ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO
1ª Ficha Informativa
MATEMÁTICA - A
10º Ano
2012/2013
1- Ângulos
Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.
Definição: A medida de amplitude de um ângulo é a propriedade comum a todos os ângulos que
são geometricamente iguais.
Classificação de ângulos:
Ângulo Nulo
Ângulo Agudo
Ângulo Recto
Ângulo Obtuso
Ângulo Raso
Ângulo Giro
»»» Dois ângulos dizem-se complementares se a soma das suas amplitudes for de 90º
»»» Dois ângulos dizem-se suplementares se a soma das suas amplitudes for de 180º
1 /8
2- Triângulos
Definição: Chama-se triângulo a um polígono com três lados.
A soma das amplitudes dos ângulos internos de um triângulo é igual a 180º
2.1. Classificação de Triângulos :
2.1.1. Classificação quanto aos lados
Triângulo Equilátero - tem os
três lados geometricamente
iguais.
Triângulo Isósceles – tem dois
lados geometricamente iguais
e um diferente
Triângulo Escaleno – tem os
três lados diferentes.
2.1.2. - Classificação quanto aos ângulos:
Triângulo Retângulo- tem um
ângulo recto
Triângulo Acutângulo- tem os
três ângulos internos agudos.
Triângulo Obtusângulo - tem
um ângulo interno obtuso
2.2. Casos de Igualdade de Triângulos
1º Caso- Dois triângulos são geometricamente iguais se os três lados de um são geometricamente
iguais aos três lados do outro.
2º Caso- Dois triângulos são geometricamente iguais se têm dois lados geometricamente iguais e o
ângulo por eles formado também geometricamente igual.
3º Caso- Dois triângulos são geometricamente iguais se têm um lado geometricamente igual e os
ângulos adjacentes a esse lado também geometricamente iguais.
2 /8
2.3. Casos de Semelhança de Triângulos
1º Caso –Dois triângulos são semelhantes se têm, de um para o outro, dois ângulos
geometricamente iguais.
2º Caso –Dois triângulos são semelhantes se têm, de um para o outro, dois lados proporcionais e o
ângulo por eles formado geometricamente igual
3º Caso –Dois triângulos são semelhantes se têm, de um para o outro, os três lados diretamente
proporcionais.
3- Semelhanças
Semelhança de razão r é qualquer aplicação do plano que transforma ângulos em ângulos
geometricamente iguais e segmentos de reta em segmentos de reta de comprimentos
diretamente proporcionais.

Se r > 1 a semelhança diz-se uma ampliação

Se r < 1 a semelhança diz-se uma redução

Se r = 1 a semelhança diz-se uma isometria

Se dois poliedros são semelhantes de razão r, então:

A razão entre dois segmentos de reta homólogos é r

A razão entre áreas homólogas é r 2

A razão entre os volumes é r 3
4- Teorema de Pitágoras
Num triângulo retângulo, o quadrado da medida da hipotenusa é
igual à soma dos quadrados das medidas dos catetos
5- Polígonos
Polígono é uma superfície plana limitada por uma linha poligonal fechada.
Um polígono regular é um polígono com os lados e ângulos internos todos geometricamente
iguais.
6- Quadriláteros
Quadriláteros são polígonos que têm quatro lados. ( A soma dos ângulos internos de qualquer
quadrilátero é 360º)
3 /8
6.1. Paralelogramos - têm os lados opostos paralelos e iguais.
Paralelogramo
Obliquângulo
Losango tem os
quatro lados iguais
Retângulo tem quatro
ângulos retos
Quadrado tem os
lados iguais e os
ângulos retos
6.2. Trapézios – têm somente dois lados opostos paralelos
Trapézio isósceles - tem os
lados não paralelos iguais
Trapézio rectângulo - tem dois
ângulos retos
Trapézio escaleno – tem os
lados todos diferentes
6.3. Outros quadriláteros convexos – não têm lados paralelos.
PROPRIEDADES:
► Em qualquer paralelogramo os lados opostos são iguais
► Em qualquer paralelogramo, as diagonais bissetam-se, isto é, dividem-se ao meio
► Em qualquer losango as diagonais são perpendiculares e dividem-se ao meio
► As diagonais de um quadrado são iguais, são perpendiculares e bissectam-se
► Num trapézio isósceles as diagonais são iguais
► A soma das amplitudes dos ângulos internos de um quadrilátero é igual a 360º
► Em qualquer paralelogramo, que não seja retângulo, a soma das amplitudes dos ângulos
adjacentes ao mesmo lado são suplementares, isto é, é sempre igual a 180º
► Os ângulos opostos de um paralelogramo são geometricamente iguais
4 /8
NOTAS

A soma das amplitudes dos ângulos internos de um polígono convexo com n lados é dada
0
pela expressão S  ( n  2) 180

Se um polígono de n lados for regular, a amplitude de um ângulo interno α é dada pela
expressão  
( n  2) 180 0
n
7- SÓLIDOS GEOMÉTRICOS
7.1. Classificação dos Sólidos
7.1.1. Poliedros – Sólidos com todas as faces planas
7.1.2. Poliedros Regulares --- Sólidos cujas faces são polígonos regulares geometricamente
iguais e os seus ângulos poliedros (ângulo poliedro convexo é a porção de espaço formada por três
ou mais semirectas com a mesma origem) têm o mesmo número de faces.
7.1.3. Não Poliedros—Sólidos com alguma superfície curva
PRISMAS
Os prismas são poliedros com duas bases geometricamente iguais e paralelas. As suas faces
laterais são paralelogramos
Prisma reto
Prisma reto regular
Prisma oblíquo
As arestas são perpendiculares às
bases. As faces laterais são
retângulos
5 /8
As faces laterais são retângulos.As
bases são polígonos regulares
As arestas laterais são oblíquas às
bases
PIRÂMIDES
Pirâmides são poliedros com uma só base poligonal. As suas faces laterais são triângulos.
Pirâmide reta
Pirâmide reta regular
Pirâmide oblíqua
As faces laterais são triângulos
isósceles
As faces laterais são triângulos
isósceles. A base é um polígono
regular
As faces laterais não são triângulos
isósceles
8- Retas e Planos
Axiomas
► Dois pontos definem uma reta.
► Três pontos não colineares definem um plano.
► Uma reta com dois pontos num plano está contida nesse plano.
► A intersecção de dois planos concorrentes é uma reta.
► Por um ponto exterior a uma reta passa uma e uma só reta que lhe é paralela.
Um plano pode ser definido por:
► três pontos não colineares;
► uma reta e um ponto exterior à reta;
► duas retas estritamente paralelas;
► duas retas concorrentes.
6 /8
POSIÇÃO RELATIVA DE DOIS PLANOS
Imagem retirada do livro Novo Espaço Belmiro Costa e Ermelinda Rodrigues – Porto Editora
POSIÇÃO RELATIVA DE UMA RETA E UM PLANO
Imagem retirada do livro Novo Espaço Belmiro Costa e Ermelinda Rodrigues – Porto Editora
POSIÇÃO RELATIVA DE DUAS RETAS
Imagem retirada do livro Novo Espaço Belmiro Costa e Ermelinda Rodrigues – Porto Editora
7 /8
CRITÉRIOS DE PARALELISMO E DE PERPENDICULARIDADE
Critério de paralelismo entre reta e plano
Imagem retirada do livro Novo Espaço Belmiro Costa e Ermelinda Rodrigues – Porto Editora
Critério de paralelismo entre dois planos
Imagem retirada do livro Novo Espaço Belmiro Costa e Ermelinda Rodrigues – Porto Editora
Critério de perpendicularidade entre reta e plano
Imagem retirada do livro Novo Espaço Belmiro Costa e Ermelinda Rodrigues – Porto Editora
Critério de perpendicularidade entre dois planos
Imagem retirada do livro Novo Espaço Belmiro Costa e Ermelinda Rodrigues – Porto Editora
8 /8
Recorde que:
 A, B representam dois pontos.

AB representa a reta que passa pelos pontos A e B, pode ser representada por a, b ou por
qualquer letra minúscula

ABC representa o plano definido pelos pontos A, B e C.

A B representa uma semirreta com origem no ponto A e que passa pelo ponto B



( A B  B A)


[AB] representa um segmento de reta de extremos os pontos A e B ( [AB]=[BA] )
AB representa a medida de comprimento do segmento de reta [AB]
FIM
9 /8
Download

1ª Ficha Informativa - Escola Secundária de Alberto Sampaio