APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: NO: 1 APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1.° grau toda função definida de Exemplos: f(x) = 5x – 3, onde a = 5 e b = – 3 (função afim) f(x) = 6x, onde a = 6 e b = 0 (função linear) f(x) = x, onde a = 1 e b = 0 (função identidade) por f(x) = ax + b com a, b e a 0. GRÁFICO DA FUNÇÃO DO 1.º GRAU O gráfico de uma função do 1.º grau é uma reta não-paralela nem ao eixo x nem ao eixo y. Seu domínio é D(f) = e sua imagem é Im(f) = . 1.º exemplo: Construir o gráfico da função y = 2x + 3 (a = 2 > 0) Resolução: Sabendo que o gráfico da função y = 2x + 3 é do 1.º grau, precisamos somente conhecer dois de seus pontos para traçá-lo. Esses dois pontos podem ser obtidos atribuindo-se dois valores arbitrários para x e determinando suas ../imagens (y). Para x = 0 y = 3 Para x = – 2 y = -1 Para x = – 1 y = 1 2.º exemplo: Construir o gráfico da função f (x) = – 2x + 3 (a = – 2 < 0) Conclusão: Se a > 0, a função y = ax + b é crescente. Se a < 0, a função y = ax + b é decrescente. ZERO OU RAIZ DA FUNÇÃO DO 1.º GRAU Chama-se zero ou raiz da função do 1.º grau f(x) = ax + b o valor de x para o qual f(x) = 0, logo: ax + b = 0 ⇒ ax = -b ⇒ x = - b . a f(x) x raiz ou zero o - b a x Observação: geometricamente, o zero da função do 1.º grau é a abscissa do ponto em que a reta corta o eixo x. Então, no exemplo, temos: 2 APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS COEFICIENTES ANGULAR E LINEAR DA RETA: O coeficiente de x, a, é chamado coeficiente angular da reta, que é o valor da tangente do ângulo do α que reta forma com o eixo 0x, medido do eixo para reta no sentido anti-horário. O termo constante b, é, chamado coeficiente linear da reta, que é, o valor da ordenada do ponto em que a reta corta o eixo 0y. a = tg α f(x) α o x coeficiente linear (b) Observando os gráficos dos exemplos anteriores, podemos concluir que: 1º) Quando o coeficiente angular é positivo, ou seja , a>0, a função é crescente. 2º) Quando o coeficiente angular é negativo, ou seja , a<0, a função é decrescente. Exemplos 1) Determinar a raiz e fazer a representação gráfica das funções: a) f(x) = 3x+6 Resolução: 3x + 6 = 0 ⇒ 3x = -6 ⇒ x = -2(raiz) f(x) 6 coeficiente linear raiz -2 o x b) f(x)= -x+3 Resolução: -x+3=0 ⇒ -x = -3 (-1 ⇒ x = 3(raiz) f(x) 3 (coef. Linear) raiz o 3 x 2) Determine os coeficientes angular e linear das retas representadas pelas funções abaixo e classifique-as em crescente ou decrescente. a) f(x) = 5x+9 3 APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS Resolução: Coeficiente angular a=5, linear b=9. a = 5 > 0, logo, é crescente a função. b) f(x) = -4x+8 Resolução: Coeficiente angular a = -4, linear b = 8. a = -4 < 0, logo, é decrescente a função. ESTUDO DO SINAL DA FUNÇÃO DE 1º GRAU Estudar o sinal da função de 1º grau y = ax + b significa determinar para quais valores de x a função é positiva , nula ou negativa. No estudo do sinal devemos considerar 2 casos: 1º caso: a > 0 (função crescente) y y>0 + -b/a _ o x y<0 b •x>- ⇒y>0 a •x=- b ⇒y=0 a •x<- b ⇒y<0 a y>0 + _ x -b/a y<0 2º caso: a < 0 (função decrescente) y + y>0 -b/a o _ x y<0 4 APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS b •x<- ⇒y>0 a •x=- b ⇒y=0 a •x>- b ⇒y<0 a + y>0 -b/a _ x y<0 Exemplo: Estudar o sinal das funções: a) y = x-4 Resolução: x-4 = 0 ⇒ x = 4 Como a =1> 0, a função é crescente, logo: 4 y>0 + x _ y<0 •x>4⇒y>0 •x= 4⇒y=0 •x<4⇒y<0 b) y = -2x + 5 Resolução: -2x + 5 =0⇒ -2x = -5 (-1 ⇒ 2x = 5 ⇒ x = 5 2 Como a = -2 < 0, a função é decrescente,logo: + y>0 x 5 2 y<0 - • x < 5/2 ⇒ y > 0 • x = 5/2 ⇒ y = 0 • x > 5/2 ⇒ y < 0 5 APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 1) Classifique as funções do 1º grau abaixo em afim(A), linear(L) e identidade(I); a) y = 3x resp: L b) f(x) = x resp: I c) f(x) = 4x - 7 resp: A d) y = =5x +9 resp: A 2) Determine m, de modo que f(x) = (4m + 16)x - 6, seja uma função: a) constante resp: m = - 4 b) do 1º grau resp: m ≠ -4 3) Determine p, de modo que f(x) = (5p + 15)x + 6, seja uma função do 1º grau: a) crescente resp: p > - 3 b) decrescente resp: p < - 3 4) Determine o valor de m, de modo que a função f(x) = 5x + ( m - 5), intercepte o eixo x, no ponto de abscissa 1. resp: m = 0 5) Determine o valor de m, de modo que o coeficiente angular da reta definida pela função f(x) = (m + 7)x - 8, seja igual a 10. resp: m = 3 6) Determine o valor de p, de modo que o coeficiente linear da reta definida pela função f(x) = x - (p + 8), seja igual a -1. resp: m = - 7 7) Determine o valor de m, de modo que a raiz da função f(x) = (2m + 7)x - 8, seja igual a 1. resp: m = 1/2 8) Dada a função f(x)= 4x-8. Determine: a)Os coeficientes angular e linear da reta. resp: angular a = 4 b) Se ela é crescente ou decrescente. resp: crescente c) A raiz. resp: 2 d) O gráfico. resp: y o 2 linear b = -8 x 8 9) Dada a função f(x)= -3x-3. Determine: a)Os coeficientes angular e linear da reta. resp: angular a = -3 b) Se ela é crescente ou decrescente. resp: decrescente c) A raiz. resp: -1 d) O gráfico. resp: y linear b = -3 -1 0 x -3 6 APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS 10) Determine a função do 1º grau cujo o gráfico passa pelos pontos A(0; -1) e B(1; 3). resp: f(x) = 4x - 1 11) O custo de produção de um determinado produto é dado pelo gráfico abaixo: y (reais) Determine o custo de produção de 15 produtos. 20 5 0 5 x (unidades produzidas) resp: R$ 40,00 12) Estude o sinal da função do 1º grau: a) y = 3x+9 resp. y>0 para x>-3, y=0 para x=-3 e y<0 para x<-3 b) y = -4x+16 resp: resp. y>0 para x<4, y=0 para x=4 e y<0 para x>4 c) y= 6x-30 resp: resp. y>0 para x>5, y=0 para x=5 e y<0 para x<5 d) y= -2x+1 resp: resp. y>0 para x< 1/2, y=0 para x=1/2 e y<0 para x>1/2 13) Resolva os sistemas: 4 x − 15 ≥ 15 a) resp: S= { x∈ℜ/ x≥ 5} x + 6 > 10 x − 5 > −10 b) 2 x − 2 < 10 resp: S= { x∈ℜ/ 2<x<6} x−2 > 0 14) Resolva as inequações: a) 1<3x-2≤10 resp: S = { x∈ℜ/ 1<x≤4} b) 2x-5<3x+4<6x+6 resp: S = { x∈ℜ/ x > -2/3} c) (x+2).(-2x+3) ≥0 resp: S = { x∈ℜ/ -2≤ x ≤ 3/2} d) (-x+1).( -2x+10).(x+3) >0 resp: S = { x∈ℜ/ -3< x <1 ou x > 5} 3x − 4 e) < 0 resp: S = { x∈ℜ/ 4/3 < x < 2} x−2 ( x − 2).(4 − x) f) ≥0 resp: S = { x∈ℜ/x < -3 ou 2≤ x ≤4} x+3 15) (Unesp) A unidade usual de medida para a energia contida nos alimentos é kcal (quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) para meninos entre 15 e 18 anos é dada pela função f(h) = 17.h, onde h indica a altura em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (15,3).h. Paulo, usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2.975 kcal. Sabendo-se que Paulo é 5 cm mais alto que sua namorada Carla (e que ambos têm idade entre 15 e 18 anos), o consumo diário de energia para Carla, de acordo com a fórmula, em kcal, é a) 2501 b) 2601 c) 2770 d) 2875 e) 2970 resp: b 16) (Puc-MG) A receita R, em reais, obtida por uma empresa com a venda de q unidades de certo produto, é dada por R(q) = 115q, e o custo C, em reais, para produzir q dessas unidades, satisfaz a equação C(q) = 90q + 760. Para que haja lucro, é 7 APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS necessário que a receita R seja maior que o custo C. Então, para que essa empresa tenha lucro, o número mínimo de unidades desse produto que deverá vender é igual a: a) 28 b) 29 c) 30 d) 31 resp: d 17) (Uel 2008) Um consumidor adquiriu um aparelho de telefonia celular que possibilita utilizar os serviços das operadoras de telefonia M e N. A operadora M cobra um valor fixo de R$ 0,06 quando iniciada a ligação e mais R$ 0,115 por minuto da mesma ligação. De modo análogo, a operadora N cobra um valor fixo de R$ 0,08 e mais R$ 0,11 por minuto na ligação. Considere as afirmativas a seguir: I. O custo de uma ligação de exatos 4 minutos é o mesmo, qualquer que seja a operadora. II. O custo da ligação pela operadora M será menor do que o custo da ligação pela operadora N, independentemente do tempo de duração da ligação. III. Uma ligação de 24 minutos efetuada pela operadora M custará R$ 0,10 a mais do que efetuada pela operadora N. IV. O custo da ligação pela operadora N será menor do que o custo da ligação pela operadora M, independentemente do tempo de duração da ligação. Assinale a alternativa que contém todas as afirmativas corretas. a) I e II. b) I e III. c) III e IV. d) I, II e IV. e) II, III e IV. resp: b 18) Uma empresa de táxi E1 cobra R$ 2,00 a "bandeirada", que é o valor inicial da corrida, e R$ 2,00 por km rodado. Outra empresa E‚ fixa em R$ 3,00 o km rodado e não cobra a bandeirada. As duas tarifas estão melhor representadas, graficamente, em: resp: b 19) (Puc_MG) Uma pessoa encontra-se no aeroporto (ponto A) e pretende ir para sua casa (ponto C), distante 20 km do aeroporto, utilizando um táxi cujo valor da corrida, em reais, é calculado pela expressão V(x) = 12 + 1,5 x, em que x é o número de quilômetros percorridos. 8 APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS Se B = 90°, C = 30° e o táxi fizer o percurso AB + BC, conforme indicado na figura, essa pessoa deverá pagar pela corrida: a) R$ 40,50 b) R$ 48,00 c) R$ 52,50 d) R$ 56,00 resp: c 20) Sejam as funções f e g, definidas por f(x) = ax + b e g(x) = mx + n, representadas no gráfico. É correto afirmar que (a - m)/(b + n) é igual a a) -1/3 b) 0 c) 2/3 d) 1 resp: d Prof. Carlinhos Bibliografia: Curso de Matemática – Volume Único Autores: Bianchini&Paccola – Ed. Moderna Matemática Fundamental - Volume Único Autores: Giovanni/Bonjorno&Givanni Jr. – Ed. FTD Contexto&Aplicações – Volume Único Autor: Luiz Roberto Dante – Ed. Ática Apostila elaborada pelo : Prof. Luiz Carlos Souza Santos 9