UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Prof. Alexandre Leme Sanches, MSc. Prof. Edson de Oliveira Pamplona, Dr. Prof. José Arnaldo Barra Montevechi, Dr. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Itajubá UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Itajubá UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Universidade Federal de Itajubá UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 1. Introduction 2. Objectives 3. Methodological aspects 4. Literature revision 5. Operations with Triangular Fuzzy Numbers (TFN) 6. Fuzzyfication and Defuzzyfication 7. The Net Present Value 8. Application of Fuzzy Numbers in Investiments Analysis 9. Analyzing the Fuzzy NPV 10. Real Case Aplication 11. Conclusions UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 1.Introduction: Uncertainties associated with “Investment Analyses” Alternatives methods Decision making process Optimization of financial resources UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 2. Objectives: Main Objective: Demonstrate the use of fuzzy logic in the evaluation of investment projects under uncertaint conditions; Secondary Objective: Presentation of a software prototype to calculate the fuzzy NPV and relative analyses. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 3. Methodological aspects: The research method to be used is known as “quasiexperiment”: • Pre and Post Test, TROCHIN (2001). • Doesn’t have total control over the input variables of the system, BRYMAN (1989). • There’s a non-random treatment of the experiment, TROCHIN (2001). • Where the human behavior is present, TROCHIN (apud GONÇALVES (2003)). UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Investment Data (selected group) Deterministic NPV Calculation – viability (pre-test) Sensibility Analyses (uncontrolled) M E T H O Definition of the variables to be Fuzzyfied Fuzzyfication of the selected variables (specialist) Fuzzy NPV Calculation D F L U O Z G Z I Y C Viability and possibilities analyses associated with the Fuzzyfied NPVs (post-test). Defuzzyfication of the NPV (if necessary) Comparison with the Deterministic NPV - The Proxy Pretest Design UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 4. Literature revision The Fuzzy Logic: • Fuzzy logic is a bridge which connects the human thinking to the machine’s logic; • In a fuzzy set, the transitions between a member or a non-member occur continuously; • The degree of “membership is not probability”, but a measure of compatibility between object and the concept represented by the fuzzy set. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 4.1. Membership Fuction - Example: A a c A a b c b d d A A 1 1 0.5 a b c Boolean Logic (binary) d x a b c d Fuzzy Logic (continuous) A(x): Membership x UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 4.2. Fuzzy Number – General Definition, KUCHTA (1996) fn (a1, a2, a3, a4, f1 a ( ), f 2a ( )) Where: a1, a2, a3, a4 are real numbers and a1 a2 a3 a4 is a continuous real function non decreasing f1 ( ) :defined in the interval [0,1], such that: a f1a (0) a1 and f1a (1) a 2 is a continuous real function non increasing f 2 ( ) :defined in the interval [0,1], such that: a f 2a (1) a3 and f 2a (0) a 4 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 4.3. Fuzzy Number: fn (a1, a2, a3, a4, f , f ) A(x) a 1 1 f f a 1 a1 0 a2 a3 a 2 a4 x a 2 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 4.4. Triangular Fuzzy Number (TFN): If a and 1 f f a 2 are linear functions and a2 = a 3: 0, x a1 , a2 a1 ( A) ( x) a x 3 , a3 a2 0, A (x) 1 a1 a2 a3 x A = (a1, a2, a3) x a1 a1 x a2 a2 x a3 x a3 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 4.5. Fuzzy Number – Example I: A “Fuzzy Set” representing the NPV: “Rates: Low/Medium/High” 1 0.6 High Low Medium 0.4 0 10% 18% 26% ROR UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 4.6. Fuzzy Number – Example II: A Fuzzy Set representing: (The value of one Dolar on 16/10/03): “Subjectivity” 1 0.5 0 2,6 2,7 3,0 Reais UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 5. Operations with Triangular Fuzzy Numbers (TFN): Addition: If A = (a1, a2, a3) and B = (b1, b2, b3), so: A (+) B = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3), is a TFN. Example: µ(x) A 1 B A+ B 0,5 0 1 2 3 4 5 7 11 x UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Subtraction: If A = (a1, a2, a3) and B = (b1, b2, b3), so: A (-) B = (a1, a2, a3) - (b1, b2, b3) = (a1 - b3, a2 - b2, a3 - b1), is a TFN. Example: A- B µ(x) B A 1 B 0,5 -6 -3 0 1 2 4 5 7 x UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Multiplication: Using the line equations: A * B = [[Al(y)* Bl(y), Ar(y)*Br(y)] is not a TFN. Example: µ(x) A 1 B AxB 0,5 ................. 0 1 2 3 4 5 7 10 28 x Aproach by Chiu e Park (1994) UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Division: (two diferents cases) 1) If A and B are both positives: A / B = [Al(y)/ Br(y), Ar(y)/Bl(y)] 2) If A is positive and B is negative: A / B = [Al(y)/ Bl(y), Ar(y)/Br(y)] The result in the first case is a positive fuzzy number and in the second case is a negative fuzzy number. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE An: (where n is a real number) n n n n A a1 ,a2 ,a3 AB: (where B is a TFN (b1, b2, b3)) undefined B b 1 b 2 b 3 A a ,a ,a 1 2 3 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE An: (where n is a real number) n n n n A a1 ,a2 ,a3 AB: (where B is a TFN (b1, b2, b3)) undefined B b 1 b 2 b 3 A a ,a ,a 1 2 3 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 6. Fuzzyfication and Defuzzyfication: Fuzzyfication: Is the maping of real numbers domain (generally discrete) to the fuzzy domain. Defuzzyfication: Is the proceeding in which the value of the output linguistic, inferred by the fuzzy rules, will be transletad to a discrete value. SHAW I. S. (1999) UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Fuzzyfication’s example: Very Low Low Medium High Very High 1 0 5 10 15 20 25 30 35 40 ROR (%) UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Defuzzyfication’s example: 1 Very bad 0 1000 Bad 3000 Medium 5000 Good 7000 8000 Very good 9000 NPV UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 7. The Net Present Value: n NPV CF 0 CFi i 1 (1 r ) Where: NPV: net present value CF0: first cash flow CFi: cash flow on period i (i=1...n) n: number of periods r: discount rate i UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 8. Application of Fuzzy Numbers in Investiments Analysis: The Fuzzy Net Present Value: According to BUCKLEY (1987) the Membership Function to NPV is givem: n f n,i (( y) P) f j ,i (( y) Fj )(1 f k ( j ) (( y)rf )) j j 0 To i = 1, 2, ... where k = i if F is negative and k = 3 - i if F is positive. n Comparing: NPV CF 0 CFi i 1 (1 r ) i UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 9. Analyzing the Fuzzy NPV Valor Presente Líquido Fuzzy 1,00 VPL 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 (35) (24) (14) (3) “Investiment Sure and Viable” 7 ( M i l hõe s ) 18 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Valor Presente Líquido Fuzzy 1,00 VPL 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 (35) (24) (14) (3) “Investiment Sure and Unviable” ( M i l hõe s ) 7 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Valor Presente Líquido Fuzzy n=8 1,00 n=10 0,90 n=15 0,80 VPL 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 (35) (24) (14) (3) 7 18 29 39 50 “Investiment Unsure and Viable” 60 (71 M i l hõe s ) 82 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Valor Presente Líquido Fuzzy n=8 1,00 n=10 0,90 n=15 0,80 VPL 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 (35) (24) (14) (3) “Investiment Unsure and Unviable” ( M i l hõe s ) 7 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Valor Presente Líquido Fuzzy VPL 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 (35) (24) (14) (3) Negative area 7 18 29 39 Positive area 50 ( M ilhõ e s ) 60 UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 10.Real Case Aplication: 10.1. The Problem: Observing the great expansion of its clients business, and having abundant available raw material, the Mining company has shown interest in the feldspar processing, and in entering in the market as a competitor of its clients. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 10.2. Project Data Fixed Investiment R$12.874.035,00 Working Capital R$2.376.000,00 Yearly Fixed Cost R$2.304.125,00 Variable Cost / unit R$ 16/T on Forecasted Sales 100.000 T on/ano P rice R$ 98,00/T on P lanning Horizon 10 years Residual Value "R$8.582.690,00" ROR 15% year Income T ax 35% year Depreciation 10% year UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 10.3. NPV Calculations Using Software Excel The value of NPV found is R$ 8.211.191,38. Therefore, in a simple Deterministic evaluation, the investiment could be acepted. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 10.4. Analisyng the uncertainties involveds Fixed Investiment: +/- 10%; Working Capital: +/- 10%; Yearly Fixed Cost: +/- 10%; Variable Cost/Unit: +/- 13%; Forecast Sales: -30% a +20%; Price: -20% a +15%; Planning Horizon: –20% a +50%; ROR: +/- 10%. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 10.5. “Fuzzynvest 1.0” presentation: “Fuzzyinvest 1.0” Main Screen UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE “Gráfico” Sheet UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE “Cálculos” Sheet UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 10.6. Analysing the results. “Fuzzyinvest 1.0” Main Screen UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE The failure possibility of the project. 1 0 Very Low 5 Low 10 15 Medium High 20 (27,51) Very High 35 40 % UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Fuzzy classification array of the failure possibility of the investment Decision of the company Very Low Unconditionally Accept Low Accept with caution Average Accept under restrictions High (27.51%) Reject and review project Very High Unconditionally Reject “Investment Projects Acceptance Criteria” UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE 11.Conclusions: 1) The most relevant conclusion, concerns the comparison of the deterministic NPV with the Fuzzy NPV, being the “uncertainty” dimension made a go investment, in the deterministic method, turn into a rejected one. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Conclusions: 2) The way to evaluate an investment doesn’t change much, when applied to another object of analyses. 3) One of the most relevant information, obtained from the fuzzy NPV, is the failure possibility of the project, it is obtained from a proportion of the area seen under the membership curve, which takes us to an analogy with the PDF (Probability Density Function) using statistical methods. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Conclusions: 4) The uncertainty associated with the fuzzy NPV, is characterized by the amplitude of the fuzzy number that represents the fuzzy NPV, that is, “a3 – a1”, therefore, the “uncertainty associated to the investment” and the “investment viability” are totally independent. 5) It is also important to point out the great visual analyses power of the fuzzy number, the visualization of the membership graph takes us to another analyses dimension, improving even more the decision making resources. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Conclusions: 6) The computerized resources allow us to deal with possible difficulties found in the calculation, with speed and accuracy, what happens with “Fuzzyinvest 1.0”. The software values the visual aspect and the relevant information, emphasizing the membership graph and the failure possibility. UNIVERSIDADE FEDERAL DE ITAJUBÁ – BRASIL V Encontro Internacional de Finanças - CHILE Questions?