ES 203 - Eletromagnetismo 1 – 2010.02
2o. Exame Parcial – 02/12/2010
Professor: Eduardo Fontana
Resolva cada questão de forma clara e concisa, demonstrando seu conhecimento sobre o tema da questão.
Q1. Em t=0, um excesso de carga é distribuído com uma densidade ρ0(R/a) (C/m3), no
interior da esfera de raio a, condutividade σ e permissividade elétrica ε0. Admitindo que a
esfera esteja imersa no vácuo, determine:
a) A densidade volumétrica de carga para t ≥ 0.
no interior e no exterior da esfera para t ≥ 0.
b) Os vetores
c) A densidade superficial de carga em R = a, para t ≥ 0.
Q2. Considere uma esfera perfeitamente condutora de raio a envolta por uma casca esférica
perfeitamente condutora de raio interno b>a. A região {a ≤ R ≤ b, 0 ≤ θ < π} é preenchida
por um meio material de condutividade σ1 e a região {a ≤ R ≤ b, π ≤ θ < 2π} é preenchida
por um meio de condutividade σ2 . Admitindo que uma diferença de potencial seja aplicada
e
, determine:
entre os condutores perfeitos tal que,
a) o vetor densidade de corrente em cada região.
b) a resistência elétrica medida entre as superfícies R=a e R=b.
c) a potência elétrica dissipada em cada região.
Q3. Sobre a superfície da esfera de raio a, circula corrente distribuída com densidade
superficial
, onde K0 (A/m) é uma constante. Admitindo que o centro da
esfera corresponda à origem do sistema de coordenadas, determine:
a) A corrente total que atravessa a semicircunferência R=a, φ=0, 0≤ θ ≤ π.
b) O vetor
na origem.
Q4. Em uma região cilíndrica condutora, infinitamente longa, cujo eixo de simetria é o eixo z,
flui uma corrente I ao longo da direção z, distribuída uniformemente na secção transversal da
região. Admitindo que a permeabilidade da região seja a mesma do vácuo, µ0 , determine:
a) A densidade
 de corrente na região cilíndrica.
b) O vetor B no interior e no exterior do cilindro.
Dado – Laplaciano em coordenadas esféricas:
∂ ⎛
∂Φ ⎞ 1 ∂ 2 Φ
1 ∂ ⎛ 2 ∂Φ ⎞
1
∇ Φ= 2
⎜R
⎟+
⎜ senθ
⎟+
∂θ ⎠ R 2 ∂φ 2
R ∂R ⎝ ∂R ⎠ R 2senθ ∂θ ⎝
2
Download

2o. Exame Parcial