Programa FAPESP de mudanças globais – 28/Agosto/2008 Efeitos das partículas de aerossóis no sistema climático Paulo Artaxo Instituto de Física, Universidade de São Paulo [email protected] Processos físicos e químicos que regulam a composição da atmosfera Efeitos climáticos de partículas de aerossóis I) Efeitos diretos (i.e., não envolvendo nuvens) a) Reflexão de radiação solar ao espaço aumenta o albedo resfriamento II) Efeitos indiretos dos aerossóis • Cada gota de nuvem precisa de um núcleo de condensação (CCN) para ser formada • Para uma dada nuvem, mais CCN mais gotículas de nuvens • Como a quantidade de água é limitada, isso significa menores gotas de nuvens IIc) Efeito dos aerossóis na termodinâmica atmosférica e na dinâmica da convecção. Nuvens rasas com gotículas líquidas trocadas por nuvens altas com gelo. Nuvens e Chuva são feitos de 3 ingredientes básicos: vapor de água Partícula de aerossol que age como núcleo de condensação de nuvens Condições termodinâmicas da atmosfera Processos altamente não lineares e complexos… Forçantes radiativas do sistema climático global Estimates of the aerosol direct radiative forcing by 20 models at 4AR IPCC 2007 Best estimate: -0.5 W/m2 Range: -0.9 to -0.1 W/m2 Estimates of the Cloud Albedo radiative forcing due to aerosols from different models Best estimate: -0.7 W/m2 Range: -1.8 to -0.3 W/m2 Forçante radiativa da combinação de todos os efeitos antropogênicos O que será feito a esta componente é critico à forçante final IPCC 2007 Temperature change simulated by a climate model for the period 1850–2100 with strong or weak aerosol effect Andreae et al., Nature (2005) Balanço de radiação terrestre Aerosol global distribution Aerosol optical depth (0.44 m) AERONET and Hadley model Winter Summer The Large Scale Biosphere Atmosphere Experiment in Amazonia - LBA Water (in clouds and biosphere) Aerosols (and trace gases) Anthropogenic activities Nutrients (P, N, K, others) Carbon Nitrogen (Vegetation and soil) Natural biogenic aerosol particles EPMA photos from Gunther Helas, MPIC Produção natural de CCN na Amazônia Isoprene 2-methilthertiol (From Clayes et al., Science 2004) Fungal hyphae 1) 2) 3) 4) Primary biogenic particles acting as Giant CCN Secondary organic aerosol from terpenes, isoprene, and others Soil dust (very little) Sulfates and nitrates (low contribution) Amazonia in the aerosol world Andreae et al., 2008 Medidas de longo prazo de aerossóis na Amazônia Melina Paixao Fogo e queimadas Razões para o desmatamento Deforestation in Amazonia 1977-2008 in km² per year Deforestation (km² per year) 35000 30000 25000 20000 15000 10000 5000 * média annual da década Dados do INPE, 2008 07/08 06/07 05/06 04/05 03/04 02/03 01/02 00/01 99/00 98/99 97/98 96/97 95/96 94/95 92/94 91/92 90/91 89/90 88/89 77/88* 0 The most important air pollution issue in South America is associated to the continental scale biomass burning during the dry season. With several hundred of thousands of fires each year … •Severe health effects on the population •Climate effects •Weather effects Large scale aerosol distribution: strong effects on the direct radiation balance and cloud formation Regional haze problem is increasing around the globe Haze over Ganges Brahmaputra plain Beijing China Absorção e espalhamento de radiação por aerossóis de queimadas Scattering (Cooling) Absorption (Atmospheric Warming) Absorption (Column Warming) Cloud Evaporation (Warming) Cloud Seeding (Cooling) Suppression of Rain; increase of life time …. Cooling; Dimming of Surface Surface Cooling Vertical redistribution of latent and radiative heating Aerosol surface forcing in Rondonia 1999-2002 1999-2002 AEROSOL SURFACE FORCING - Rondonia -400 3.6 AEROSOL FORCING 3.1 AOT -300 2.1 -200 1.6 -150 aot (500 nm) 2.6 -250 1.1 -100 0.6 0 0.1 Ja n99 11 -A pr -9 9 20 -J ul -9 9 28 -O ct -9 9 5Fe b00 15 -M ay -0 0 23 -A ug -0 0 1De c00 11 -M ar -0 1 19 -J un -0 1 27 -S ep -0 1 5Ja n02 15 -A pr -0 2 24 -J ul -0 2 1No v02 -50 1- Radiative forcing (W/m2) -350 Aline Procópio, GRL 2006 Amazonia INDOEX Average aerosol forcing clear sky average aerosol forcing clear sky Top: - 10 w/m² Top: - 7 1 w/m² Atmosphere: + 28 w/m² Atmosphere: + 16 2 w/m² Surface: - 38 w/m² Surface: - 23 2 w/m² Conditions: surface: forest vegetation AOT ( =0.95 at 500nm); 24 hour average 7 years (93-95, 99-02 dry season Aug-Oct) Procópio et al. (2005) Conditions: surface: ocean AOT ( =0.3 at 630 nm); 24 hour average Jan-Mar 99 Aerosol Optical Thickness 550 nm Continental scale effects Solar Radiation at surface (W m-2) Karla Longo and Saulo Freitas (INPE) Aerosol effects on the Net Plant Productivity CO2 Concentration Aerosol Concentration - + + + Temperature + + Photosynthesis Kulmala et al., 2004 +? BVOC emissions Efeitos significativos de aerossóis na produtividade primária da floresta amazônica Forest site, year: 2000-2001 Solar zenith angle:10-30 degrees -2 -1 NEE (µmolm s ) 0 Dry Season - NEE increase: 46 % Wet Season - NEE increase: 24 % -10 -20 -30 Aumento de aerossóis 0.0 0.2 0.4 0.6 0.8 Relative Irradiance 1.0 Potential annual forest Net Ecosystem Exchange (NEE) in the Amazon region Malhi & Kruijt Aerosol-cloud-precipitation feedbacks AEROSOLS CCN Activation Cloud/Aerosol Radiative Transfer Cloud Dynamics Ice Nuclei Activation Cloud Microphysics PRECIPITATION Aerosol Wet Removal Crystal shattering * * Aerosol particles, cloud condensation nuclei and precipitation Crystal collection Evaporation * * * * Collection Coalescence Diffusion SO2 SO4- Nucleation Aerosols Soluble: Nitrates, DON, NH3, NH4+ , etc… Hydrological cycle critical for Amazonia. Variety of cloud structure caused by different CCN amounts and other cloud dynamic issues Pyrocumulus Clouds “Green Ocean Clouds“ Addition of pyrogenic CCN has pronounced impact on cloud droplet size spectra Four aerosol regimes of: (A) Blue Ocean,(B) Green Ocean, (C) Smoky clouds, (D) Pyro-clouds Note that the narrowing of CDSD and the slowing of its rate of broadening with height for the progressively more aerosol rich regimes from A to D. Andreae et al., 2005 Large scale low cloud suppression by biomass burning aerosols Terra and Aqua satellite images of the east Amazon basin, 11 August 2002. (A) The clouds (Terra, 10:00 local time) are beginning to form. (B) The clouds (Aqua, 13:00 local time) are fully developed and cover the whole Amazon forest except for the smoke area. The boundary between forest and Cerrado region is marked in white on both images, and the seashore is marked in green. (From Ilan et al., Science March 2004) Suppression of low cloud formation by aerosols in Amazonia . (from Koren and Kaufman, 2003) Cloud fraction as function of aerosol optical depth (OD). The cloud fraction decreases almost linearly with increasing OD. The red and blue curves denote the average of east and west areas, respectively. On average, the cloud fraction decreases to less than 1/8 of the cloud fraction in clean conditions when OD = 1. The shaded area represents the relative area covered by the respective OD, with the integral of this curve equal to one, representing the total Amazon basin Relationships between cloud properties and aerosol loading in Amazonia Left – cloud top pressure (P) vs. AOD. Lower P may indicate taller convective clouds that reach to higher levels of the atmosphere. Right – cloud fraction vs. AOD. The upper row is for all data and the lower row is for data restricted to cloud fraction less than half. Cloud fraction <50% absorption effects Microphysics Ilan Koren et al., Science 2008 Dependence of CCN activation on organic mass fraction Sulfur at a level of 30-60 ng/m³) AMAZE data from Artaxo, Sachin Gunthe, Scot Martin and Qi Chen Deforestation increase or decrease precipitation? It depends on the scale. Precipitation formation High aerosol Low aerosol The effect of aerosol particles in the vertical profile of cloud droplets size, phase, and precipitation Nature, 2008 Predicted change in the probability of a 2005-like drought in Amazonia, based on results from the HadCM3LC GCM run with aerosols. a, probability versus year; b, probability versus simulated CO2 concentration. Simulations for the twenty-first century show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the northern hemisphere. São Paulo – 06 de setembro de 2004 Campo Grande – 15 de setembro de 2004 São Paulo – 15 de setembro de 2004 Efeitos radiativos dos aerossóis em São Paulo Obrigado pela atenção !!! Relationships between cloud properties and aerosol loading in Amazonia Conceptual model of microphysics (MP) and absorption effects on cloud fraction for 3 saturation/initial cloud fractions Cf0. Ilan Koren et al., Science 2008