Pacto Nacional pela Alfabetização na Idade Certa OPERAÇÕES NA RESOLUÇÃO DE PROBLEMAS CADERNO 4 Professora Orientadora: Rosimeri Meirelles [email protected] http://eutonopactoalvorada.pbworks.com/ Sejam bem-vindas! Vamos construir um jardim florido para saudar a primavera? Leitura deleite Recital de poesias Para começar... CADERNO DE METACOGNIÇÃO Boas vindas e confecção de cartaz Primavera Leitura Deleite (Recital de poesias) - intercalada Caderno de metacognição Apresentação do contrato didático Objetivos do Encontro Vídeo: Matemática na Resolução de Problemas (TV Escola) Leituras do Encontro (coletiva e em grupos) Sistematização (Cartaz Campo Aditivo) Lanche Apresentação das Sequências Didáticas Livro da Vida Tema de casa e escola • Aprofundar conhecimentos relacionados aos cálculos, operações e resolução de problemas no ciclo da alfabetização; • Considerar diferentes estratégias utilizadas pelos alunos na resolução de cálculos e problemas; • Revisitar temas abordados nos cadernos anteriores; Objetivos TV ESCOLA: MATEMÁTICA NA RESOLUÇAO DE PROBLEMAS OPERAÇÃO NA RESOLUÇÃO DE PROBLEMAS Procedimentos operatórios conceitual procedimental Contextos, ideias, conceitos Técnicas e estratégias de cálculo, mental e escrito, uso de instrumentos manipuláveis como ábaco, material dourado, etc. p.05 – Cad. 04 PROCEDIMENTOS OPERATÓRIOS FRENTE FRENTE PROCEDIMENTAL CONCEITUAL • Na perspectiva do letramento, o trabalho com as operações deve estar imerso desde o primeiro momento, em situaçõesproblemas. • Necessidade que haja um entendimento sobre o uso das operações em diferentes contextos e práticas sociais. p.05 – Cad. 04 Quantidade Espaço Tempo Cotidiano infantil • Quantificar • Comparar • Contar • Juntar • Tirar • Repartir p.06 – Cad. 04 • Tais atividades contribuem para a construção de esquemas que favorecem o desencadear do processo de compreensão das operações básicas: adição, subtração, multiplicação e divisão p.06 – Cad. 04 Nas escolas, por muito tempo... A ênfase do ensino da matemática esteve nas técnicas operatórias e na compreensão dos algoritmos em si e pouca atenção foi dada à compreensão dos conceitos matemáticos e às propriedades envolvidas nas operações. p.07 – Cad. 04 A atividade matemática escolar é organizada, na maioria das vezes, apenas a partir de exercícios nos quais a meta é aprender a realizar cálculos (mentais e escritos) e usar algoritmos, de modo a tornar a rotina na sala de aula marcada por intermináveis exercícios sem significados para o aluno. p.07 – Cad. 04 • É REPRESENTAÇÃO GRÁFICA DA QUANTIDADE Numeral • É TODO SÍMBOLO NUMÉRICO QUE USAMOS PARA FORMAR OS NUMERAIS ESCRITOS Algarismo • É A QUANTIDADE EXPRESSA ATRAVÉS DO NUMERAL Número • PROCEDIMETOS DE CÁLCULOS QUE CONDUZEM A UM RESULTADO Algoritmo Durante muito tempo, problemas matemáticos foram utilizados na sala de aula como uma forma de treinar algoritmos. • No contexto da nossa formação entende-se que a RESOLUÇÃO DE PROBLEMAS deve desencadear a atividade matemática. • Um problema não é um exercício ao qual o aluno aplica, de forma quase mecânica, uma fórmula ou um processo operatório. p.08 – Cad. 04 O que é um problema matemático? Um problema matemático é uma situação que requer a descoberta de informações desconhecidas para obter um resultado, ou seja, a solução não está disponível de início, no entanto é possível construí-la. p.08 – Cad. 04 O processo de construção de solução pelo aluno é fundamental para a aprendizagem e dará sentido matemático para os cálculos e operações. É no interior da atividade de resolução de problemas, que o trabalho com cálculos deve ser efetivado p.08 – Cad. 04 CAMPO CONCEITUAL ADITIVO “Situações aditivas e multiplicativas no ciclo de alfabetização” (p. 17 a 31) Composição simples Transformação simples Composição com uma das partes desconhecida Transformação com transformação desconhecida Transformação com início desconhecido Comparação CONSTRUÇÃO DO PAINEL DO CAMPO ADITIVO • Pesquisar nos livros didáticos problemas que se enquadrem nos conceitos do campo aditivo. • Três grupo: cada grupo trabalha com um dos anos do ciclo de alfabetização (1º, 2º e 3º). SISTEMATIZAÇÃO Raciocínio aditivo “[...] envolve relações entre as partes e o todo, ou seja, ao somar as partes encontramos o todo, ao subtrair uma parte do todo encontramos a outra parte. Envolve ações de juntar, separar e corresponder um a um”. (p. 31, Caderno 4 de Matemática) PROBLEMAS INVERSOS DE RELAÇÃO PARTE-TODO Fonte: adaptado de Nunes et al. (2009, p. 75) Sandra tinha alguns doces. Ganhou dois doces de sua avó. Agora ela tem oito. Quantos doces Sandra tinha antes? PROBLEMAS INVERSOS DE RELAÇÃO PARTE-TODO Fonte: adaptado de Nunes et al. (2009, p. 76) Seis peixes estavam nadando no aquário. O gato comeu alguns. Só ficou um no aquário. Quantos peixes o gato comeu? PROBLEMAS DE COMPARAÇÃO Fonte: Souza (2014, p. 95) Na bandeja de Maria tem quatro copos de suco. Na bandeja de Pedro tem nove copos de suco. Quantos copos de suco a mais tem na bandeja de Pedro? INTERVALO SEQUÊNCIAS DIDÁTICAS • O tamanho da gente – Samira • O Armando e o tempo – Elba e Eliane COMBINAÇÕES Caderno de Metacognição. Leitura do caderno 4 (Campo multiplicativo), pois trabalharemos no próximo encontro; Trazer o Caderno 4 no próximo encontro. Aula à distância em 21/10. Livro da vida BOM DESCANSO!