Prof. Ilydio Pereira de Sá
Material adaptado a partir de curso produzido para capacitação de professores
do ensino fundamental, pela Universidade de São Paulo, na Internet, através do
projeto Educ@r
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
2
O MATERIAL DOURADO MONTESSORI
Adaptado do projeto Educ@r (USP) http://educar.sc.usp.br/matematica/matematica.html
1) INTRODUÇÃO:
Vários projetos novos, com a nova Lei de Diretrizes e Bases da Educação Nacional (LDB
9394/96) têm sido implementados pelas Secretarias de Educação dos Estados e Municípios
Brasileiros. Os projetos de aceleração da aprendizagem, por sua filosofia de discussão e
conscientização sobre o “fracasso escolar” têm se destacado e produzido resultados bastante
animadores. Tais projetos, normalmente, utilizam vasto material de apoio ao professor e ao aluno,
produzidos por alguns órgãos de ensino de alguns Estados, com apoio do MEC.
Nas assessorias que temos prestado junto a alguns municípios do Rio de Janeiro, nós do
CARPE - Assessoramento Pedagógico, temos usado, na maioria das vezes, o material produzido
pelo CENPEC (SP), para os programas de aceleração da aprendizagem, sob a denominação:
“Ensinar pra valer” e “Aprender pra valer”. Os textos, exercícios, jogos, cartazetes e a própria
estrutura desse material são de excelente qualidade, servindo muito bem ao propósito a que se
destinam.
Como se trata de um material de concepção inovadora, é lógico que, ao primeiro contato, causa
uma certa surpresa e apreensão nos docentes. esbarrando numa questão maior que é a da
formação dos professores.
O presente estudo tem o objetivo de enfocar o MATERIAL DOURADO, que costuma ser muito
citado nos textos de matemática do CENPEC, sem que haja um apoio adequado ao professorregente das turmas de aceleração da aprendizagem.
2) OBJETIVOS DO MATERIAL DOURADO:
O material dourado Montessori destina-se a atividades práticas que auxiliem no ensino e
aprendizagem do sistema de numeração decimal-posicional, bem como o desvendamento dos
métodos usados nas operações matemáticas fundamentais, o que normalmente costuma ser apenas
“decorado” por nossos alunos, através de insistentes e exaustivos “treinos”.
De forma resumida, podemos dizer que o material dourado, que faz parte de um conjunto de
materiais pedagógicos idealizados pela médica e educadora italiana Maria Montessori, propicia, além
da compreensão dos algorítmos operatórios, um notável desenvolvimento do raciocínio, com um
aprendizado bem mais agradável.
3) QUEM FOI MARIA MONTESSORI
Maria Montessori (1870 – 1952) nasceu na Itália, com formação inicial em Física e Matemática,
completando posteriormente o curso de Engenharia. Em 1892 completou o curso de Ciências
Naturais e, em 1896, tornou-se a primeira mulher médica italiana.
Após trabalhar com crianças deficientes na Clínica Psiquiátrica da Universidade de Roma,
interessou-se cada vez mais por crianças e por educação. Estudou e traduziu para o italiano as obras
dos médicos franceses Itard e Séguin, trabalhando com os materiais pedagógicos por eles criados.
Verificou, em sua prática, que não bastavam materiais ou técnicas novas, era preciso modificar o
educador. Voltou então aos bancos da Universidade, cursando filosofia, com licenciatura em Letras.
Passou então a dedicar-se unicamente aos problemas educacionais, escrevendo então várias obras
específicas, como: “A Importância da Etnologia Pedagógica” e “Antopologia Pedagógica”.
Nessa mesma época fundou a instituição educacional denominada “Casa dei Bambini”, começando
então a capacitar professores nos seus métodos, com um lei e exigência básica: “Respeito à
Criança”.
De uma maneira sintética, podemos afirmar que o princípio norteador da obra de Maria
Montessori é que toda criança é capaz de aprender naturalmente, bastando dar-lhe ambiente
adequado e rico em experiências.
A partir de 1908 vão surgindo várias Casas Escolas Montessorianas na Itália e seu trabalho
começou a despertar a atenção de educadores em todo o mundo. Em 1912 vai aos Estados Unidos
e lança: “The Montessori Method”.
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
3
Durante a 1ª Grande Guerra Mundial continuou seu programa de trabalho, viajando e divulgando
sempre suas idéias. Na Alemanha de Hitler, seu sistema foi proibido pela grande idéia de liberdade
que transmitia. Partiu então para um exílio voluntário na Espanha e Mussoline manda fechar todas as
suas escolas na Itália. Com a guerra civil na Espanha é novamente obrigada a imigrar, indo
inicialmente para a Holanda e em seguida para a Índia, onde viveu durante oito anos.
Em 1952 faleceu, aos 81 anos, e ainda com disposição de continuar seu trabalho.
Maria Montessori enfatizava sempre três valores que norteavam uma ação pedagógica: a
criança, o ambiente e o educador.
Com relação a um bom e rico ambiente de trabalho, desenvolveu e adptou alguns materiais de
trabalho para educadores e educandos, entre eles o “material das contas”, posteriormente
conhecido como “material dourado”, que é o objetivo desse nosso estudo.
...Física, Matemática, Engenharia, Ciências Naturais, Letras, Medicina, Pedagogia, ... A
educadora Maria Montessori, sem dúvida alguma, elevou bem alto a dignidade da pessoa humana.
4) O MATERIAL DOURADO
Vamos apresentar uma descrição inicial do “material das contas”, pelas próprias palavras de Maria
Montessori:
"Preparei também, para os maiorezinhos do curso elementar, um material destinado a representar os
números sob forma geométrica. Trata-se do excelente material denominado material das contas. As
unidades são representadas por pequenas contas amarelas; a dezena (ou número 10) é formada por
uma barra de dez contas enfiadas num arame bem duro. Esta barra é repetida 10 vezes em dez
outras barras ligadas entre si, formando um quadrado, "o quadrado de dez", somando o total de cem.
Finalmente, dez quadrados sobrepostos e ligados formando um cubo, "o cubo de 10", isto é, 1000.
Aconteceu de crianças de quatro anos de idade ficarem atraídas por esses objetos brilhantes e
facilmente manejáveis. Para surpresa nossa, puseram-se a combiná-los, imitando as crianças
maiores. Surgiu assim um tal entusiasmo pelo trabalho com os números, particularmente com o
sistema decimal, que se pôde afirmar que os exercícios de aritmética tinham se tornado
apaixonantes.
As crianças foram compondo números até 1000. O desenvolvimento ulterior foi maravilhoso, a tal
ponto que houve crianças de cinco anos que fizeram as quatro operações com números de milhares
de unidades".
Essas contas douradas acabaram se transformando em cubos que hoje formam o Material Dourado
Montessori.
O mateiral Dourado ou Montessori é constituído por cubinhos, barras, placas e cubão, que
representam:
Observe que o cubo é formado por 10 placas, que a placa é formada por 10 barras e a barra é
formada por 10 cubinhos. Este material baseia-se em regras do nossso sistema de numeração.
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
4
Veja como representamos, com ele, o número 265:
Este material pedagógico, confeccionado em madeira, costuma ser comercializado com o nome de
material dourado. Você pode construir um material semelhante, usando cartolina. Os cubinhos são
substituídos por quadradinhos de lado igual a 2 cm, por exemplo. As barrinhas são substituídas por
retângulos de 2 cm por 20 cm a as placas são substituídas por quadrados de lado igual a 20 cm.
Embora seja possível representar o milhar, vamos evitá-lo trabalhando com números menores.
Damos a seguir sugestões para o uso do Material Dourado Montessori.
As atividades propostas foram testadas e mostraram-se eficazes desde a primeira até a quinta série.
Muitas delas foram concebidas pelos grupos de alunos, recomendando-se que os grupos não
tenham mais do que 6 alunos.
O professor, com o conhecimento que tem de seus alunos, saberá em que série cada atividade
poderá ser aplicada com melhor rendimento. Várias das atividades podem ser aplicadas em mais de
uma série, bastando, para isso, pequenas modificações.
Utilizando o material, o professor notará em seus alunos um significativo avanço de aprendizagem.
Em pouco tempo, estará enriquecendo nossas sugestões e criando novas atividades adequadas a
seus alunos, explorando assim as inúmeras possibilidades deste notável recurso didático.
1. JOGOS LIVRES
Objetivo: tomar contato com o material, de maneira livre, sem regras.
Durante algum tempo, os alunos brincam com o material, fazendo construções livres.
O material dourado é construído de maneira a representar um sistema de agrupamento. Sendo
assim, muitas vezes as crianças descobrem sozinhas relações entre as peças. Por exemplo,
podemos encontrar alunos que concluem:
- Ah! A barra é formada por 10 cubinhos!
- E a placa é formada por 10 barras!
- Veja, o cubo é formado por 10 placas!
2. MONTAGEM
Objetivo: perceber as relações que há entre as peças.
O professor sugere as seguintes montagens:
- uma barra;
- uma placa feita de barras;
- uma placa feita de cubinhos;
- um bloco feito de barras;
- um bloco feito de placas;
O professor estimula os alunos a obterem conclusões com perguntas como estas:
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
5
- Quantos cubinhos vão formar uma barra?
- E quantos formarão uma placa?
- Quantas barras preciso para formar uma placa?
Nesta atividade também é possível explorar conceitos geométricos, propondo desafios como estes:
- Vamos ver quem consegue montar um cubo com 8 cubinhos? É possível?
- E com 27? É possível?
3. DITADO
Objetivo: relacionar cada grupo de peças ao seu valor numérico.
O professor mostra, um de cada vez, cartões com números. As crianças devem mostrar as peças
correspondentes, utilizando a menor quantidade delas.
Variação:
O professor mostra peças, uma de cada vez, e os alunos escrevem a quantidade correspondente.
4. FAZENDO TROCAS
Objetivo: compreender as características do sistema decimal.
- fazer agrupamentos de 10 em 10;
- fazer reagrupamentos;
- fazer trocas;
- estimular o cálculo mental.
Para esta atividade, cada grupo deve ter um dado marcado de 4 a 9.
Cada criança do grupo, na sua vez de jogar, lança o dado e retira para si a quantidade de cubinhos
correspondente ao número que sair no dado.
Veja bem: o número que sai no dado dá direito a retirar somente cubinhos.
Toda vez que uma criança juntar 10 cubinhos, ela deve trocar os 10 cubinhos por uma barra. E aí ela
tem direito de jogar novamente.
Da mesma meneira, quando tiver 10 barrinhas, pode trocar as 10 barrinhas por uma placa e então
jogar novamente.
O jogo termina, por exemplo, quando algum aluno consegue formar duas placas.
O professor então pergunta:
- Quem ganhou o jogo?
- Por quê?
Se houver dúvida, fazer as "destrocas".
O objetivo do jogo das trocas é a compreensão dos agrupamentos de dez em dez (dez unidades
formam uma dezena, dez dezenas formam uma centena, etc.), característicos do sistema decimal.
A compreensão dos agrupamentos na base 10 é muito importante para o real entendimento das
técnicas operatórias das operações fundamentais.
O fato de a troca ser premiada com o direito de jogar novamente aumenta a atenção da criança no
jogo. Ao mesmo tempo, estimula seu cálculo mental. Ela começa a calcular mentalmente quanto falta
para juntar 10, ou seja, quanto falta para que ela consiga fazer uma nova troca.
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
6
• cada placa será destrocada por 10 barras;
• cada barra será destrocada por 10 cubinhos.
Variações:
Pode-se jogar com dois dados e o aluno pega tantos cubinhos quanto for a soma dos números que
tirar dos dados.
Pode-se utilizar também uma roleta indicando de 1 a 9.
5. PREENCHENDO TABELAS
Objetivo: os mesmos das atividades 3 e 4.
- preencher tabelas respeitando o valor posicional;
- fazer comparações de números;
- fazer ordenação de números.
As regras são as mesmas da atividade 4. Na apuração, cada criança escreve em uma tabela a
quantidade conseguida.
Olhando a tabela, devem responder perguntas como estas:
- Quem conseguiu a peça de maior valor?
- E de menor valor?
- Quantas barras Lucilia tem a mais que Gláucia?
Olhando a tabela à procura do vencedor, a criança compara os números e percebe o valor posicional
de cada algarismo.
Por exemplo: na posição das dezenas, o 2 vale 20; na posição das centenas vale 200.
Ao tentar determinar os demais colocados (segundo, terceiro e quarto lugares) a criança começa a
ordenar os números.
6. PARTINDO DE CUBINHOS
Objetivo: os mesmos da atividade 3, 4 e 5.
Cada criança recebe um certo número de cubinhos para trocar por barras e depois por placas.
A seguir deve escrever na tabela os números correspondentes às quantidades de placas, barras e
cubinhos obtidos após as trocas.
Esta atividade torna-se interessante na medida em que se aumenta o número de cubinhos.
7. VAMOS FAZER UM TREM?
Objetivo: compreender que o sucessor é o que tem "1 a mais" na seqüência numérica.
O professor combina com os alunos:
- Vamos fazer um trem. O primeiro vagão é um cubinho. O vagão seguinte terá um cubinho a mais
que o anterior e assim por diante. O último vagão será formado por duas barras.
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
7
Quando as crianças terminarem de montar o trem, recebem papeletas nas quais devem escrever o
código de cada vagão.
Esta atividade leva à formação da idéia de sucessor. Fica claro para a criança o "mais um", na
seqüência dos números. Ela contribui também para a melhor compreensão do valor posicional dos
algarismos na escrita dos números.
------------------------------------------------------------------------
8. UM TREM ESPECIAL
Objetivo: compreender que o antecessor é o que tem "1 a menos" na seqüência numérica.
O professor combina com os alunos:
- Vamos fazer um trem especial. O primeiro vagão é formado por duas barras (desenha as barras na
lousa). O vagão seguinte tem um cubo a menos e assim por diante. O último vagão será um cubinho.
Quando as crianças terminam de montar o trem, recebem papeletas nas quais devem escrever o
código de cada vagão.
Esta atividade trabalha a idéia de antecessor. Fica claro para a criança o "menos um" na seqüência
dos números. Ela contribui também para uma melhor compreensão do valor posicional dos
algarismos na escrita dos números.
9. JOGO DOS CARTÕES
Objetivos: compreender o mecanismo do "vai um" nas adições; estimular o cálculo mental.
O professor coloca no centro do grupo alguns cartões virados para baixo. Nestes cartões estão
escritos números entre 50 e 70.
1º sorteio: Um alunos do grupo sorteia um cartão. Os demais devem pegar as peças
correspondentes ao número sorteado.
Em seguida, um representante do grupo vai à lousa e registra em uma tabela os números
correspondentes às quantidades de peças.
2º sorteio: Um outro aluno sorteia um segundo cartão. Os demais devem pegar as peças
correspondentes a esse segundo número sorteado.
Em seguida, o representante do grupo vai à tabela registrar a nova quantidade.
Nesse ponto, juntam-se as duas quantidades de peças, fazem-se as trocas e novamente completase a tabela.
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
8
Ela pode ficar assim:
Isto encerra uma rodada e vence o grupo que tiver conseguido maior total. Depois são feitas mais
algumas rodadas e o vencedor do dia é o grupo que mais rodadas venceu.
Os números dos cartões podem ser outros. Por exemplo, números entre 10 e 30, na primeira série;
entre 145 e 165, na segunda série.
Depois que os alunos estiverem realizando as trocas e os registros com desenvoltura, o professor
pode apresentar a técnica do "vai um" a partir de uma adição como, por exemplo, 15 + 16.
Observe que somar 15 com 16 corresponde a juntar estes conjuntos de peças.
Fazendo as trocas necessárias,
Compare, agora, a operação:
• com o material
• com os números
Ao aplicar o "vai um", o professor pode concretizar cada passagem do cálculo usando o material ou
desenhos do material, como os que mostramos.
O "vai um" também pode indicar a troca de 10 dezenas por uma centena, ou 10 centenas por 1
milhar, etc.
Veja um exemplo:
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
9
No exemplo que acabamos de ver, o "vai um" indicou a troca de 10 dezenas por uma centena.
É importante que a criança perceba a relação entre sua ação com o material e os passos efetuados
na operação.
10. O JOGO DE RETIRAR
Objetivos: compreender o mecanismo do "empresta um" nas subtrações com recurso; estimular o
cálculo mental.
Esta atividade pode ser realizada como um jogo de várias rodadas. Em cada rodada, os grupos
sorteiam um cartão e uma papeleta. No cartão há um número e eles devem pegar as peças
correspondentes a essa quantia. Na papeleta há uma ordem que indica quanto devem tirar da
quantidade que têm.
Por exemplo: cartão com número 41 e papeleta com a ordem: TIRE 28.
Vence a rodada o grupo que ficar com as peças que representam o menor número. Vence o jogo o
grupo que ganhar mais rodadas.
É importante que, primeiro, a criança faça várias atividades do tipo: "retire um tanto", só com o
material. Depois que ela dominar o processo de "destroca", pode-se propor que registre o que
acontece no jogo em uma tabela na lousa.
Isto irá proporcionar melhor entendimento do "empresta um" na subtração com recurso. Quando o
professor apresentar essa técnica, poderá concretizar os passos do cálculo com auxílio do material
ou desenhos do material.
O "empresta um" também pode indicar a "destroca" de uma centena por 10 dezenas ou um milhar
por 10 centenas, etc. Veja o jogo seguinte:
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
10
11. "DESTROCA"
Objetivos: os mesmos da atividade 10.
Cada grupo de alunos recebe um dado marcado de 4 a 9 e uma placa.
Quando o jogador começa, todos os participantes têm à sua frente uma placa.
Cada criança, na sua vez de jogar, lança o dado e faz as "destrocas" para retirar a quantidade de
cubinhos correspondente ao número que sair no dado. Veja bem: esse número dá direito a retirar
somente cubinhos.
Na quarta rodada, vence quem ficar com as peças que representam o menor número.
Exemplo: Suponha que um aluno tenha tirado 7 no dado. Primeiro ele troca uma placa por 10 barras
e uma barra por 10 cubinhos:
Depois, retira 7 cubinhos:
Salientamos novamente a importância de se propor várias atividades como essa, utilizando, de início,
só o material. Quando o processo de "destroca" estiver dominado, pode-se propor que as crianças
façam as subtrações envolvidas também com números.
12) VALOR ABSOLUTO E VALOR RELATIVO
Objetivo: Relacionar as peças do Material Dourado com o quadro valor de lugar e compreender
que o algarismo assume outro valor quando se leva em conta a sua posição.
1) Represente com o Material Dourado o número 345.
2) Represente este número na tabela abaixo.
PLACA
BARRA
CUBINHO
centena
dezena
unidade
Responda:
a) Quantas unidades vale o algarismo 4? ________
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
11
b) Quantas centenas vale o algarismo 3? ________
c) Quantas unidades vale o algarismo 5? ________
d) Quantas dezenas vale o algarismo 4? ________
e) Quantas unidades vale o algarismo 3? ________
VALOR ABSOLUTO – Valor do algarismo isoladamente.
VALOR RELATIVO – Valor do algarismo levando em conta a posição que ela ocupa.
Fixando
Algarismo
3
Valor
4
5
Absoluto
Relativo
OPERANDO COM O SISTEMA DECIMAL
IDÉIAS BÁSICAS DA ADIÇÃO:
• Juntar duas quantidades;
• Acrescentar uma quantidade a outra já colocada
Vence a rodada o grupo que ficar com as peças que representam o menor número. Vence o jogo o grupo
que ganhar mais rodadas.
É importante que, primeiro, a criança faça várias atividades do tipo: "retire um tanto", só com o material.
Depois que ela dominar o processo de "destroca", pode-se propor que registre o que acontece no jogo
em uma tabela na lousa.
Isto irá proporcionar melhor entendimento do "empresta um" na subtração com recurso. Quando o
professor apresentar essa técnica, poderá concretizar os passos do cálculo com auxílio do material ou
desenhos do material.
O "empresta um" também pode indicar a "destroca" de uma centena por 10 dezenas ou um milhar por 10
centenas, etc. Veja o jogo seguinte:
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
AS IDÉIAS BÁSICAS DA MULTIPLICAÇÃO
• Adição de parcelas iguais
• Pensamento combinatório ( princípio multiplicativo)
13: Objetivo: Compreender o algoritmo da multiplicação
a) Um prédio possui 3 andares cada andar tem um salão com 245 cadeiras. Quantas cadeiras
possuem os salões?
245 x 3 =
Material dourado representação numérica
b) Comprei 12 caixas de latas de óleo, cada caixa possui 11 latas. Quanta lata de óleo comprei?
12 x 11 =
Material dourado representação numérica
10 + 1 + 1
Observe outra maneira de representar:
12
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
13
1 x 1 = 1 unidade = 1 cubinho
AS IDÉIAS BÁSICAS DA DIVISÃO
• Divisão em partes iguais
• Medida
14: Objetivo: Compreender o algoritmo da divisão.
a) Distribua 13 balas para 2 crianças. Quantas balas receberão cada uma?
A distribuição foi feita em pequenas quantidades. O processo feito traz um conceito de divisão
importante, que é o de subtrações sucessivas, isto é, retiro de uma determinada quantidade outras
quantidades menores.
Contando as vezes que foram retiradas 2 balas, temos um total de 6. Portanto, 13 : 2 = 6 e
sobra 1.
Esse processo é conhecido como processo americano de divisão.
b) Possuo 21 figurinhas. Quantos pacotes com 3 figurinhas cada um podem ser feitos a partir de
21 figurinhas?
CUBO
•
•
PLACA
BARRA
CUBINHO
Quantos cubinhos teremos no total?
Supondo que 3 cubinhos representam 1 pacote de figurinhas, quantos pacotes eu terei?
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
•
14
Represente por meio de palavras ou números como você pensou para resolver a questão
acima.
Vamos compreender um pouco mais o algoritmo:
Tenho 255 reais e quero dividi-lo entre meus 3 filhos. Quanto receberá cada um?
No desenho abaixo indicamos a troca utilizando uma flecha e colocando um X em cima
das peças trocadas.
As peças que foram distribuídas estão cercadas formando grupos, no caso 3. Embaixo aparecem
as peças que cada criança recebeu.
Material dourado representação numérica
Vamos compreender um pouco mais o algoritmo, utilizando o exemplo acima.
Geralmente se começa a divisão dizendo "2 não divide 3". Isso não é verdade, pois se
pensarmos na posição em que este 2 está, verificamos que são 2 centenas, portanto 200 unidades. É
possível, então, dividir 200 por 3. Com o Material Dourado, fica claro para o aluno, que o que não é
possível é dar 1 placa (1 centena) para cada criança, já que temos apenas 2. Portanto, trocamos essas 2
centenas por 20 dezenas.
Fundamentos teóricos e Metodologia da Matemática I - Prof. Ilydio Pereira de Sá
15
Continuando a divisão, verificamos que sobrou 1 dezena para ser dividida. Da mesma forma que
as centenas, nós a trocamos agora por 10 unidades, que somadas às unidades já existentes, totalizam
15 unidades. Essa é a explicação para o "abaixa o 5". Na realidade estamos querendo dizer: “agora
vamos trabalhar com as unidades”.
Download

Apostila de Material Dourado Montessori