Technical Article Utiliza ao de cavacos para analises por Chip utilization Autores for near infrared NIR Ricardo Balleirini dos Santos Leonardo spectroscopy analyses I de Sousa I Chagas Jose Livio Gomidel Palavras chave NIR predigao Abstract eavaeos Com 0 desenvolvimento das tee nieas de analise via espeetroseopia infravermelho proximo e a qliente eeonomia de tempo no eonse essas que proporeionam urn fator que pas sou a ser de grande importaneia nesses es tudos e a forma comoas amostras sac proeessadas Para amostras granulometria inferior longos pe a com obtengao de a 0 05mm sac neeessarios riodos de moagem e classifieagao laboratorio Esse estudo teve jetivo analisar a no diretamente infravermelho nos eavaeos 0 utilizado foi NlRSystems 5000 da FOSS possui em ob viabilidade da obten gao dos espeetros proximo equipamento como Esse leitor de fibra neeessario seeeionar Development of near infrared spectroscopy technique NIRS for wood analysis resulted in substantial savings in time To take advantage of this savings it is very important to have a compatible wood sample preparati on To obtain wood particle sizes smaller than 0 05mm usually required for NIR analysis it is necessary to spend long processing time for produc tion and classification of wood meal The objective of this study was to analyze the viability to obtain near infrared spectrum directly from wood chips The equipment used was a FOSS NIRSystem 5000 To be able to obtain the NIR spectrum it was necessary to cut the wood chips to smaller dimensions compatible with the equipment spinning Thirty different Eu calyptus clones were usedfor this study andfor each clone 30 wood chips were The analyzed The moL ture content of wood chips was close to 35 statistical correlation between conventional laboratory basic density de termination and NIR determination was 97 with an average prediction error 7 7 For extractives content the correlation was 84 m3 wood of Kg with an average prediction error of 0 29 The Klason lignin content pre a 93 sented correlation of and an average prediction error of 0 55 These results demonstrate the viability to use this equipment to make NIR measurements directly on wood chips equipamento nao optiea tendo sido os eavaeos Keyword NIR prediction wood chips para obtengao de dimensoes eompativeis com 0 lizados spinning de eavaeos leitura Foram uti de 30 clones sendo eada amostra eonstituida por 30 eos com teor de umidade de damente 35 l a Para a eava aproxima densidade basiea eorrelagao obtida foi de 97 com erro medio de previsao de teor de extrativos foi de 84 sac de 0 29 Klason a osa Vi osa MG Vi e Brasil 7 7 kglm3 Para 0 eorrelagao obtida com erro para eorrelagao o Referencias dos autores 1 Universidade Federal de a medio de previ teor de lignina 0 obtida foi de 93 com erro medio de previsao de 0 55 Esses resultados demonstram lidade da utilizagao desse to para tamente a a viabi equipamen realizagao de leituras dire nos eavaeos o espeetro A teeniea de espeetroseopia in no proximo tern sido bastan empregada no Brasil com 0 obj etivo ganhou ampla aeeitagao que dos trabalhos inieiados depois em 1900 fravermelho por Coblents te tros de absorbaneia de substaneia puras de earaeterizar vista madeira do ponto de a quimieo teenologieo e raeterizagao e utilizada tanto xiliar Essa ea para au programas de melhoramento os florestal desenvolvidos do setor de eelulose bem para preyer e pelas empresas como tam papel eomportamento das 0 madeiras no proeesso de polpagao Segundo PASQUINI NIR e 2003 a es de espee peetroseopia tipo troseopia de vibragao que emprega a energia do foton numa regiao de 2 65 x 1019 a 7 96 x 1020 a qual eorrespon de aos urn eomprimentos de onda de 750 verifieando eagao de sua a utilidade para grupos funeionais a identifi organieos mareou boom dessa teeniea De 1930 o total de publieagoes com NIR de que sac lentas caras e obter espee A deeada de oitenta a A eseolha das amostras de Eu calyptus 0 1980 proeedimen atoria com 570 sp foi realizada de forma ale em urn lote eontendo madeira valores de densidade entre 450 kg m3 aproximadamente reeolhidas trinta amostras eada senvolvimento lignina foi de impulsionado prinei palmente pelas melhorias instrumen tais espeetrofotometros assoeiadas com aquisigao de dados espeetrais e seus amostra foi determinado umidade Na a e 0 eontribuigao uma De eada eavaeos teor de 0 densidade basic a 0 teor de teor de extrativos realizagao desse estudo foi eessario verifiear a ne area de leitura do feixe de luz infravermelho no spinning devido a desunifor eelula de leitura eomputadores tratamentos No Brasil a primeira eontendo trinta a sendo aproximadamente 255 enquanto que na deeada seguin te esse numero ehegou a 1000 A es peetroseopia NIR eneontrou rapido de tos a 2500nm No infravermelho proximo midade dos eavaeos que nao oeupam aplieagao analitiea da es peetroseopia NIR pode ter aeonteeido todo espago de leitura A verifieagao responsaveis pela ab sorgao nesta regiao Os eomprimentos de onda nos quais estas vibragoes oeor rem para urn eomposto qualquer sac antes de 1991 reeortadas dente dos metodos eonveneionais de gas fungoes de sua estrutura e eomposigao analises enta Portanto cia para eonstrugao de modelos de o NIR primeiro 0 neeessidade de analises laboratoriais vibragoes moleeulares as resultam em sac overtones espeetro de NIR 0 utihzado para identifiear moleeulares quimieas avaliar em Segundo destaear de urn as rapidez pode que Alem disso fatoria para a de leitura ser teeniea uso podem menos e a amos mostra satis in line tern aplieagao qualquer mole quase que universal No entanto e teenologia a falha A fica muitas No leituras no tra uma moinhos gao minima da amostra adequados valor ao melho os com 0 eon tratamentos dos dados tern dado muito termo teenologia de infraver Apesar de a a radiagao NIR ter sido deteetada antes da radiagao melho medio esta foi a no ultima infraver regiao do NIR as e peneiras Diante disso como 0 onde em madeira amostras sac pre e trabalhoso de classifieagao proposto estudo principal objetivo com a de no yam analisar teve a vi verifieou que a area de leitura eorrespon de 1 3em de diametro eavaeos amostrados apresenta dois teores de umidade 33 Para realizagao das leituras neeessario a mudan se espeetro obtido eoncluindo a eerea Os papel forma da eelula variagao do diametro de corte das folhas adaptar a e 10 primeiro foi forma dos eavaeos forma de eelula de leitura onde foram obtidos espeetros espeetros Os realizagao das a na mesma dois lados dos madeira tern que passar por eorrespondentes eavaeos no aos total de 1800 para eada teor de umidade espeetros foram estudados e tra tados por meio de programas estatisti eos de ealibragao multivariada posterior geragao de alguns com modelos de ealibragao Esses modelos foram va lidados tus com 15 amostras de sp retiradas do mesmo anteriores sendo que anahses essas Eucalyp lote que as eontinham quimieas eonveneionais e densidade basiea possibihtando a abilidade da realizagao das leituras eomparagao dos valores de laborato diretamente rio com os de paria tempo dinamieo proximo estagio de ealibra e muito demorado e e amostra paradas em forma de serragem com uma granulometria muito baixa sen do que esse tipo de preparo de amos ou trole instrumental com a garantido normalmente para S H A eombina trabalho e muito de amilises foi feita por meio de folhas de 0 sueesso e desse metodo de analise vezes easo pois gao dessas earaeteristieas tipo de ea da qualidade dos valores de 0 sueesso de C H N H prepara entre refereneia assoeiados gao de referen servem diferenga dependente ligagoes requer estes nesse eula eontendo O H preeiso lembrar que a ser depen NIR sempre vai pois libragao se nao destrutiva se campo de no Todavia eoncluido 0 inumeras vantagens minuto por amostra tragem eons NORRIS e teeniea apresenta a e interagoes suas WILLIAMS dentre essa que misturas madeira proporgoes de diversos tituintes alem das 2001 pode espeeies ser eomplexas no nosso easo a as que transigoes harmonicas com os nos e eavaeos tornaria e menos 0 0 que pou dispendioso possivel predizer NIR as via NIR l proeesso mais modelos de ealibragao sera predigao com Assim gerados espeetros earaeteristieas de madeira sem A figura 1 mostra NIR obtido diretamente Os eavaeos urn espeetro nos eavaeos utilizados nesse estudo as apresentavam uma uniforme do que dos definigao de uma variagao dos valores do para estudado A distribuigao esta metro apresentada CHELL tipo sac seleeiona quando na natureza sem a faixa de xa distribuigao mais 2 MI Segundo SCHlMLECK 1996 e figura na de distribuigao em que toda esse fai a dos eonstituintes estudados apresenta urn numero de observagoes pareeido faz com gerado tenha uma eapaeidade predigao nao fi restrito apenas a regiao central 0 que modelo melhor eando de dos val ores do eonstituinte o primeiro eomparar modelos os umidos vaeos 33 pas so estudo foi no gerados Espeetro NIR nos eavaeos desse estudo teor de umidade de de umidade de 10 os 1 com ea 8 teor e com eavaeos seeos ao ar todos Figura sendo que para parametros estudados 7 os mo 6 delos com eavaeos umidos se apresen 0 ctl taram mais satisfatorios Entao foram C modelos indi gerados viduais para eada eonstituinte utilizan do se tOOo para densidade basiea apre digao gerado sentou gao uma essa 4 Z 3 2 0 96 eorrela eorrelagao de obtida 0 0 modelo de pre espeetro 0 5 dados de valida com os o gao cruzada foi de 7 7 modelo de 0 medio de erro predigao kglm3 Para a geragao desse predigao foi necessaria a reti rada de 5 amostras que claramente eomportavam como outliers eonsiderado muito bom ma com 0 erro obtido pois em Esse se Os modelos de Figura 2 Figura 3 Distribui fao kg m3 das densidades basieas dos eavaeos se erro e aproxi laboratorio Os parametros estatistieos gerados para modelo estao mostrados Oensidade Sasica na figura esse 3 predigao gerados a de serragem apresentaram eorre lagoes menores para densidade basiea do partir que quando sac gerados mesmo na lote Isso era de com eavaeos se esperar maioria dos trabalhos que estao do realizados do NIR para no Brasil predigao com do pois sen ealibragao de densidade ba sica utilizando serragem os resultados eneontrados nao tern sido satisfatorios l Outro a ser son o parametro muito importante ealibrado e teor de 0 pois segundo lignina SOUSA 2004 Kla esse tern influeneia direta no eonsumo reagentes quimieos proeesso de pro no de Modelo de ao para densidade basiea predic dugao de eelulose mento do foi de 0 92 de 0 55 quando de predigao senta medio de predigao geragao desse modelo a foi necessaria a retirada de outliers A como as gerado utilizada a validagao 5 amostras que claramente tavam rendi eorrelagao obtida a e 0 erro eruzada Para no No modelo total lignina para tambem e mesmo se eompor figura 4 apre earaeteristieas desse modelo SCHULTZ BURNS e eontraram valores de 1990 eorrelagao de 0 99 utilizando NIR para lignina predigao de 0 teor valores obtidos plamente predigao com urn erro 64 0 en que mostra que nesse do medio de estudo foram os am satisfatorios o teor de extrativos em alcoolltolu tambem e enD urn tro de qualidade deiras com importante parame pois ma a gerado para eorrelagao foi de 0 89 de predigao esse predi fao para 0 teor de lignina total polpagao parametro e 0 erro de 0 22 desse modelo de ria Modelo de alto teor de extrativos po dem prejudiear 0 proeesso de No modelo 4 Figura da madeira Para a medio geragao foi necessa predigao retirada de 8 amostras que clara a mente se eomportavam como outliers figura A do para esse 5 mostra 0 modelo gera parametro o modelo para extrativos totais tam bem apresentou resultados satisfatori os na validagao eruzada indieando tam bem a possibilidade de utilizagao de para predigao desse parametro Como pode se observar os mode los gerados com a utilizagao de eava eavaeos eos se mostraram satisfatorios no que Figura 5 Modelo gerado 0 mesmo do que para extrativos em aleoolltolueno diz respeito aos dados de validagao eruzada porem sempre e necessaria validagao uma var a externa para eompro efieaeia dos 1 mostra os externa para mesmos 0 quadro a densidade basic a dos com a vali externa para densidade basiea estao muito satisfatorios SEP para os pois 0 RM valores de densidade ba sica foi de 7 5 Kg m3 mostrando a efieieneia lor para As a a mesmas validagao quando foi validagao eruzada erro do modelo medio de zadas para amostras utilizadas para externa dos modelos para para teor de validagao dos modelos lignina Klason Os valores de validagao externa para nina estao deseritos o RMSEP da as ja que va predigao e pra a para que 0 se teor de no teor de quadro validagao lignina aproxima 0 do a possibilidade de utili para predigao na UFV Os dados de para 0 apresentados no quadro o RMSEP da para 0 validagao 2 de laborato 3 validagao externa teor de extrativos foi de 0 4 xima do 0 externa teor de extrativos totais estao valor eonsiderando born lig externa foi de 0 76 erro rio indieando zagao desse modelo densidade basiea tambem foram utili Os resultados obtidos sim utilizada resultados de validagao eavaeos dagao tieamente erro pois se urn apro de laboratorio Por fim deve se destaear que estudo foi desenvolvido apenas intuito de eomprovar a esse com 0 efieieneia da l as o Quadro 1 Valores de valida fao Amostra Laboratorio predi fao 1 extema do modelo para densidade basiea 536 Erro absoluto 535 metodologia de eoleta retamente los 1 gerados apresentam mode os quanti uma 2 522 507 15 3 504 498 6 4 540 546 6 5 539 544 5 6 537 537 0 7 487 489 2 8 536 541 5 9 524 530 6 10 501 500 1 11 585 542 43 12 561 555 6 lores de densidade basiea apresentaram 13 551 556 5 alta eorrelagao utilizados eomereialmente serem A utilizagao do viavel para aquisigao a diretamente nos e 547 544 3 510 502 8 rida valida fao extema do modelo para 0 teor de lignina tro e total Amostra Laboratorio predi fao 1 29 5 Erro absoluto 32 2 7 2 predigao para os va baixo erro medio de pre 15 em dos espeetros eavaeos Os modelos de 14 Valores de aparelho NIRSys perfeitamente terns 5000 da FOSS e digao sendo que Quadro 2 pela experieneia adqui outros estudos melhores do que esses se apresen quando 0 espee adquirido na forma de serragem Quando os eavaeos com urn 33 foram lidos teor de umidade mais alto as eorrelagoes foram melhores Os modelos gerados 0 teor de em alcool 2 30 6 30 0 0 6 3 29 9 30 2 0 3 lignina 4 31 9 32 5 0 6 tolueno tambem apresentaram altas eor 28 1 0 3 total para de extrativos e 5 4 28 6 27 9 7 27 9 29 1 1 2 8 29 1 28 9 0 2 9 30 8 30 5 0 3 10 30 0 32 0 2 0 SAC ON V Hexenuronic acid Klason 11 30 1 30 0 0 1 nin and 12 29 1 29 0 0 1 Spectroscopy 13 28 3 4 28 0 1 on 14 27 9 7 29 1 8 15 27 6 27 0 0 6 0 5 4 28 relagoes e baixo erro medio de predigao CALDEIRA Quadro 3 em Valores de valida fao extema do modelo para 0 Amostra SANTOS S L lig International Colloquium Kraft osa 2003 Vi MICHELL A J Pulp SCHIMLECK L R NIR Spectroscopy of woods from globulus Appita Vol49 No teor extrativos aleoolltolueno A F viscosity of Pulp predicted by NIR Eucalyptus tus 0 pois dade muito pequena de amostras para tararn l dos espeetros di nos eavaeos PASQUINI Eucalyp 1 1996 C Near Infrared Spec troscopy Fundamentals Practical Aspects predi fao Laboratorio Erro absoluto 2 88 74 0 1 2 14 2 2 54 43 2 0 11 3 2 26 3 34 1 08 4 2 66 4 80 2 14 5 76 1 1 61 0 15 6 78 1 1 95 0 17 and Analytical Applications Chern Soc SHULTS 1 39 40 1 0 01 8 2 12 2 35 0 23 Braz TP BURNS DA Rapid secondary analysis oflignocellulose parison of near infrared NIRO ed transform infrared FTIR nal 7 J Vol 14 No 2 198 219 2003 com and fouri Tappi Jour 1990 SOUSA madeira de 9 2 51 1 94 0 57 10 1 84 1 32 0 52 tus UFV 2004 L c ao tra ao da Caracteriza em arvores ao de Mestrado Disserta grandis 69p 11 73 2 73 2 0 00 12 2 10 2 09 0 01 13 71 1 1 91 0 20 Infrared 14 1 87 1 83 0 04 Association of Cereal 15 1 21 1 11 0 10 WILLIAMS P Paul de Eucalyp NORRIS K Near Technology 2nd ed American Chemistry MN USA 2001 Inc St o f Chip utilizatio near infrared Authors Ricardo Balleirini dos SantosI Leonardo Chagas de Sousa1 Jose Livio Gonridel Keywords chips NIR prediction wood These results demonstrate the of using this directly development of near infrared spectroscopy NIR analysis and the techniques consequent time a factor that them saving provided by became of great importance in these studies is the way of processing the samples To obtain samples with a granulometry lower than 0 05mm long refining and lab classification periods are required The objective ofthis study was to analyze the viability of obtaining near infrared spectra directly on the chips The equipment used was a FOSS NIRSystem 5000 This equipment has no optical fiber reader so that it was necessary to cut the chips into sections to obtain dimensions compatible with the reading spinning Chips from 30 clones have been used each sample consisting of 30 chips with moisture on equipment chips for viability readings content ofabout 35 The correlation obtained forthe basic with kg an average density was 97 prediction error of7 m3 The correlation obtained for the extractives content prediction average was error 84 with of029 an and the correlation obtained for the Klason lignin content was 93 average prediction with error technique an of 0 55 infrared spectroscopy has been among the numerous considerably used in which may be nondestructive may be In addition the highlighted technique Brazil in order to characterize the wood shows itself to be satisfactory to be used from chemical and in line has almost universal technological points application bonds of C ofview This characterization is used both any molecule help the forest improvement programs developed by the pulp and paper sector companies and to predict the wood behavior in the pulping process According to PASQUINI 2003 H N H S H NIR importance to the term near infrared technology In spite ofthe factthat NIR radiation to spectroscopy is a type ofvibration spectroscopy using the photon a range from 2 65 x 10 which corresponds to 19 energy in to 7 96 X 1O wavelengths 2Q of 750 to 2500nm In the near infrared NIR the molecular vibrations resulting containing O H and requires sample preparation The minimum or combination ofthese characteristics with the instrumental control and the suitable data treatments has attached great has been detected before the medium infrared radiation this spectrum region one was that had an the last ample overtones are acceptance after the works started in absorption in this wavelengths in which these vibrations occur for a given compound 1900 by Coblents the first one to obtain in harmonic transitions responsible for the range The are 7 near to WILLIAMS and 2001 advantages presented by this technique the quickness of reading less than a minute per sample and the sampling the With the The According NORRIS functions of its composition spectrum molecular structure Therefore and the NIR be used to identify species in complex chemical can mixtures in the present case the wood and to evaluate the proportions ofseveral constituents interactions in addition to their pure substance absorbency spectra discovering its usefulness to identify organic functional groups The 80 technique s marked the boom of this From 1930 to 1980 the total amount of publications about NIR pro nearly 255 increasing to 1000 in the following decade The NIR spectroscopy had a quick development mainly stimulated by the instrumental cedures was l as Authors references 1 Federal University osa ofVi osa MG Vi Brazil improvements speetrophotometers as sociated with acquisition of spectral data and toilsome and their treatments computers classifYing screens In view ofthat the proposed study had as main purpose to analyze the viability of performing the readings directly on the chips which In Brazil the first contribution in the field ofanalytical application ofthe NIR spectroscopy may have occurred before 1991 must would However it should be born in mind that the NIR technology will be the always conventional dependent analytical methods as these ones serve as reference for building calibration on models The difference between success be procedure as the wood processed by mills and save time and make the process dynamic and less expensive Thus generated it be possible to predict with NIR more of the cell where with the variation will of the spectra the wood characteristics without laboratory analyses which are expensive and slow being required reference values associated with the Nevertheless after calibration stage the sample concluding the success ofthis method of analysis is often assured In case of wood analyses to carry out the NIR readings the samples are usually prepared in the form of sawdust with a very low granulometry this type of sample preparation being a very slow carrying out this study it was verifY the reading area of the infrared light beam in the spinning reading cell due to the non uniformity of the chips that do not occupy the whole reading space This verification was made by means of paper sheets cut out in the same shape with the calibration models and failure in this kind of work is very dependent on the quality ofthe When necessary to The Eucalyptus sp samples been selected at random in have a lot containing wood with density values ranging approximately from 450 to 570 kglm3 totaling thirty samples each of them containing thirty chips Then the moisture content the basic density the lignin content and the extractives content have been determined for each sample cutting diameter of the sheets changes were found out in the spectrum obtained from which it followed that the reading area corresponds to approximately 1 3 em diameter The sampled chips had two moisture contents 33 and 10 To perform the readings first it was necessary to adapt the shape ofthe chips to the shape ofthe cell where reading spectra to both corresponding chip sides have been obtained totaling 1800 spectra for each moisture content The spectra were studied andtreated by means of statistical multivariate ra co m a imen rar oq u calibration programs with later of some calibration models generation validated with 15 These models were Eucalyptus samples taken from the previous ones which same lot sp as the contained conventional chemical and basic analyses density making possible to compare the lab values with those predicted via NIR Figure 1 shows a NIR spectrum ob tained directly on the chips The chips used in this study showed a more uniform distribution than when selected in the without the nature Figure 1 NIR spectrum on the chips ofthis study definition of a variation range of the values of the studied parameter The distribution is shown in According to SCHIMLECK Figure 2 and MICHELL this type of 1996 distribution where the whole range of the studied constituents shows a similar number of observations causes the generated model to have a better prediction capacity without being limited just to the central region ofthe en c o Q en 0 o a Q 0 E J Z constituent values The fIrst step ofthe study was to compare the models generated with wet chips 33 moisture content and air dried chips 10 moisture content the wet chip models having been found to be more satisfactory for all studied Basic Figure 2 Chip basic density density kg m3 distribution parameters Then individual models generated for each constituent whole spectrum The generated were for basic using the prediction model density showed a correlation of 0 96 which was obtained with the average cross validation data prediction error was 7 7 The kgm3 To generate this prediction model it was necessaryto remove 5 clearly behaving as samples thatwere outliers This is considered to be very error good as approaches the laboratory obtained error The statistical parameters generated for this model are shown in Figure 3 The prediction models generated from sawdust presented lower correlations for basic density thanwhen generated with chips from the same lot l as o Figure 3 Basic density prediction model Table 1 This was to be External validation values of the basic density model Sample Prediction Laboratory Absolute error 1 536 535 1 2 522 507 15 3 504 498 6 4 540 546 6 5 539 544 5 6 537 537 0 7 487 489 2 8 536 541 5 9 524 530 6 10 501 500 1 11 585 542 43 12 561 555 6 being 551 14 547 15 510 as in most works calibration for basic density prediction using sawdust the results obtained have not been satisfactory Another very important parameter to be calibrated is Klason lignin content as according to SOUSA 2004 it has direct influence on the consumption of chemical reagents in the pulp production process as well as on its yield In the model generated for total lignin the correlation obtained prediction average 13 expected carried out in Brazil with NIR 556 5 544 3 502 8 the cross was error validation 0 92 and the 0 55 generate this when used To model it was was prediction samples thatwere clearly behaving as outliers Figure 4 necessary to remove 5 Table 2 External validation values of the total lignin content model presents the characteristics ofthis model SCHULTZ and BURNS Prediction Laboratory 1 29 5 32 2 7 2 2 30 6 30 0 0 6 3 29 9 30 2 0 3 1990 using NIR for lignin content prediction with an average prediction error of 0 64 4 31 9 32 5 0 6 which shows that the values obtained in 5 4 28 28 1 0 3 this study 6 27 9 7 27 9 29 1 1 2 8 29 1 28 9 0 2 9 30 8 30 5 0 3 10 30 0 32 0 2 0 11 30 1 30 0 0 1 important wood quality woods with high parameter extractives content may impair the pulping process In the model generated 12 29 1 29 0 0 1 for this parameter the correlation Sample Absolute error found correlation values of 0 99 0 5 4 28 were widely satisfactory The alcohol toluene extractives content is also an as 13 28 3 4 28 0 1 0 89 and the average 14 27 9 7 29 1 8 0 22 15 27 6 27 0 0 6 model Table 3 External validation values of the alcohol toluene extractives con tent model was prediction prediction samples that were clearly error To generate this 8 behaving as outliers had to be removed Figure 5 shows the model generated for this parameter The model for total extractives also Prediction Laboratory Absolute error 1 2 14 2 88 0 74 validation also indicating the 2 2 54 2 43 0 11 of Sample 3 2 26 3 34 1 08 4 2 66 4 80 2 14 5 1 76 1 61 0 15 6 78 1 1 95 0 17 7 1 39 1 40 0 01 8 2 12 2 35 0 23 9 l o 2 51 1 94 0 57 showed satisfactory using chips results at the for eross possibility predicting this parameter As it can be observed the models generated with chip utilization have been found to be the satisfactory cross validation data validation is with regard to but an external always required to prove 10 1 84 1 32 0 52 their effectiveness Table 1 shows the 11 2 73 2 73 0 00 external validation results for the basic 12 2 10 2 09 0 01 density ofthe chips 13 71 1 1 91 0 20 14 1 87 1 83 0 04 15 1 21 1 11 0 10 The results obtained with the external validation for basic very satisfactory as density are the RMSEP for the density values was 7 5 kgm3 thus showing the efficiency of the model since the value for the averageprediction error is practically the same as when the basic validation cross The same was used samples used for the external validation of the basic density models have beenalso used for validating the models for Klason lignin content The external validation values for the lignin content are indicated in Table 2 The RMSEP ofthe externalvalidation lignin content was 0 76 which approaches the laboratory error indicating the possibility of using this prediction model at UFV The external for the validation data for the total extractives content are shown in Table 3 The RMSEP of the external validation for the extractives content was 4 Figure Prediction model for the total lignin content 4 0 a value considered to be good as it approaches the laboratory error Finally it should be stressed that this study was only developed in order to demonstrate the efficiency of the methodology of collecting the spectra directly on the chips as the generated models present too small samples to be Using amount of an commercially used FOSS NIRSystems 5000 apparatus is perfectly viable for obtaining spectra directly onthe chips The prediction models for the basic density values showed high correlation and low average prediction error and based on the experience gained from other studies these ones Figure 5 Model generated for alcohol toluene extractives showed themselves better than when the spectrum is obtained in the form lignin ofsawdust by NIR Spectroscopy When the higher correlations were read at a the 33 lloquium yO sa were better The models lignin chips moisture content generated high and low average prediction viscosity on for the total correlations of Pulp predicted International Co Kraft Eucalyptus Vi Pulp 2003 L R NIR A J SCHIMLECK Spectroscopy of woods from Eucalyptus globulus Appita VoL49 1 PASQUINI Spec Practical As pects and Analytical Applications SANTOS S L SACON V Hexenuronic acid Klason Braz 219 Chern 2003 BURNS D A of secondary analysis comparison of near Soc Vol 14 NO 2 J 198 Rapid lignocellulose infrared NIRO and Tappi Journal 1990 SOUSA deira de LC trayao Caracterizayao em arvores de 2004 da ma Eucalyptus de Mestrado UFV grandis Dissertayao C Near Infrared troscopy Fundamentals CALDEIRA A F NO 1996 error SHULTS T P fouried transform infrared FTIR MICHELL and alcohol toluene extractives contents also showed and l 69p WILLIAMS Infrared P NORRIS K Near Technology Association of Cereal 2nd ed American Chemistry Paul MN USA 2001 Inc St as o