondente) ( devido às pontes de Hidrogênio ) Quanto maior o PM , menor a solubilidade em água (os primeiros álcoois são solúveis em água pois são polares e formam pontes de Hidrogênio c/ a água). Éter Não formam pontes de Hidrogênio entre si (só tem força dipolo-dipolo). ( R - O - R ) por isso tem baixo PE e PF. Quanto maior o PM, maior PE ( maior FVW) Muito pouco solúveis em água (devido à força dipolo) PE (álcool) > PE (éter) > PE (Hidrocarboneto de PM correspondente) ( pontes de H ) ( FVW ) Ácidos Carboxílicos ( - COOH ) são polares (tem FVW, força dipolo e pontes de H entre si e com a água) Os 4 primeiros ácidos são solúveis em água devido à polaridade e às pontes de H PE (ácidos) > PE (álcoois) > PE (aldeídos e cetonas) > PE (éter) > PE (Hidrocarboneto Correspondente) Aldeídos e Cetonas (C = O) são polares (força dipolo-dipolo) Aldeídos e Cetonas de baixo PM são solúveis em água (os outros são insolúveis) PE (álcoois) > PE (aldeídos e cetonas) > PE (Hidrocarboneto Correspondente) ( pontes de H ) ( força dipolo ) ( FVW ) Éster e Cloretos de Ácidos São compostos polares (força dipolo) Tem PE próximos ao correspondentes PE dos aldeídos e cetonas Amidas e Aminas São polares pois formam pontes de H ( entre o N e o H ) , são solúveis em água Densidade As substâncias Orgânicas são, em geral pouco densas (tem densidade menor que da água) por este motivo quando insolúveis em água essas substâncias formam uma camada que “flutua” sobre a água, como acontece com a gasolina, o éter comum , o benzeno, etc. Substâncias orgânicas contendo um ou mais átomos de massas atômicas elevadas podem ser mais densas que a água , exemplo CHBr3 é três vezes mais denso que a água.