ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF ANÁLISE COMBINATÓRIA Se você ver que não importa a ordem, Combinação não importa a ordem não, Se importa a ordem é PFC, n1.n2... Ou permutação com repetição. n! maior! = α!⋅β!... menor!... n ! maior! Cpn = = p!⋅(n − p )! menor!⋅(maior − menor )! Pnα,β... = PEDRÃO QUESTÕES CESPE A Polícia Federal brasileira identificou pelo menos 17 cidades de fronteira como locais de entrada ilegal de armas; 6 dessas cidades estão na fronteira do Mato Grosso do Sul (MS) com o Paraguai. Internet: <www.estadao.com.br> (com adaptações). Considerando as informações do texto acima, julgue o próximo item. 01) Se uma organização criminosa escolher 6 das 17 cidades citadas no texto, com exceção daquelas da fronteira do MS com o Paraguai, para a entrada ilegal de armas no Brasil, então essa organização terá mais de 500 maneiras diferentes de fazer essa escolha. Considerando que, em um torneio de basquete, as 11 equipes inscritas serão divididas nos grupos A e B, e que, para formar o grupo A, serão sorteadas 5 equipes, julgue os itens que se seguem. 02) A quantidade de maneiras distintas de se escolher as 5 equipes que formarão o grupo A será inferior a 400. 03) Se 6 candidatos são aprovados em um concurso público e há 4 setores distintos onde eles podem ser lotados, então há, no máximo, 24 maneiras de se realizarem tais lotações. 04) Considerando que o treinador de um time de vôlei disponha de 12 jogadores, dos quais apenas 2 sejam levantadores e os demais estejam suficientemente bem treinados para jogar em qualquer outra posição, nesse caso, para formar seu time de 6 atletas com apenas um ou sem nenhum levantador, o treinador poderá fazê-lo de 714 maneiras diferentes. 05) A quantidade de permutações distintas que podem ser formadas com as 7 letras da palavra REPETIR, que começam e terminam com R, é igual a 60. Ao visitar o portal do Banco do Brasil, os clientes do Banco do Brasil Estilo podem verificar que, atualmente, há 12 tipos diferentes de fundos de investimento Estilo à sua disposição, listados em uma tabela. Com respeito à quantidade e diversidade de fundos disponíveis, julgue os itens subseqüentes. 06) Um cliente do Banco do Brasil Estilo que decidir escolher 3 fundos diferentes para realizar seus investimentos terá, no máximo, 13.200 escolhas distintas. 07) Se o Banco do Brasil decidir oferecer os fundos de investimento Estilo em 4 pacotes, de modo que cada pacote contemple 3 fundos diferentes, então a quantidade de maneiras distintas para se montar esses pacotes será superior a 350 mil. 08) Considere que, entre os fundos de investimento Estilo, haja 3 fundos classificados como de renda fixa, 5 fundos classificados como de multimercado, 3 fundos de ações e 1 fundo referenciado. Considere, ainda, que, no portal do 2010 PROF PEDRÃO Banco do Brasil, esses fundos sejam exibidos em uma coluna, de modo que os fundos de mesma classificação aparecem juntos em seqüência. Sendo assim, a quantidade de maneiras diferentes que essa coluna pode ser formada é inferior a 4.500. 09) Considere que os 12 fundos Estilo mencionados sejam assim distribuídos: 1 fundo referenciado, que é representado pela letra A; 3 fundos de renda fixa indistinguíveis, cada um representado pela letra B; 5 fundos multimercado indistinguíveis, cada um representado pela letra C; e 3 fundos de ações indistinguíveis, cada um representado pela letra D. Dessa forma, o número de escolhas distintas que o banco dispõe para listar em coluna esses 12 fundos, utilizando-se apenas suas letras de representação — A, B, C e D —, é inferior a 120 mil. Com os algarismos 1, 2, 4, 5, 6 e 8 deseja-se formar números de 3 algarismos, não sendo permitida a repetição de algarismos em um mesmo número. Julgue os itens subseqüentes com relação a esses números. 10) Desses números, mais de 50 são números ímpares. Com respeito aos princípios básicos da contagem de elementos de um conjunto finito,julgue os itens a seguir. 11) A quantidade de números divisíveis por 5 existente entre 1 e 68 é inferior a 14. 12) Considere que, em um edifício residencial, haja uma caixa de correspondência para cada um de seus 79 apartamentos e em cada uma delas tenha sido instalada uma fechadura eletrônica com código de 2 dígitos distintos, formados com os algarismos de 0 a 9. Então, de todos os códigos assim formados, 11 deles não precisaram ser utilizados. 13) Considere que um código seja constituído de 4 letras retiradas do conjunto {q, r, s, t, u, v, w, x, y, z}, duas barras e 2 algarismos, escolhidos entre os algarismos de 0 a 9. Nessa situação, se forem permitidas repetições das letras e dos algarismos, então o número de possíveis códigos distintos desse tipo será igual a 10²(10² + 1). 14) Em uma horta comunitária que produz 10 tipos de hortaliças, o número de maneiras distintas que se pode escolher 7 hortaliças diferentes entre as 10 produzidas é inferior a 100. 15) Ao se listar todas as possíveis permutações das 13 letras da palavra PROVAVELMENTE, incluindo-se as repetições, a quantidade de vezes que esta palavra aparece é igual a 6. Considerando que uma palavra é uma concatenação de letras entre as 26 letras do alfabeto, que pode ou não ter significado, julgue os itens a seguir. 16) Com as letras da palavra COMPOSITORES, podem ser formadas mais de 500 palavras diferentes, de 3 letras distintas. 17) As 4 palavras da frase “Dançam conforme a música” podem ser rearranjadas de modo a formar novas frases de 4 palavras, com ou sem significado. Nesse caso, o número máximo dessas frases que podem ser formadas, incluindo a frase original, é igual a 16. 18) Considerando todas as 26 letras do alfabeto, a quantidade de palavras de 3 letras que podem ser formadas, 3 todas começando por U ou V, é superior a 2×10 . 19) Com as letras da palavra TROCAS é possível construir mais de 300 pares distintos de letras. 20) Considere que um decorador deva usar 7 faixas coloridas de dimensões iguais, pendurando-as verticalmente na vitrine de uma loja para produzir diversas formas. Nessa situação, se 3 faixas são verdes e indistinguíveis, 3 faixas são amarelas e indistinguíveis e 1 faixa é branca, esse decorador conseguirá produzir, no máximo, 140 formas diferentes com essas faixas. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 1 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF O número de países representados nos Jogos PanAmericanos realizados no Rio de Janeiro foi 42, sendo 8 países da América Central, 3 da América do Norte, 12 da América do Sul e 19 do Caribe. Com base nessas informações, julgue os itens que se seguem. 21) Há, no máximo, 419 maneiras distintas de se constituir um comitê com representantes de 7 países diferentes participantes dos Jogos Pan-Americanos, sendo 3 da América do Sul, 2 da América Central e 2 do Caribe. 22) Considerando-se apenas os países da América do Norte e da América Central participantes dos Jogos PanAmericanos, a quantidade de comitês de 5 países que poderiam ser constituídos contendo pelo menos 3 países da América Central é inferior a 180. 23) Considerando-se que, em determinada modalidade esportiva, havia exatamente 1 atleta de cada país da América do Sul participante dos Jogos Pan-Americanos, então o número de possibilidades distintas de dois atletas desse continente competirem entre si é igual a 66. 24) Se determinada modalidade esportiva foi disputada por apenas 3 atletas, sendo 1 de cada país da América do Norte participante dos Jogos Pan-Americanos, então o número de possibilidades diferentes de classificação no 1.º, 2.º e 3.º lugares foi igual a 6. 25) Uma mesa circular tem seus 6 lugares que serão ocupados pelos 6 participantes de uma reunião. Nessa situação, o número de formas diferentes para se ocupar esses lugares com os participantes da reunião é superior a 10². 26) Se, em determinado tribunal, há 54 juízes de 1° grau, entre titulares e substitutos, então a quantidade de comissões distintas que poderão ser formados por 5 desses juízes, das quais os dois mais antigos no tribunal participem obrigatoriamente, será igual a 35.100. 5 27) Existem menos de 4 x 10 maneiras distintas de se distribuir 12 processos entre 4 dos 54 juízes de 1° grau de um tribunal de forma que cada juiz receba 3 processos. As cidades Alfa e Beta estão com suas contas de obras sob análise. Sabe-se que algumas dessas obras são de responsabilidade mútua das duas cidades e que a quantidade total de obras cujas contas estão sob análise é 28. Por outro lado, somando-se a quantidade total de obras sob a responsabilidade da cidade Alfa com a quantidade total de obras sob a responsabilidade da cidade Beta — incluindo-se nessas quantidades as obras que estão sob responsabilidade mútua —, obtémse um total de 37 obras. Com base nessas informações, julgue os itens seguintes. 28) É verdadeira a seguinte afirmação: A quantidade de obras de responsabilidade mútua cujas contas estão sob análise é superior a 10. 29) É falsa a seguinte proposição: Se a cidade Alfa tem 17 obras sob sua responsabilidade cujas contas estão sob análise, então a quantidade de obras de responsabilidade exclusiva da cidade Beta cujas contas estão sob análise é inferior a 12. Em 2007, no estado do Espírito Santo, 313 dos 1.472 bacharéis em direito que se inscreveram no primeiro exame do ano da Ordem dos Advogados do Brasil (OAB) conseguiram aprovação. Internet: <www.jornaldamidia.com.br> (adaptado). Em 2008, 39 dos 44 bacharéis provenientes da Universidade Federal do Espírito Santo (UFES) que fizeram a primeira fase do exame da OAB foram aprovados. Internet: <oglobo.globo.com.br> (com adaptado). Com referência às informações contidas nos textos 2 2010 PROF PEDRÃO acima, julgue os itens que se seguem. 30) Com relação à primeira fase do exame da OAB de 2008, caso se deseje formar uma comissão composta por 6 bacharéis provenientes da UFES, sendo 4 escolhidos entre os aprovados e 2 entre os reprovados, haverá mais de 9 × 5 10 maneiras diferentes de se formar a referida comissão. 31) Se a UFES decidir distribuir dois prêmios entre seus bacharéis em direito aprovados na primeira fase do exame da OAB de 2008, e se os bacharéis premiados forem distintos, haverá mais de 1.400 maneiras diferentes de serem concedidos tais prêmios. 32) Um policial civil possui uma vestimenta na cor preta destinada às solenidades festivas, uma vestimenta com estampa de camuflagem, para operações nas florestas. Para o dia-a-dia, ele possui uma calça na cor preta, uma calça na cor cinza, uma camisa amarela, uma camisa branca e uma camisa preta. Nessa situação, se as vestimentas de ocasiões festivas, de camuflagem e do dia-a-dia não podem ser misturadas de forma alguma, então esse policial possui exatamente 7 maneiras diferentes de combinar suas roupas. Considerando que uma empresa tenha 5 setores, cada setor seja dividido em 4 subsetores, cada subsetor tenha 6 empregados e que um mesmo empregado não pertença a subsetores distintos, julgue os itens subsequentes. 33) O número de subsetores dessa empresa é superior a 24. 34) O número de empregados dessa empresa é inferior a 125. Conta-se na mitologia grega que Hércules, em um acesso de loucura, matou sua família. Para expiar seu crime, foi enviado à presença do rei Euristeu, que lhe apresentou uma série de provas a serem cumpridas por ele, conhecidas como Os doze trabalhos de Hércules. Entre esses trabalhos, encontram-se: matar o leão de Neméia, capturar a corça de Cerinéia e capturar o javali de Erimanto. Considere que a Hércules seja dada a escolha de preparar uma lista colocando em ordem os doze trabalhos a serem executados, e que a escolha dessa ordem seja totalmente aleatória. Além disso, considere que somente um trabalho seja executado de cada vez. Com relação ao número de possíveis listas que Hércules poderia preparar, julgue os itens subseqüentes. 35) O número máximo de possíveis listas que Hércules poderia preparar é superior a 12 × 10!. 36) O número máximo de possíveis listas contendo o trabalho “matar o leão de Neméia” na primeira posição é inferior a 240 × 990 × 56 × 30. 37) O número máximo de possíveis listas contendo os trabalhos “capturar a corça de Cerinéia” na primeira posição e “capturar o javali de Erimanto” na terceira posição é inferior a 72 × 42 × 20 × 6. 38) O número máximo de possíveis listas contendo os trabalhos “capturar a corça de Cerinéia” e “capturar o javali de Erimanto” nas últimas duas posições, em qualquer ordem, é inferior a 6! × 8!. Para uma investigação a ser feita pela Polícia Federal, será necessária uma equipe com 5 agentes. Para formar essa equipe, a coordenação da operação dispõe de 29 agentes, sendo 9 da superintendência regional de Minas Gerais, 8 da regional de São Paulo e 12 da regional do Rio de Janeiro. Em uma equipe, todos os agentes terão atribuições semelhantes, de modo que a ordem de escolha dos agentes não será relevante. Com base nessa situação hipotética, julgue os itens seguintes. 39) Poderão ser formadas, no máximo, 19×14×13×7×5×3 equipes distintas. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF 40) Se a equipe deve conter exatamente 2 agentes da regional do Rio de Janeiro, o número máximo de equipes distintas que a coordenação dessa operação poderá formar é inferior a 19 × 17 × 11 × 7. 41) Se a equipe deve conter exatamente 2 agentes da regional do Rio de Janeiro, 1 agente da regional de São Paulo e 2 agentes da regional de Minas Gerais, então a coordenação da operação poderá formar, no máximo, 12×11×9×8×4 equipes distintas. Supondo que André, Bruna, Cláudio, Leila e Roberto sejam, não necessariamente nesta ordem, os cinco primeiros classificados em um concurso, julgue os itens seguintes. 42) Existem 120 possibilidades distintas para essa classificação. 43) Com André em primeiro lugar, existem 20 possibilidades distintas para a classificação. 44) Com Bruna, Leila e Roberto classificados em posições consecutivas, existem 36 possibilidades distintas para classificação. 45) O número de possibilidades distintas para a classificação com um homem em último lugar é 144. Por meio de convênios com um plano de saúde e com escolas de nível fundamental e médio, uma empresa oferece a seus 3.000 empregados a possibilidade de adesão. Sabe-se que 300 empregados aderiram aos dois convênios, 1.700 aderiram ao convênio com as escolas e 500 não aderiram a nenhum desses convênios. 46) Considerando que a empresa queira formar uma comissão de 20 empregados para discutir assuntos relacionados aos dois convênios e que, para isso, ela escolha 10 empregados que aderiram apenas ao plano de saúde e outros 10 que aderiram apenas ao convênio com as escolas, então, a quantidade de maneiras distintas de se formar essa comissão estará corretamente expressa por 800! 1.400! × 790!×10! 1.390 × 10! O código de acesso exigido em transações nos caixas eletrônicos do Banco do Brasil é uma seqüência de letras, gerada automaticamente pelo sistema. Até o dia 17/12/2007, o código de acesso era composto por 3 letras maiúsculas. Os códigos de acessos gerados a partir de 18/12/2007 utilizam, também, sílabas de 2 letras — uma letra maiúscula seguida de uma letra minúscula. Exemplos de código de acesso no novo modelo: Ki Ca Be; Lu S Ra; T M Z. Na situação descrita no texto, considere que o número de letras maiúsculas disponíveis para a composição dos códigos de acesso seja igual a 26, que é igual ao número de letras minúsculas. A partir dessas informações, julgue os itens a seguir. 47) Até 17/12/2007, o número de códigos de acesso distintos, que eram compostos por exatamente 3 letras maiúsculas e que podiam ser gerados pelo sistema do Banco do Brasil para transações nos caixas eletrônicos, era inferior a 18 × 103. 48) Se um cliente do Banco do Brasil decidir formar seu código de acesso com 3 letras maiúsculas usando somente as 4 letras iniciais de seu nome, então ele terá, no máximo, 12 escolhas de código. 49) É superior a 18 × 107 a quantidade de códigos de acesso compostos por 3 sílabas de 2 letras, nos quais cada sílaba é formada por exatamente 1 letra maiúscula e 1 letra minúscula nessa ordem, não havendo repetições de qualquer uma das letras em um mesmo código. 50) Considere que um cliente do Banco do Brasil deseje que seu código de acesso comece com a sílaba Lu e que cada 2010 PROF PEDRÃO uma das outras duas posições tenha apenas 1 letra maiúscula, distinta das demais, incluindo-se as letras L e u. Nesse caso, esse cliente terá menos de 600 escolhas de código. 51) Sabe-se que, no Brasil, as placas de identificação dos veículos têm 3 letras do alfabeto e 4 algarismos, escolhidos de 0 a 9. Então, seguindo-se essa mesma lei de formação, mas utilizando-se apenas as letras da palavra BRASIL, é possível construir mais de 600.000 placas diferentes que não possuam letras nem algarismos repetidos. GABARITO – ANÁLISE COMBINATÓRIA QUESTÕES CESPE 01) E 06) E 11) C 16) C 21) E 26) E 31) C 36) C 41) C 46) C 51) C 02) E 07) C 12) C 17) E 22) E 27) C 32) E 37) E 42) C 47) C 03) E 08) E 13) E 18) E 23) C 28) E 33) E 38) C 43) E 48) E 04) C 09) C 14) E 19) E 24) C 29) E 34) C 39) E 44) C 49) E 05) C 10) E 15) E 20) C 25) C 30) E 35) C 40) E 45) E 50) C QUESTÕES ESAF 01) Marcos está se arrumando para ir ao teatro com sua nova namorada, quando todas as luzes de seu apartamento apagam. Apressado, ele corre até uma de suas gavetas onde guarda 24 meias de cores diferentes, a saber: 5 pretas, 9 brancas, 7 azuis e 3 amarelas. Para que Marcos não saia com sua namorada vestindo meias de cores diferentes, o número mínimo de meias que Marcos deverá tirar da gaveta para ter a certeza de obter um par de mesma cor é igual a: a) 30 b) 40 c) 246 d) 124 e) 5 02) Ana precisa fazer uma prova de matemática composta de 15 questões. Contudo, para ser aprovada, Ana só precisa resolver 10 questões das 15 propostas. Assim, de quantas maneiras diferentes Ana pode escolher as questões? a)2800 b)2980 c)3003 d)3006 e)3005 03) Ágata é decoradora e precisa atender o pedido de um excêntrico cliente. Ele - o cliente - exige que uma das paredes do quarto de sua filha seja dividida em uma seqüência de 5 listras horizontais pintadas de cores diferentes, ou seja, uma de cada cor. Sabendo-se que Ágata possui apenas 8 cores disponíveis, então o número de diferentes maneiras que a parede pode ser pintada é igual a: a) 56 b) 5760 c) 4320 d) 3600 e) 6720 04) Ana possui em seu closed 90 pares de sapatos, todos devidamente acondicionados em caixas numeradas de 1 a 90. Beatriz pede emprestado à Ana quatro pares de sapatos. Atendendo ao pedido da amiga, Ana retira do closed quatro caixas de sapatos. O número de retiradas possíveis que Ana pode realizar de modo que a terceira caixa retirada seja a de número 20 é igual a: a) 681384 b) 382426 c) 43262 d) 7488 e) 2120 05) Um grupo de amigos formado por três meninos - entre eles Caio e Beto - e seis meninas - entre elas Ana e Beatriz , compram ingressos para nove lugares localizados lado a lado, em uma mesma fila no cinema. Ana e Beatriz precisam sentar-se juntas porque querem compartilhar do mesmo pacote de pipocas. Caio e Beto, por sua vez, precisam sentar-se juntos porque querem compartilhar do mesmo pacote de salgadinhos. Além disso, todas as meninas Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 3 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF querem sentar-se juntas, e todos os meninos querem sentarse juntos. Com essas informações, o número de diferentes maneiras que esses amigos podem sentar-se é igual a: a) 1920 b) 1152 c) 960 d) 540 e) 860 06) Em um plano são marcados 25 pontos, dos quais 10 e somente 10 desses pontos são marcados em linha reta. O número de diferentes triângulos que podem ser formados com vértices em quaisquer dos 25 pontos é igual a: a)2180 b)1180 c)2350 d)2250 e)3280 07) Quer-se formar um grupo de dança com 9 bailarinas, de modo que 5 delas tenham menos de 23 anos, que uma delas tenha exatamente 23 anos e que as demais tenham idade superior a 23 anos. Apresentaram-se, para a seleção, quinze candidatas, com idades de 15 a 29 anos, sendo idade, em anos, de cada candidata, diferentes das demais. O número de diferentes grupos de dança que podem ser selecionados a partir deste conjunto de candidatas é igual a: a) 120 b) 1220 c) 870 d) 760 e) 1120 08) Um grupo de dança folclórica formado por sete meninos e quatro meninas, foi convidado a realizar apresentações de dança no exterior. Contudo, o grupo dispõe de recursos para custear as passagens de apenas seis dessas crianças. Sabendo-se que nas apresentações do programa de danças devem participar pelo menos duas meninas, o número de diferentes maneiras que as seis crianças podem ser escolhidas é igual a: a) 286 b) 756 c) 468 d) 371 e) 752 09) Um grupo de estudantes encontra-se reunido em uma sala para escolher aleatoriamente, por sorteio, quem entre eles irá ao Simpósio de Matemática do próximo ano. O grupo é composto de 15 rapazes e de um certo número de moças. Os rapazes cumprimentam-se, todos e apenas entre si, uma única vez; as moças cumprimentam-se, todas e apenas entre si, uma única vez. Há um total de 150 cumprimentos. O número de moças é, portanto, igual a: a) 10 b) 14 c) 20 d) 25 e) 45 10) Pedro e Paulo estão em uma sala que possui 10 cadeiras dispostas em uma fila. O número de diferentes formas pelas quais Pedro e Paulo podem escolher seus lugares para sentar, de modo que fique ao menos uma cadeira vazia entre eles, é igual a: a) 80 b) 72 c) 90 d) 18 e) 56 11) Você está à frente de três urnas, cada uma delas contendo duas bolas. Você não pode ver o interior das urnas, mas sabe que em uma delas há duas bolas azuis. Sabe, ainda, que em uma outra urna há duas bolas vermelhas. E sabe, finalmente, que na outra urna há uma bola azul e uma vermelha. Cada urna possui uma etiqueta indicando seu conteúdo, “AA”, “VV”, “AV” (sendo “A” para bola azul, e “V” para bola vermelha). Ocorre que – e isto você também sabe – alguém trocou as etiquetas de tal forma que todas as urnas estão, agora, etiquetadas erradamente. Você pode retirar uma bola de cada vez, da urna que bem entender, olhar a sua cor, e recolocá-la novamente na urna. E você pode fazer isto quantas vezes quiser. O seu desafio é determinar, por meio desse procedimento, o conteúdo exato de cada urna, fazendo o menor número de retiradas logicamente possível. O número mínimo de retiradas necessárias para você determinar logicamente o conteúdo exato de cada uma das três urnas é: a) 1 b) 2 c) 3 d) 4 e) 5 12) Marcela e Mário fazem parte de uma turma de quinze formandos, onde dez são rapazes e cinco são moças. A turma reúne-se para formar uma comissão de formatura composta por seis formandos. O número de diferentes comissões que podem ser formadas de modo que Marcela participe e que Mário não participe é igual a: 4 2010 PROF PEDRÃO a) 504 b) 252 c) 284 d) 90 e) 84 13) Sete modelos, entre elas Ana, Beatriz, Carla e Denise, vão participar de um desfile de modas. A promotora do desfile determinou que as modelos não desfilarão sozinhas, mas sempre em filas formadas por exatamente quatro das modelos. Além disso, a última de cada fila só poderá ser ou Ana, ou Beatriz, ou Carla ou Denise. Finalmente, Denise não poderá ser a primeira da fila. Assim, o número de diferentes filas que podem ser formadas é igual a: a) 420 b) 480 c) 360 d) 240 e) 60 14) Quer-se formar um grupo de danças com 6 bailarinas, de modo que três delas tenham menos de 18 anos, que uma delas tenha exatamente 18 anos, e que as demais tenham idade superior a 18 anos. Apresentaram-se, para a seleção, doze candidatas, com idades de 11 a 22 anos, sendo a idade, em anos, de cada candidata, diferente das demais. O número de diferentes grupos de dança que podem ser selecionados a partir deste conjunto de candidatas é igual a a) 85 b) 220 c) 210 d) 120 e) 150 15) Dez amigos, entre eles Mário e José, devem formar uma fila para comprar as entradas para um jogo de futebol. O número de diferentes formas que esta fila de amigos pode ser formada, de modo que Mário e José fiquem sempre juntos é igual a a)2! 8! b) 0! 18! c) 2! 9! d) 1! 9! e) 1! 8! 16) Marco e Mauro costumam treinar natação na mesma piscina e no mesmo horário. Eles iniciam os treinos simultaneamente, a partir de lados opostos da piscina, nadando um em direção ao outro. Marco vai de um lado a outro da piscina em 45 segundos, enquanto Mauro vai de um lado ao outro em 30 segundos. Durante 12 minutos, eles nadam de um lado para outro, sem perder qualquer tempo nas viradas. Durante esses 12 minutos, eles podem encontrar-se quer quando estão nadando no mesmo sentido, quer quando estão nadando em sentidos opostos, assim como podem encontrar-se quando ambos estão fazendo a virada no mesmo extremo da piscina. Dessa forma, o número de vezes que Marco e Mauro se encontram durante esses 12 minutos é: a) 10 b) 12 c) 15 d) 18 e) 20 17) Quatro casais compram ingressos para oito lugares contíguos em uma mesma fila no teatro. O número de diferentes maneiras em que podem sentar-se de modo a que a) homens e mulheres sentem-se em lugares alternados; e que b) todos os homens sentem-se juntos e que todas as mulheres sentem-se juntas, são, respectivamente, a) 1112 e 1152 b) 1152 e 1100 c) 1152 e 1152 d) 384 e 1112 e) 112 e 384 18) Paulo possui três quadros de Gotuzo e três de Portinari e quer expô-los em uma mesma parede, lado a lado. Todos os seis quadros são assinados e datados. Para Paulo, os quadros podem ser dispostos em qualquer ordem, desde que os de Gotuzo apareçam ordenados entre si em ordem cronológica, da esquerda para a direita. O número de diferentes maneiras que os seis quadros podem ser expostos é igual a a) 20 b) 30 c) 24 d) 120 e) 360 19) Ana guarda suas blusas em uma única gaveta em seu quarto. Nela encontram-se sete blusas azuis, nove amarelas, uma preta, três verdes e três vermelhas. Uma noite, no escuro, Ana abre a gaveta e pega algumas blusas. O número mínimo de blusas que Ana deve pegar para ter certeza de ter pegado ao menos duas blusas da mesma cor é a) 6 b) 4 c) 2 d) 8 e) 10 Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF 20) O número de maneiras diferentes em que 3 rapazes e 2 moças podem sentar-se em uma mesma fila, de modo que somente a\s moças fiquem todas juntas, é igual a: a) 6 b) 12 c) 24 d) 36 e) 48 21) Chico, Caio e Caco vão ao teatro com suas amigas Biba e Beti, e desejam sentar-se, os cinco, lado a lado, na mesma fila. O número de maneiras pelas quais eles podem distribuir-se nos assentos de modo que Chico e Beti fiquem sempre juntos, um ao lado do outro, é igual a: a) 16 b) 24 c) 32 d) 46 e) 48 22) Na Mega-Sena são sorteadas seis dezenas de um conjunto de 60 possíveis (as dezenas sorteáveis são 01, 02, ... , 60). Uma aposta simples (ou aposta mínima), na MegaSena, consiste em escolher 6 dezenas. Pedro sonhou que as seis dezenas que serão sorteadas no próximo concurso da Mega-Sena estarão entre as seguintes: 01, 02, 05, 10, 18, 32, 35, 45. O número mínimo de apostas simples para o próximo concurso da Mega-Sena que Pedro deve fazer para ter certeza matemática que será um dos ganhadores caso o seu sonho esteja correto é: a) 8 b) 28 c) 40 d) 60 e) 84 23) A senha para um programa de computador consiste em uma sequência LLNNN, onde “L” representa uma letra qualquer do alfabeto normal de 26 letras e “N” é um algarismo de 0 a 9. Tanto letras como algarismos podem ou não ser repetidos, mas é essencial que as letras sejam introduzidas antes dos algarismos. Sabendo que o programa não faz distinção entre letras maiúsculas e minúsculas, o número total de diferentes senhas possíveis é dado por: 26. 10 2 3 26 10 b) 26 . 10 c) 2 . 2 d) 26!. 10! a) 2 10 e) C 26,2 . C 10,3 24) Em um grupo de dança, participam dez meninos e dez meninas. O número de diferentes grupos de cinco crianças, que podem ser formados, de modo que em cada um dos grupos participem três meninos e duas meninas, é dado por: a)5400 b)6200 c)6800 d)7200 e)7800 25) Para ter acesso a um arquivo, um operador de computador precisa digitar uma sequência de 5 símbolos distintos, formada de duas letras e três algarismos. Ele se lembra dos símbolos, mas não da sequência em que aparecem. O maior número de tentativas diferentes que o operador pode fazer para acessar o arquivo é: a) 115 b) 120 c) 150 d) 200 e) 249 26) Hermes guarda suas gravatas em uma única gaveta em seu quarto. Nela encontram-se sete gravatas azuis, nove amarelas, uma preta, três verdes e três vermelhas. Uma noite, no escuro, Hermes abre a gaveta e pega algumas gravatas. O número mínimo de gravatas que Hermes deve pegar para ter certeza de ter pegado ao menos duas gravatas da mesma cor é: a) 2 b) 4 c) 6 d) 8 e) 10 27) Ernesto, Ernani e Everaldo são três atletas que resolveram organizar um desafio de ciclismo entre eles. Ficou combinado o total de pontos para o primeiro, o segundo e o terceiro lugares em cada prova. A pontuação para o primeiro lugar é maior que a para o segundo e esta é maior que a pontuação para o terceiro. As pontuações são números inteiros positivos. O desafio consistiu de n provas (n > 1), ao final das quais observou-se que Ernesto fez 20 pontos, Ernani 9 pontos e Everaldo 10 pontos. Assim, o número n de provas disputadas no desafio foi igual a: a) 2 b) 3 c) 5 d) 9 e) 13 28) Os produtos de uma empresa são armazenados no computador com um código de 4 letras maiúsculas seguidas de 5 algarismos. Esse sistema será modificado para permitir letras maiúsculas e minúsculas. Após essa modificação, o número atual de códigos será multiplicado por: a) 2 b) 4 c) 8 d) 16 e) 20 2010 PROF PEDRÃO 29) Em uma circunferência são escolhidos 12 pontos distintos. Ligam-se quatro quaisquer destes pontos, de modo a formar um quadrilátero. O número total de diferentes quadriláteros que podem ser formados é: a) 128 b) 495 c) 545 d) 1485 e) 11880 30) Três rapazes e duas moças vão ao cinema e desejam sentar-se, os cinco, lado a lado, na mesma fila. O número de maneiras pelas quais eles podem distribuir-se nos assentos de modo que as duas moças fiquem juntas, uma ao lado da outra, é igual a a) 2 b) 4 c) 24 d) 48 e) 120 31) Uma empresa possui 20 funcionários, dos quais 10 são homens e 10 são mulheres. Desse modo, o número de comissões de 5 pessoas que se pode formar com 3 homens e 2 mulheres é: a)1650 b) 165 c) 5830 d) 5400 e)5600 32) Em uma cidade, os números dos telefones têm 7 algarismos e não podem começar com 0. Os três primeiros números constituem o prefixo. Sabendo-se que, em todas as farmácias, os quatro últimos dígitos são zero e o prefixo não tem dígitos repetidos, então o número de telefones que podem ser instalados nas farmácias é igual a: a) 540 b) 720 c) 684 d) 648 e) 842 33) Marcam-se 5 pontos sobre uma reta r e 8 pontos sobre uma reta r’ paralela a r. O número n de triângulos com vértices em 3 desses 13 pontos é dado por: a) n = 230 b) n = 220 c) n = 320 d) n = 210 e) n = 310 34) O número de duplas que podem ser formadas a partir de 6 jogadores de tênis é: a) 12 b) 15 c) 27 d) 30 e) 36 35) Dez competidores disputam um torneio de natação, em que apenas os quatros primeiros colocados classificam-se para as finais. Quantos resultados possíveis existem para os quatro primeiros colocados? a)4040 b)4050 c)5040 d)10000 e)6300 36) Em uma empresa existem dez supervisores e seis gerentes. Quantas comissões de seis pessoas podem ser formadas, de maneira que participam pelo menos três gerentes em cada uma delas? a) 60 b) 675 c) 2400 d) 3136 e) 3631 37) Em um campeonato de pedal participam 10 duplas, todas com a mesma probabilidade de vencer. De quantas maneiras diferentes poderemos ter classificação para os três primeiros lugares? a) 240 b) 270 c) 420 d) 720 e) 740 38) Quantas comissões compostas de 4 pessoas cada uma podem ser formadas com 10 funcionários de uma empresa? a) 120 b) 210 c) 720 d) 4050 e) 5040 39) Em uma mesa circular tem seus 6 lugares que serão ocupados pelos 6 participantes de uma reunião. Nessa situação, o número de formas diferentes para se ocupar esses lugares com os participantes da reunião será igual a) 120 b) 100 c) 720 d) 550 e) 1 40) Pretendemos usar apenas os algarismos 0, 1, 2 e 3 para formar números de três algarismos distintos, como 230, por exemplo. Nesse caso, podemos formar a seguinte quantidade de números maiores que 201: a) 11 b) 15 c) 24 d) 36 e) 48 41) Há seis modos distintos de guardar dois cadernos iguais em três gavetas: 1- guardar os dois na primeira gaveta; 2- guardar os dois na segunda gaveta; 3- guardar os dois na terceira gaveta; 4- guardar um na primeira gaveta e o outro, na segunda; 5- guardar um na primeira gaveta e o outro, na terceira; 6- guardar um na segunda gaveta e o outro, na terceira. O número de modos distintos de guardar três cadernos Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 5 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF iguais em três gavetas é igual a: a) 10 b) 12 c) 15 d) 21 e) 30 42) Num vôo da ponte aérea Rio-São Paulo, há apenas 7 lugares disponíveis e um grupo de 10 pessoas pretende embarcar nesse vôo. De quantas maneiras é possível lotar o vôo? a) 100 b) 132 c) 89 d) 120 e) 90 43) Mesmo tendo terminado o racionamento de energia elétrica, o consumo consciente pode nos render muita economia. Ajude o administrador de um salão a racionalizar o consumo. Sabe-se que o salão tem 6 lâmpadas, todas com interruptores independentes, e que ele quer manter sempre, pelo menos, uma das lâmpadas acesas. Descubra de quantas maneiras ele poderá iluminar o salão. a) 61 b) 63 c) 65 d) 67 e) 69 44) Esta prova de matemática II é formada por 15 questões de múltipla escolha, com cinco alternativas por questão. De quantos modos diferentes um candidato pode responder às questões desta prova? 5 15 a) 20 b) 75 c) C15,5 d) 15 e) 5 45) Num avião, há uma fila de 7 poltronas, separadas por dois corredores, como mostra a figura a seguir: ▲▲corredor ▲▲▲ corredor ▲▲ De quantos modos Alberto e Fernanda podem se sentar nesta fila, sem que haja uma pltrona ou um corredor entre eles? a) 4 b) 5 c) 6 d) 8 e) 12 46) A quantidade de números impares entre 100 e 999, com todos os algarismos distintos é: a) 320 b) 360 c) 405 d) 450 e) 500 47) Uma placa de automóvel é composta por três letras e quatro algarismos, nessa ordem. O número de placas que podem ser formadas com as letras K, Q ou L e cujos dois últimos algarismos são 2 e 6, nessa ordem, é: a) 540 b) 600 c) 2430 d) 2700 e) 3000 48) Uma sociedade é composta de 7 dentistas, 5 escritores e 8 médicos. Quantas comissões de 7 membros podem ser formadas de tal modo que se tenha 2 dentistas, 4 escritores e 1 médico. a)840 b)40320 c)8100 d)90450 e)58100 49) Num determinado programa de auditório existem 10 engenheiros e 6 médicos. De quantas maneiras poderão formar comissões de 7 pessoas com pelo menos 4 engenheiros? a) 9360 b) 46200 c) 210 d) 4200 e) 220 50) Um cofre possui um disco com 12 letras. A combinação do cofre é uma palavra de 5 letras distintas. Quantas tentativas infrutuosas podem ser efetuadas por uma pessoa que desconheça a combinação? a) 125 b) 95040 c) 95039 d) 792 e) 512 GABARITO – ANÁLISE COMBINATÓRIA QUESTÕES ESAF 01) E 06) A 11) A 16) E 21) E 26) C 31) D 36) D 41) A 46) A 6 02) C 07) E 12) A 17) C 22) B 27) B 32) D 37) D 42) D 47) D 2010 03) E 08) D 13) A 18) D 23) B 28) D 33) B 38) B 43) B 48) A 04) A 09) A 14) C 19) A 24) A 29) B 34) B 39) A 44) E 49) A 05) A 10) B 15) C 20) C 25) B 30) D 35) C 40) A 45) D 50) C PROF PEDRÃO PROBABILIDADES A probabilidade é fácil de achar, É só dividir o que quer, Por tudo que pode ocorrer, E multiplica OU vai somar x + p= o que quer tudo que pode ocorrer PEDRÃO QUESTÕES CESPE Em um concurso público, registrou-se a inscrição de 100 candidatos. Sabe-se que 30 desses candidatos inscreveram-se para o cargo de escriturário, 20, para o cargo de auxiliar administrativo, e apenas 10 candidatos se inscreveram para os dois cargos. Os demais candidatos inscreveram-se em outros cargos. Julgue os itens a seguir, considerando que um candidato seja escolhido aleatoriamente nesse conjunto de 100 pessoas. 01) A probabilidade de que o indivíduo escolhido seja candidato ao cargo de auxiliar administrativo é superior a 1/4. 02) A probabilidade de que o indivíduo escolhido seja candidato ao cargo de escriturário ou ao cargo de auxiliar administrativo é igual a 1/2. Com os algarismos 1, 2, 4, 5, 6 e 8 deseja-se formar números de 3 algarismos, não sendo permitida a repetição de algarismos em um mesmo número. Julgue os itens subseqüentes com relação a esses números. 03) Escolhendo-se um desses números ao acaso, a probabilidade de ele ser múltiplo de 5 é inferior a 0,15. 04) Escolhendo-se um desses números ao acaso, a probabilidade de ele ser menor que 300 é superior a 0,3. Na metade do ano passado, quando os principais campeonatos de futebol da Europa chegam ao fim, os dirigentes brasileiros se preparam para negociar com outros países o passe de jogadores e, assim, tentar pagar algumas dívidas dos clubes. Como conseqüência, cresce o número de jogadores brasileiros que os estrangeiros consideram gênios, mas que, no Brasil, ninguém conhece. Pepe, seis anos atrás, aos 18 anos, teve o passe vendido pelo Corinthians Alagoano, de Maceió, para o Marítimo, clube da Ilha da Madeira, por 40 mil dólares; na semana passada, aos 24 anos, Pepe teve o passe comprado pelo Real Madrid por 30 milhões de Euros. O Brasil vendeu o passe de 851 jogadores no ano passado, o que representa um aumento de 200 atletas em relação a 2002. Destes, # 365 foram jogar na Europa Ocidental: aumento de 25% em relação à 5 anos atrás; # 127 foram joga no Leste Europeu: aumento de 87%; # 145 foram jogar na Ásia: aumento de 61%; # 214 foram para a África, a Oceania, o Oriente Médio e países americanos. O maior exportador foi o Corinthians Alagoano, que vendeu o passe de 19 jogadores. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF Entre os clubes da 1ª divisão, o São Paulo foi o maior exportador: 12 atletas para 9 países. o (Thomaz Favaro. Craque de Exportação. In: Veja, n 2017, 18/07/2007, p. 76 e 78 – com adaptações) Com relação ao texto apresentado acima, julgue o item a seguir: 05) Escolhendo-se aleatoriamente um desses jogadores brasileiros cujo passe foi vendido para o exterior em 2006, a probabilidade de que ele tenha ido para a África, a Oceania, o Oriente Médio ou países americanos é inferior a 1/4. Uma pesquisa, realizada com 900 pessoas que contraíram empréstimos bancários e tornaram-se inadimplentes, mostrou a seguinte divisão dessas pessoas, de acordo com a faixa etária. A partir da tabela acima e considerando a 06) A probabilidade de essa pessoa não ter menos de 41 anos de idade é inferior a 0,52. 07) A probabilidade de essa pessoa ter de 41 a 50 anos de idade, sabendo-se que ela tem pelo menos 31 anos, é superior a 0,5. 08) A probabilidade de a pessoa escolhida ter de 31 a 40 anos de idade é inferior a 0,3. 09) A chance de a pessoa escolhida ter até 30 anos de idade ou mais de 50 anos de idade é superior a 30%. Considerando que, em um torneio de basquete, as 11 equipes inscritas serão divididas nos grupos A e B, e que, para formar o grupo A, serão sorteadas 5 equipes, julgue os itens que se seguem. 10) Considerando que cada equipe tenha 10 jogadores, entre titulares e reservas, que os uniformes de 4 equipes sejam completamente vermelhos, de 3 sejam completamente azuis e de 4 equipes os uniformes tenham as cores azul e vermelho, então a probabilidade de se escolher aleatoriamente um jogador cujo uniforme seja somente vermelho ou somente azul será inferior a 30%. De acordo com o jornal espanhol El País, em 2009 o contrabando de armas disparou nos países da América Latina, tendo crescido 16% nos últimos 12 anos. O crime é apontado como o principal problema desses países, provocando uma grande quantidade de mortes. O índice de homicídios por 100.000 habitantes na América Latina é alarmante, sendo, por exemplo, 28 no Brasil, 45 em El Salvador, 65 na Colômbia, 50 na Guatemala. Internet: <www.noticias.uol.com.br>. Tendo como referência as informações apresentados no texto acima, julgue o item que se segue. 11) Se, em cada grupo de 100.000 habitantes da Europa, a probabilidade de que um cidadão desse grupo seja assassinado é 30 vezes menor que essa mesma probabilidade para habitantes de El Salvador ou da Guatemala, então, em cada 100.000 habitantes da Europa, a probabilidade referida é inferior a 10-5.. Julgue os itens seguintes, relativos a conceitos básicos de probabilidade. 12) Considere que, em um jogo em que se utilizam dois dados não-viciados, o jogador A pontuará se, ao lançar os dados, obtiver a soma 4 ou 5, e o jogador B pontuará se obtiver a soma 6 ou 7. Nessa situação, é correto afirmar que o jogador 2 tem maior probabilidade de obter os pontos esperados. 13) Ao se lançar dois dados não-viciados, a probabilidade de se obter pelo menos um número ímpar é superior a 5/6. Em 2007, no estado do Espírito Santo, 313 dos 1.472 bacharéis em direito que se inscreveram no primeiro 2010 PROF PEDRÃO exame do ano da Ordem dos Advogados do Brasil (OAB) conseguiram aprovação. Internet: <www.jornaldamidia.com.br> (adaptado). Em 2008, 39 dos 44 bacharéis provenientes da Universidade Federal do Espírito Santo (UFES) que fizeram a primeira fase do exame da OAB foram aprovados. Internet: <oglobo.globo.com.br> (adaptado). Com referência às informações contidas nos textos acima, julgue os itens que se seguem. 14) Se um dos bacharéis em direito do estado do Espírito Santo inscritos no primeiro exame da OAB, em 2007, fosse escolhido aleatoriamente, a probabilidade de ele não ter sido um dos aprovados no exame seria superior a 70% e inferior a 80%. 15) Considerando que, na primeira fase do exame da OAB de 2008, 87,21% dos bacharéis em direito da Universidade Federal de Pernambuco (UFPE) tenham sido aprovados, a probabilidade de se escolher ao acaso um dos aprovados entre os bacharéis da UFPE que fizeram esse exame será maior que a probabilidade de se escolher ao acaso um dos aprovados entre os bacharéis da UFES e que também fizeram o exame da OAB. Considerando que Ana e Carlos candidataram-se a empregos em uma empresa e sabendo que a probabilidade de Ana ser contratada é igual a 2/3 e que a probabilidade de ambos serem contratados é 1/6, julgue os itens subsequentes. 16) A probabilidade de Ana ser contratada e de Carlos não ser contratado é igual a 1/2. 17) 37 Se um dos dois for contratado, a probabilidade de que seja Carlos será igual a 1/2. Por meio de convênios com um plano de saúde e com escolas de nível fundamental e médio, uma empresa oferece a seus 3.000 empregados a possibilidade de adesão. Sabe-se que 300 empregados aderiram aos dois convênios, 1.700 aderiram ao convênio com as escolas e 500 não aderiram a nenhum desses convênios. Em relação a essa situação, julgue os itens seguintes 18) Escolhendo-se ao acaso um dos empregados dessa empresa, a probabilidade de ele ter aderido a algum dos convênios é igual a 2/3. 19) A probabilidade de que um empregado escolhido ao acaso tenha aderido apenas ao convênio do plano de saúde é igual a 1/4. Em um departamento de determinada empresa, 30% das mulheres são casadas, 40% solteiras, 20% divorciadas e 10% viúvas. 20) Considerando a situação hipotética acima, é correto afirmar que a probabilidade de uma mulher não ser casada é 0,70. 21) Se, em um concurso público com o total de 145 vagas, 4.140 inscritos concorrerem a 46 vagas para o cargo de técnico e 7.920 inscritos concorrerem para o cargo de analista, com provas para esses cargos em horários distintos, de forma que um indivíduo possa se inscrever para os dois cargos, então a probabilidade de que um candidato inscrito para os dois cargos obtenha uma vaga de técnico ou de analista será inferior a 0,025. 22) Considere que a corregedoria-geral da justiça do trabalho de determinado estado tenha constatado, em 2007, que, no resíduo de processos em fase de execução nas varas do trabalho desse estado, apenas 23% tiveram solução, e que esse índice não tem diminuído. Nessa situação, caso um cidadão tivesse, em 2007, um processo em fase de execução, então a probabilidade de seu processo não ser resolvido era superior a 4/5. 23) Uma empresa fornecedora de armas possui 6 modelos Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 7 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF adequados para operações policiais e 2 modelos inadequados. Nesse caso, se a pessoa encarregada da compra de armas para uma unidade da polícia ignorar essa adequação e solicitar ao acaso a compra de uma das armas, então a probabilidade de ser adquirida uma arma inadequada é inferior a 1/2. Um levantamento foi realizado pelo governo para avaliar as condições de todas as casas existentes em uma comunidade remanescente de quilombos. Os resultados mostram o seguinte: 75% das casas têm paredes de barro; 80% das casas têm a cobertura de palha; 90% das casas têm piso de terra batida; 70% das casas têm portas externas de madeira. O gráfico abaixo apresenta a distribuição do número de dormitórios existentes nas casas dessa comunidade. Com base nas informações acima, julgue os itens que se seguem. 24) Se uma casa localizada na referida comunidade for escolhida ao acaso para receber uma visita de um representante do governo, a probabilidade de ela ter exatamente um dormitório é inferior ou igual a 0,10. 25) Se duas casas localizadas na citada comunidade forem escolhidas por meio de um sorteio aleatório, a probabilidade de que ambas tenham paredes de barro é igual a 0,75. 26) Se quatro casas localizadas na mencionada comunidade forem escolhidas de forma aleatória, então a probabilidade de que exatamente três dessas casas tenham portas de externas de madeira será superior ou igual a 0,60. 27) Considere o experimento aleatório em que uma casa localizada na comunidade em questão seja escolhida ao acaso. Dados os seguintes eventos: A = “a casa tem piso de terra batida” e B = “a casa tem paredes de barro”, é correto afirmar que A e B são eventos mutuamente exclusivos. Considerando que se pretenda formar números de 3 algarismos distintos com os algarismos 2, 3, 5, 7, 8 e 9, julgue os próximos itens. 28) Escolhendo-se um desses números ao acaso, a probabilidade de ele ser inferior a 600 é igual a 0,1. Segurança: de que forma você cuida da segurança da informação de sua empresa? Com relação às informações contidas no texto acima e 8 2010 PROF PEDRÃO supondo que as porcentagens das respostas de I a V sejam independentes da quantidade de entrevistados e que cada um deles deu exatamente uma das respostas acima, julgue os itens subseqüentes. 29) Na amostra de 500 entrevistados, escolhendo-se um deles ao acaso, a probabilidade de ele não ter dado a resposta I nem a II é superior a 0,3. O número de mulheres no mercado de trabalho mundial é o maior da História, tendo alcançado, em 2007, a marca de 1,2 bilhão, segundo relatório da Organização 4 Internacional do Trabalho (OIT). Em dez anos, houve um incremento de 200 milhões na ocupação feminina. Ainda assim, as mulheres representaram um contingente distante do 7 universo de 1,8 bilhão de homens empregados. Em 2007, 36,1% delas trabalhavam no campo, ante 46,3% em serviços. Entre os homens, a proporção é de 34% 10 para 40,4%. O universo de desempregadas subiu de 70,2 milhões para 81,6 milhões, entre 1997 e 2007 — quando a taxa de desemprego feminino atingiu 6,4%, ante 13 5,7% da de desemprego masculino. Há, no mundo, pelo menos 70 mulheres economicamente ativas para 100 homens. O relatório destaca que a proporção de assalariadas 16 subiu de 41,8% para 46,4% nos últimos dez anos. Ao mesmo tempo, houve queda no emprego vulnerável (sem proteção social e direitos trabalhistas), de 56,1% para 51,7%. Apesar 19 disso, o universo de mulheres nessas condições continua superando o dos homens. O Globo, 7/3/2007, p. 31 (com adaptações). Com referência ao texto e considerando o gráfico nele apresentado, julgue os itens a seguir. 30) Considere que a população feminina mundial em 1997 era de 2,8 bilhões. Nessa situação, a probabilidade de se selecionar ao acaso, dentro dessa população, uma mulher que estava no mercado de trabalho mundial é superior a 0,33. Em 2001, no relatório de pesquisa rodoviária publicado pela Confederação Nacional de Transportes, foi divulgada a tabela ao lado, que mostra as condições de conservação de 45.294 quilômetros de estradas brasileiras. Com base nesses dados, julgue os itens seguintes. 31) A probabilidade de um viajante que transita nessas estradas passar por pelo menos 1 km de estrada em condições ótimas ou boas é maior que 30%. Dica de segurança: saiba mais sobre o código de acesso O código de acesso consiste em uma seqüência de três letras distintas do alfabeto, gerada automaticamente Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF . 0 0 0 1 1 2010 0 0 5 50 0 1 15 5 Com base nessas informações, julgue os itens a seguir. 32) Para um cliente do BB chamado Carlos, a probabilidade de que todas as letras do seu código de acesso sejam diferentes das letras que compõem o seu nome é inferior a 0,5. 33) Para um cliente do BB chamado Carlos, a probabilidade de que todas as letras do seu código de acesso estejam incluídas no conjunto das letras que formam o seu nome é inferior a 0,01. 34) Suponha que uma pessoa observe atentamente um cliente do BB enquanto este digita o seu código de acesso. Suponha ainda que ela observe que os três conjuntos de letras em que aparecem no código do cliente são disjuntos e, tendo memorizado esses três conjuntos de letras, na ordem em que foram escolhidos, faça um palpite de qual seria o código de acesso do cliente. Nessas condições, a probabilidade de que o palpite esteja certo é inferior a 0,02. 35) A probabilidade de serem encontrados defeitos em uma casa popular construída em certo local é igual a 0,1. Retirando-se amostra aleatória de 5 casas desse local, a probabilidade de que em exatamente duas dessas casas sejam encontrados defeitos na construção é inferior a 0,15. 36) Considere que os candidatos ao cargo de programador tenham as seguintes especialidades: 27 são especialistas no sistema operacional Linux, 32 são especialistas no sistema operacional Windows e 11 desses candidatos são especialistas nos dois sistemas. Nessa situação, é correto inferir que o número total de candidatos ao cargo de programador é inferior a 50. 37) A ouvidoria geral de determinado município registra diariamente diversas reclamações. Sabe-se que, em média, 40% das reclamações são procedentes. Se em um certo dia foram registradas 4 reclamações, a probabilidade de que pelo menos uma delas seja procedente é um valor entre 0,8 e 0,9. 38) Em uma pequena vila vivem 500 habitantes em idade adulta. Sabe-se que 250 dos adultos têm entre 2 anos a 5 anos de estudo, 150 adultos têm mais de 6 anos de estudo e 100 adultos não foram alfabetizados. Tomando-se uma amostra aleatória sem reposição de 50 adultos, a probabilidade de que a amostra contenha exatamente 25 pessoas com 2 a 5 anos de estudo, 15 pessoas com mais de 6 anos de estudo e 10 pessoas não alfabetizadas é igual a 0 5 5 2 2 pelo sistema e informada ao cliente. Para efetuar transações a partir de um terminal de auto-atendimento, esse código de acesso é exigido do cliente pessoa física, conforme explicado a seguir. É apresentada ao cliente uma tela em que as 24 primeiras letras do alfabeto estão agrupadas em 6 conjuntos disjuntos de 4 letras cada. Para entrar com a primeira letra do seu código de acesso, o cliente deve selecionar na tela apresentada o único conjunto de letras que a contém. Após essa escolha, um novo agrupamento das 24 primeiras letras do alfabeto em 6 novos conjuntos é mostrado ao cliente, que deve então selecionar o único conjunto que inclui a segunda letra do seu código. Esse processo é repetido para a entrada da terceira letra do código de acesso do cliente. A figura abaixo ilustra um exemplo de uma tela com um possível agrupamento das 24 primeiras letras do alfabeto em 6 conjuntos. PROF PEDRÃO Considerando que o número de crianças e adolescentes com até 17 anos de idade que trabalham no Brasil seja igual a 2.899.800 e que a quantidade deles por região brasileira seja diretamente proporcional ao número de unidades federativas da respectiva região — são 27 as unidades federativas brasileiras, incluindo-se o Distrito Federal como unidade federativa da região Centro-Oeste —, julgue os itens seguintes, tendo como referência as informações contidas no texto acima. 39) Na situação apresentada, escolhendo-se aleatoriamente um indivíduo entre os 2.899.800 referidos, a probabilidade de ele ser da região Centro-Oeste ou da região Sudeste é superior a 0,2. Em uma loteria, com sorteios duas vezes por semana, são pagos milhões de reais para quem acerta os seis números distintos sorteados. Também há premiação para aqueles que acertarem cinco ou quatro dos 4 números sorteados. Para concorrer, basta marcar entre seis e quinze números dos sessenta existentes no volante e pagar o valor correspondente ao tipo da aposta, de acordo com a tabela abaixo. Para 7 o sorteio de cada um dos seis números, são utilizados dois globos, um correspondente ao algarismo das dezenas e o outro, ao algarismo das unidades. No globo das dezenas, são sorteadas bolas numeradas de zero 10 a cinco e, no das unidades, de zero a nove. Quando o zero é sorteado nos dois globos, considera-se, para efeito de premiação, que o número sorteado foi o 60. Além disso, após o sorteio de cada número, as bolas 13 sorteadas retornam aos seus respectivos globos. Acerca do texto acima e das informações nele contidas, julgue os itens subseqüentes. 40) Para o primeiro número que é sorteado, a probabilidade de que o seu algarismo das dezenas seja igual a 3 é igual à probabilidade de que o seu algarismo das unidades seja igual a 5. 41) Em determinado concurso, a probabilidade de que o primeiro número sorteado seja o 58 é superior a 0,02. 42) Fazendo-se uma aposta do tipo A6, a probabilidade de se errar todos os seis números sorteados é igual a Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 9 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF 43) Considerando que a população da região Nordeste, em 2003, seja de 50 milhões de habitantes, é correto concluir que, na loteria descrita, a probabilidade de se acertar os seis números com apenas 1 aposta do tipo A6 é menor que a de ser contemplado em um sorteio do qual participem, com igual chance, todos os habitantes da região Nordeste. Em um concurso público, registrou-se a inscrição de 100 candidatos. Sabe-se que 30 desses candidatos inscreveram-se para o cargo de escriturário, 20, para o cargo de auxiliar administrativo, e apenas 10 candidatos se inscreveram para os dois cargos. Os demais candidatos inscreveram-se em outros cargos. Julgue os itens a seguir, considerando que um candidato seja escolhido aleatoriamente nesse conjunto de 100 pessoas. 44) A probabilidade de que o indivíduo escolhido seja candidato ao cargo de auxiliar administrativo é superior a 1/4. 45) A probabilidade de que o indivíduo escolhido seja candidato ao cargo de escriturário ou ao cargo de auxiliar administrativo é igual a 1/2 46) Considere que P(A) representa a probabilidade de ocorrer algum acidente de trabalho em um canteiro de obra, e que esta probabilidade depende da ocorrência de dois outros eventos mutuamente exclusivos C e D, em que P(A) = P(C c D), P(C) = 0,1 e P(D) = 0,1. Com base nessas informações, é correto afirmar que se B for um evento complementar ao evento A, então P(B) = [1 – P(C)] × [1 – P(D)] – P(C) × P(D). O departamento de recursos humanos de uma empresa recebe diariamente uma quantidade aleatória X de pedidos de auxílio transporte. Considerando a tabela acima, que mostra a distribuição de probabilidade de X, julgue os itens seguintes. 47) O número de pedidos X é igual a 1 com probabilidade igual a 0,6. Considere que a vazão V de um oleoduto seja uma variável aleatória que siga uma distribuição normal com média igual a 1.000 m por dia e desvio-padrão igual a 3 500 m por dia. Nessa situação, julgue os itens subseqüentes. 3 48) A probabilidade de V ser igual a 1.000 m por dia é superior a 0,01. 49) Considere que, em um determinado período, uma pessoa aplica 40% de seu dinheiro em um título do tipo A e o restante em um título do tipo B, independentemente. A probabilidade de ela obter uma taxa de retorno igual ou superior à taxa de inflação na aplicação do título A é igual a 80% e na aplicação do título B igual a 90%. Logo após o período de aplicação, um título em poder dessa pessoa é escolhido aleatoriamente e verifica-se que a taxa de retorno foi inferior à taxa de inflação. A probabilidade de o título ser do tipo A é de 4/7. 50) Um estudante é submetido a um teste no qual constam 4 questões do tipo verdadeiro (V) ou falso (F). Ele não sabe responder a nenhuma das questões. A probabilidade de ele acertar todas as quatro questões assinalando aleatoriamente a resposta de cada uma delas é de 6,25%. 10 2010 PROF PEDRÃO Considerando que, em um torneio de basquete, as 11 equipes inscritas serão divididas nos grupos A e B, e que, para formar o grupo A, serão sorteadas 5 equipes, julgue os itens que se seguem. 51) Considerando que cada equipe tenha 10 jogadores, entre titulares e reservas, que os uniformes de 4 equipes sejam completamente vermelhos, de 3 sejam completamente azuis e de 4 equipes os uniformes tenham as cores azul e vermelho, então a probabilidade de se escolher aleatoriamente um jogador cujo uniforme seja somente vermelho ou somente azul será inferior a 30%. GABARITO – PROBABILIDADES QUESTÕES CESPE 01) E 06) E 11) E 16) C 21) C 26) E 31) C 36) C 41) E 46) C 51) E 02) E 07) E 12) C 17) C 22) E 27) E 32) C 37) C 42) E 47) E 03) E 08) C 13) E 18) E 23) C 28) E 33) C 38) C 43) C 48) E 04) C 09) C 14) C 19) E 24) E 29) E 34) C 39) C 44) E 49) C 05) E 10) E 15) E 20) C 25) E 30) C 35) C 40) E 45) E 50) C QUESTÕES ESAF 01) Considere que numa cidade 40% da população adulta é fumante, 40% dos adultos fumantes são mulheres e 60% dos adultos não-fumantes são mulheres. Qual a probabilidade de uma pessoa adulta da cidade escolhida ao acaso ser uma mulher? a) 52% b) 48% c) 50% d) 44% e) 56% 02) Considerando os dados da questão anterior, qual a porcentagem das mulheres adultas que são fumantes? a) 7/13 b) 40% c) 4/13 d) 60% e) 9/13 03) Na população brasileira verificou-se que a probabilidade de ocorrer determinada variação genética e de 1%. Ao se examinar ao acaso três pessoas desta população, qual o valor mais próximo da probabilidade de exatamente uma pessoa examinada possuir esta variação genética? a) 0,98% b) 1% c) 2,94% d) 1,30% e) 3,96% 04) Uma urna possui 5 bolas azuis, 4 vermelhas, 4 amarelas e 2 verdes. Tirando-se simultaneamente 3 bolas, qual o valor mais próximo da probabilidade de que as 3 bolas sejam da mesma cor? a) 11,53% b) 4,24% c) 4,50% d) 5,15% e) 3,96% 05) Uma urna contém 5 bolas pretas, 3 brancas e 2 vermelhas. Retirando-se, aleatoriamente, três bolas sem reposição, a probabilidade de se obter todas da mesma cor é igual a: a) 1/10 b) 8/5 c) 11/120 d) 11/720 e) 41/360 06) Marco estuda em uma universidade na qual, entre as moças de cabelos loiros, 18 possuem olhos azuis e 8 possuem olhos castanhos; entre as moças de cabelos pretos, 9 possuem olhos azuis e 9 possuem olhos castanhos; entre as moças de cabelos ruivos, 4 possuem olhos azuis e 2 possuem olhos castanhos. Marisa seleciona aleatoriamente uma dessas moças para apresentar para seu amigo Marco. Ao encontrar com Marco, Marisa informa que a moça selecionada possui olhos castanhos. Com essa informação, Marco conclui que a probabilidade de a moça possuir cabelos loiros ou ruivos é igual a: a) 0 b) 10/19 c) 19/50 d) 10/50 e) 19/31 07) Dois eventos A e B são ditos eventos independentes se e somente se: Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF a) a probabilidade de ocorrência conjunta de A e B for nula. b) a ocorrência de B alterar a probabilidade de ocorrência de A. c) a ocorrência de A alterar a probabilidade de ocorrência de B. d) a ocorrência de B não alterar a probabilidade de ocorrência de A. e) a probabilidade de ocorrência conjunta de A e B for igual a 1. 08) Uma empresa de consultoria no ramo de engenharia de transportes contratou 10 profissionais especializados, a saber: 4 engenheiras e 6 engenheiros. Sorteando-se, ao acaso, três desses profissionais para constituírem um grupo de trabalho, a probabilidade de os três profissionais sorteados serem do mesmo sexo é igual a: a) 0,10 b) 0,12 c) 0,15 d) 0,20 e) 0,24 09) Quando Paulo vai ao futebol, a probabilidade de ele encontrar Ricardo é 0,40; a probabilidade de ele encontrar Fernando é igual a 0,10; a probabilidade de ele encontrar ambos, Ricardo e Fernando, é igual a 0,05. Assim, a probabilidade de Paulo encontrar Ricardo ou Fernando é igual a: a) 0,45 b) 0,40 c) 0,50 d) 0,04 e) 0,95 10) Em um campeonato de tênis participam 30 duplas, com a mesma probabilidade de vencer. O número de diferentes maneiras para a classificação dos 3 primeiros lugares é igual a: a) 24360 b) 25240 c) 24460 d) 4060 e) 4650 11) Ana tem o estranho costume de somente usar blusas brancas ou pretas. Por ocasião de seu aniversário, Ana ganhou de sua mãe quatro blusas pretas e cinco brancas. Na mesma ocasião, o pai de Ana a presenteou com quatro blusas pretas e duas brancas. Vítor, namorado de Ana, a presenteou com duas blusas brancas e três pretas. Ana guardou todas essas blusas - e apenas essas - em uma mesma gaveta. Uma tarde, arrumando-se para ir ao parque com Vítor, Ana retira, ao acaso, uma blusa dessa gaveta. A probabilidade de a blusa retirada por Ana ser uma das blusas pretas que ganhou de sua mãe ou uma das blusas brancas que ganhou de seu pai é igual a: a) 4/5 b) 7/10 c) 3/5 d) 3/10 e) 2/3 12) Uma empresa possui 200 funcionários dos quais 40% possuem plano de saúde, e 60 % são homens. Sabe-se que 25% das mulheres que trabalham nesta empresa possuem planos de saúde. Selecionando-se, aleatoriamente, um funcionário desta empresa, a probabilidade de que seja mulher e possua plano de saúde é igual a: a) 1/10 b) 2/5 c) 3/10 d) 4/5 e) 4/7 13) Ao se jogar dois dados, qual a probabilidade de se obter o número 7 como soma dos resultados? a) 7/12 b) 6/12 c) 4/12 d) 2/12 e) 0 14) Beatriz, que é muito rica, possui cinco sobrinhos: Pedro, Sérgio, Teodoro, Carlos e Quintinho. Preocupada com a herança que deixará para seus familiares, Beatriz resolveu sortear, entre os cinco sobrinhos, três casas. Qual a probabilidade de que Pedro e Sergio, ambos, estejam entre os sorteados, ou que Teodoro e Quintinho, ambos, estejam entre os sorteados é igual a: a) 0,8 b) 0,375 c) 0,05 d) 0,6 e) 0,75 15) Ana precisa chegar ao aeroporto para buscar uma amiga. Ela pode escolher dois trajetos, A ou B. Devido ao intenso tráfego, se Ana escolher o trajeto A, existe uma probabilidade de 0,4 de ela se atrasar. Se Ana escolher o trajeto B, essa probabilidade passa para 0,30. As probabilidades de Ana escolher os trajetos A ou B são, respectivamente, 0,6 e 0,4. Sabendo-se que Ana não se atrasou, então a probabilidade de ela ter escolhido o trajeto B é igual a: 2010 PROF PEDRÃO a) 6/25 b) 6/13 c) 7/13 d) 7/25 e) 7/16 16) Em uma caixa há oito bolas brancas e duas azuis. Retira-se, ao acaso, uma bola da caixa. Após, sem haver recolocado a primeira bola na caixa, retira-se, também ao acaso, uma segunda bola. Verifica-se que essa segunda bola é azul. Dado que essa segunda bola é azul, a probabilidade de que a primeira bola extraída seja também azul é: a) 1/3 b) 2/9 c) 1/9 d) 2/10 e) 3/10 17) Há três moedas em um saco. Apenas uma delas é uma moeda normal, com “cara” em uma face e “coroa” na outra. As demais são moedas defeituosas. Uma delas tem “cara” em ambas as faces. A outra tem “coroa” em ambas as faces. Uma moeda é retirada do saco, ao acaso, e é colocada sobre a mesa sem que se veja qual a face que ficou voltada para baixo. Vê-se que a face voltada para cima é “cara”. Considerando todas estas informações, a probabilidade de que a face voltada para baixo seja “coroa” é igual a: a) 1/2 b) 1/3 c) 1/4 d) 2/3 e) 3/4 18) Uma grande empresa possui dois departamentos: um de artigos femininos e outro de artigos masculinos. Para o corrente ano fiscal, o diretor da empresa estima que as probabilidades de os departamentos de artigos femininos e masculinos obterem uma margem de lucro de 10% são iguais a 30 % e 20 %, respectivamente. Além disso, ele estima em 5,1% a probabilidade de ambos os departamentos obterem uma margem de lucro de 10 %. No final do ano fiscal, o diretor verificou que o departamento de artigos femininos obteve uma margem de lucro de 10%. Desse modo, a probabilidade de o departamento de artigos masculinos ter atingido a margem de lucro de 10% é igual a: a) 17% b) 20% c) 25 % d) 24 % e) 30 % 19) Carlos diariamente almoça um prato de sopa no mesmo restaurante. A sopa é feita de forma aleatória por um dos três cozinheiros que lá trabalham: 40% das vezes a sopa é feita por João; 40% das vezes por José, e 20% das vezes por Maria. João salga demais a sopa 10% das vezes, José o faz em 5% das vezes e Maria 20% das vezes. Como de costume, um dia qualquer Carlos pede a sopa e, ao experimentá-la, verifica que está salgada demais. A probabilidade de que essa sopa tenha sido feita por José é igual a a) 0,15 b) 0,25 c) 0,30 d) 0,20 e) 0,40 20) Luís é prisioneiro do temível imperador Ivan. Ivan coloca Luís à frente de três portas e lhe diz: “Atrás de uma destas portas encontra-se uma barra de ouro, atrás de cada uma das outras, um tigre feroz. Eu sei onde cada um deles está. Podes escolher uma porta qualquer. Feita tua escolha, abrirei uma das portas, entre as que não escolheste, atrás da qual sei que se encontra um dos tigres, para que tu mesmo vejas uma das feras. Aí, se quiseres, poderás mudar a tua escolha”. Luís, então, escolhe uma porta e o imperador abre uma das portas não-escolhidas por Luís e lhe mostra um tigre. Luís, após ver a fera, e aproveitando-se do que dissera o imperador, muda sua escolha e diz: “Temível imperador, não quero mais a porta que escolhi; quero, entre as duas portas que eu não havia escolhido, aquela que não abriste”. A probabilidade de que, agora, nessa nova escolha, Luís tenha escolhido a porta que conduz à barra de ouro é igual a a) 1/2 b) 1/3 c) 2/3 d) 2/5 e) 1 21) Maria ganhou de João nove pulseiras, quatro delas de prata e cinco delas de ouro. Maria ganhou de Pedro onze pulseiras, oito delas de prata e três delas de ouro. Maria guarda todas essas pulseiras – e apenas essas – em sua pequena caixa de jóias. Uma noite, arrumando-se apressadamente para ir ao cinema com João, Maria retira, ao acaso, uma pulseira de sua pequena caixa de jóias. Ela Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 11 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF vê, então, que retirou uma pulseira de prata. Levando em conta tais informações, a probabilidade de que a pulseira de prata que Maria retirou seja uma das pulseiras que ganhou de João é igual a a) 1/3 b) 1/5 c) 9/20 d) 4/5 e) 3/5 22) Marcelo Augusto tem cinco filhos: Primus, Secundus, Tertius, Quartus e Quintus. Ele sorteará, entre seus cinco filhos, três entradas para a peça Júlio César, de Sheakespeare. A probabilidade de que Primus e Secundus, ambos, estejam entre os sorteados, ou que Tertius e Quintus, ambos, estejam entre os sorteados, ou que sejam sorteados Secundus, Tertius e Quartus, é igual a a) 0,500 b) 0,375 c) 0,700 d) 0,072 e) 1,000 23) Todos os alunos de uma escola estão matriculados no curso de Matemática e no curso de História. Do total dos alunos da escola, 6% têm sérias dificuldades em Matemática e 4% têm sérias dificuldades em História. Ainda com referência ao total dos alunos da escola, 1% tem sérias dificuldades em Matemática e em História. Você conhece, ao acaso, um dos alunos desta escola, que lhe diz estar tendo sérias dificuldades em História. Então, a probabilidade de que este aluno esteja tendo sérias dificuldades também em Matemática é, em termos percentuais, igual a a) 50% b) 25% c) 1% d) 33% e) 20% 24) Ana é enfermeira de um grande hospital e aguarda com ansiedade o nascimento de três bebês. Ela sabe que a probabilidade de nascer um menino é igual à probabilidade de nascer uma menina. Além disso, Ana sabe que os eventos “nascimento de menino” e “nascimento de menina” são eventos independentes. Deste modo, a probabilidade de que os três bebês sejam do mesmo sexo é igual a a) 2/3 b) 1/8 c) 1/2 d) 1/4 e) 3/4 25) André está realizando um teste de múltipla escolha, em que cada questão apresenta 5 alternativas, sendo uma e apenas uma correta. Se André sabe resolver a questão, ele marca a resposta certa. Se ele não sabe, ele marca aleatoriamente uma das alternativas. André sabe 60% das questões do teste. Então, a probabilidade de ele acertar uma questão qualquer do teste (isto é, de uma questão escolhida ao acaso) é igual a a) 0,62 b) 0,60 c) 0,68 d) 0,80 e) 0,56 26) Quando Lígia pára em um posto de gasolina, a probabilidade de ela pedir para verificar o nível de óleo é 0,28; a probabilidade de ela pedir para verificar a pressão dos pneus é 0,11 e a probabilidade de ela pedir para verificar ambos, óleo e pneus, é 0,04. Portanto, a probabilidade de Lígia parar em um posto de gasolina e não pedir nem para verificar o nível de óleo e nem para verificar a pressão dos pneus é igual a a) 0,25 b) 0,35 c) 0,45 d) 0,15 e) 0,65 27) Os registros mostram que a probabilidade de um vendedor fazer uma venda em uma visita a um cliente potencial é 0,4. Supondo que as decisões de compra dos clientes são eventos independentes, então a probabilidade de que o vendedor faça no mínimo uma venda em três visitas é igual a a) 0,624 b) 0,064 c) 0,216 d) 0,568 e) 0,784 28) Em um grupo de cinco crianças, duas delas não podem comer doces. Duas caixas de doces serão sorteadas para duas diferentes crianças desse grupo (uma caixa para cada uma das duas crianças). A probabilidade de que as duas caixas de doces sejam sorteadas exatamente para duas crianças que podem comer doces é: a) 0,10 b) 0,20 c) 0,25 d) 0,30 e) 0,60 29) Um juiz de futebol possui três cartões no bolso. Um é todo amarelo, o outro é todo vermelho e o terceiro é vermelho de um lado e amarelo do outro. Num determinado jogo, o juiz retira, ao acaso, um cartão do bolso e mostra, 12 2010 PROF PEDRÃO também ao acaso, uma face do cartão a um jogador. Assim, a probabilidade de a face que o juiz vê ser vermelha e de a outra face, mostrada ao jogador, ser amarela é igual a: a) 1/6 b) 1/3 c) 2/3 d) 4/5 e) 5/6 30) Em uma sala de aula estão 10 crianças sendo 6 meninas e 4 meninos. Três das crianças são sorteadas para participarem de um jogo. A probabilidade de as três crianças sorteadas serem do mesmo sexo é: a) 15% b) 20% c) 25% d) 30% e) 35% 31) Um dado de seis faces numeradas de 1 a 6 é viciado de modo que, quando lançado, a probabilidade de ocorrer uma face par qualquer é 300% maior do que a probabilidade de ocorrer uma face ímpar qualquer. Em dois lançamentos desse dado, a probabilidade de que ocorram exatamente uma face par e uma face ímpar (não necessariamente nesta ordem) é igual a: a) 0,1600 b) 0,1875 c) 0,3200 d) 0,3750 e) 1 32) A probabilidade de ocorrer cara no lançamento de uma moeda viciada é igual a 2/3. Se ocorrer cara, seleciona-se aleatoriamente um número X do intervalo se ocorrer coroa, seleciona-se aleatoriamente um número Y do intervalo onde N representa o conjunto dos números naturais. Assim, a probabilidade de ocorrer um número par é igual a: a) 7/18 b) 1/2 c) 3/7 d) 1/27 e) 2/9 33) Há apenas dois modos, mutuamente excludentes, de Ana ir para o trabalho: ou de carro ou de metrô. A probabilidade de Ana ir de carro é de 60% e de ir de metrô é de 40%. Quando ela vai de carro, a probabilidade de chegar atrasada é de 5%. Quando ela vai de metrô a probabilidade de chegar atrasada é de 17,5%. Em um dado dia, escolhido aleatoriamente, verificou-se que Ana chegou atrasada ao seu local de trabalho. A probabilidade de ela ter ido de carro nesse dia é: a) 10% b) 30% c) 40% d) 70% e) 82,5% 34) Em uma sala de aula estão 4 meninas e 6 meninos. Três das crianças são sorteadas para constituírem um grupo de dança. A probabilidade de as três crianças escolhidas serem do mesmo sexo é: a) 0,10 b) 0,12 c) 0,15 d) 0,20 e) 0,24 35) Há apenas dois modos, mutuamente excludentes, de Genésio ir para Genebra participar de um congresso: ou de navio ou de avião. A probabilidade de Genésio ir de navio é de 40% e de ir de avião é de 60%. Se ele for de navio, a probabilidade de chegar ao congresso com dois dias de atraso é de 8,5%. Se ele for de avião a probabilidade de chegar ao congresso com dois dias de atraso é de 1%. Sabe-se que Genésio chegou com dois dias de atraso para participar do congresso em Genebra. A probabilidade de ele ter ido de avião é: a) 5% b) 8% c) 10% d) 15% e) 18% 36) Uma universidade de grande porte que oferece cursos na área econômica quer determinar a associação existente entre o interesse de um estudante na área de finanças e sua habilidade em matemática. Neste contexto o corpo técnico da instituição toma uma amostra aleatória de 200 estudantes e os classifica segundo o quadro abaixo: Interesse em Finanças Habilidade em Matemática Totais Baixa Média Alta Baixo 60 15 15 90 Médio 15 40 10 65 Alto 5 15 25 45 Totais 80 70 50 200 Admitindo-se que as freqüências relativas do quadro representam probabilidades populacionais, assinale a opção que corresponde à probabilidade de que um estudante Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF tenha alto interesse na área de finanças, dado que tenha habilidade média em matemática. a) 2/5 b) 1/10 c) 1/25 d) 3/14 e) 7/200 37) Uma Cia. aérea sabe que as chances são de 5 em 100 de que um passageiro com reserva confirmada não apareça para o vôo. Neste contexto, a Cia. vende 52 passagens para um vôo que só pode acomodar 50 passageiros. Assinale a opção que dá a probabilidade de que haja lugar disponível para todo passageiro que se apresente para viajar. Suponha que os passageiros tomem suas decisões de viajar independentemente. 50 a) (0,95) b) 399/400 c) 1/10 d) 50/52 51 e) 1-3,55 x (0,95) 38) Lança-se uma moeda honesta repetidamente até que ocorram exatamente duas caras. Suponha que os lançamentos sejam independentes. Assinale a opção que corresponde à probabilidade de que sejam necessários exatamente 4 lançamentos a) 1/4 b) 1/16 c) 3/16 d) 1/8 e) 5/16 39) Num teste de múltipla escolha, um estudante sabe uma questão ou "chuta" a resposta. Seja 2/3 a probabilidade de que o estudante saiba uma questão do teste. Suponha que cada questão tenha 5 alternativas e que a probabilidade de acertar no "chute" seja 1/5. Assinale a opção que dá a probabilidade condicional de que o estudante saiba realmente uma pergunta que respondeu corretamente. a) 10/11 b) 2/15 c) 1/5 d) 2/3 e) 13/15 40) A probabilidade de um gato estar vivo daqui a 5 anos é 3/5. A probabilidade de um cão estar vivo daqui a 5 anos é 4/5. Considerando os eventos independentes, a probabilidade de somente o cão estar vivo daqui a 5 anos é de: a) 2/25 b) 8/25 c) 2/5 d) 3/25 e) 4/5 41) Uma companhia preocupada com sua produtividade costuma oferecer cursos de treinamento a seus operários. A partir da experiência, verificou-se que um operário, recentemente admitido, que tenha freqüentado o curso de treinamento tem 82% de probabilidade de cumprir sua quota de produção. Por outro lado, um operário, também recentemente admitido, que não tenha freqüentado o mesmo curso de treinamento, tem apenas 35% de probabilidade de cumprir com sua quota de produção. Dos operários recentemente admitidos, 80% freqüentaram o curso de treinamento. Selecionando-se, aleatoriamente, um operário recentemente admitido na companhia, a probabilidade de que ele não cumpra sua quota de produção é a) 11,70% b) 27,40% c) 35% d) 83% e) 85% 42) Beraldo espera ansiosamente o convite de um de seus três amigos, Adalton, Cauan e Délius, para participar de um jogo de futebol. A probabilidade de que Adalton convide Beraldo para participar do jogo é de 25%, a de que Cauan o convide é de 40% e a de que Délius o faça é de 50%. Sabendo que os convites são feitos de forma totalmente independente entre si, a probabilidade de que Beraldo não seja convidado por nenhum dos três amigos para o jogo de futebol é: a) 12,5% b) 15,5% c) 22,5% d) 25,5% e) 30% 43) Um dado viciado, cuja probabilidade de se obter um número par é 3/5, é lançado juntamente com uma moeda não obter um número ímpar no dado ou coroa na moeda é: a) 1/5 b) 3/10 c) 2/5 d) 3/5 e) 7/10 44) Em uma cidade, 10% das pessoas possuem carro importado. Dez pessoas dessa cidade são selecionadas, ao acaso e com reposição. A probabilidade de que exatamente 7 das pessoas selecionadas possuam carro importado é: 7 3 3 7 7 a) 120 (0,1) (0,9) b) (0,1) (0,9) c) 120 (0,1) (0,9) d) 120 (0,1) (0,9)7 e) (0,1)7 (0,9)3 2010 PROF PEDRÃO 45) De um grupo de 200 estudantes, 80 estão matriculados em Francês, 110 em Inglês e 40 não estão matriculados nem em Inglês nem em Francês. Seleciona-se, ao acaso, um dos 200 estudantes. A probabilidade de que o estudante selecionado esteja matriculado em pelo menos uma dessas disciplinas (isto é, em Inglês ou em Francês) é igual a a)30/200 b)130/200 c)150/200 d)160/200 e)190/200 46) Considere as situações apresentadas abaixo. Situação I: 250 empregados de uma firma atuam em três áreas de uma grande cidade de maneira que 150 atuam na área X; 75, na área Y; e 25, na área Z. Sabe-se que a probabilidade de um empregado faltar a um dia de serviço é de 0,02 na área X; de 0,04, na área Y; e de 0,01, na área Z. Situação II: Estudantes de um curso de aperfeiçoamento em finanças sabem que: · 20% dos alunos de Econometria recebem nota A; · dos alunos que recebem nota A em Econometria, 10% recebem nota A em Estatística; · dos alunos que recebem nota A em Estatística, 20% recebem nota A em Econometria; · todos os alunos devem cursar Estatística e Econometria. Com base nas situações apresentadas, julgue os itens a seguir. 1,_ Na situação I, a probabilidade de um empregado faltar a um dia de serviço é inferior a 0,02. 2,_ Na situação I, sabendo que, no último dia útil, um empregado faltou ao serviço, a probabilidade de esse empregado atuar na área X é superior a 0,4. 3,_ Na situação II, selecionando um aluno ao acaso, a probabilidade de ele ter recebido nota A em Estatística será inferior a 0,2. 4,_ Na situação II, selecionando um aluno ao acaso, a probabilidade de ele ter recebido nota A em Econometria e nota diferente de A em Estatística será superior a 0,3. 5,_ Na situação II, selecionando um aluno ao acaso, a probabilidade de ele ter recebido nota A em Econometria ou em Estatística será inferior a 0,3. 47) Considere que os analistas de uma empresa de consultoria avaliam um projeto em cerca de 40 horas, com variação de 5 horas (desvio-padrão). A avaliação inclui análise de viabilidade econômica e procedimentos jurídicos. Acompanhamentos anteriores indicam que o tempo para avaliar um projeto é normalmente distribuído. Julgue os itens abaixo, a partir dos dados apresentados e utilizando, se necessário, a tabela da distribuição normal acumulada da página seguinte. 1,_ A probabilidade de um projeto ser avaliado em menos de 35 horas é inferior a 0,10. 2,_ A probabilidade de um projeto ser avaliado no período de 28 a 35 horas é superior a 0,10. 3,_ 10% dos projetos requerem tempo de avaliação superior a 46 horas. 4,_ A amplitude interquartílica para o tempo de avaliação de projetos é inferior a 6 horas. 5,_ Pelo menos 25% dos projetos são avaliados em tempo inferior a 30 horas. 48) Entre doze candidatos que participaram de um teste, quatro foram reprovados. Se três dos candidatos fossem selecionados, aleatoriamente, um após o outro, qual a probabilidade de que todos esses alunos tivessem sido aprovados? a) 14/55 b) 8/55 c) 8/27 d) 27/55 e) 16/27 49) Num sorteio, concorreram 50 bilhetes com números de 1 a 50. Sabe-se que o bilhete sorteado é múltiplo de 5. A probabilidade de o número sorteado ser 25 é: a) 15% b) 5% c) 10% d) 30% e) 20% 50) Um juiz deve analisar 12 processos de reclamações Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 13 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF trabalhistas, sendo 4 de médicos, 5 de professores e 3 de bancários. Considere que, inicialmente, o juiz selecione aleatoriamente um grupo de 3 processos para serem analisados. Com base nessas informações, assinale a alternativa do valor mais próximo da probabilidade de que, nesse grupo, pelo menos um dos processos seja de professor. a) 16% b) 54% c) 84% d) 75% e) 44% GABARITO – PROBABILIDADES QUESTÕES ESAF 01) A 06) B 11) D 16) C 21) A 26) E 31) D 36) D 41) B 46) 1 – E 47) 1 – E 48) A 02) C 07) D 12) B 17) B 22) C 27) E 32) A 37) E 42) C 2–C 2–C 49) C 03) C 08) D 13) D 18) A 23) B 28) D 33) B 38) C 43) E 3 –C 3 –C 50) C 04) E 09) A 14) D 19) D 24) D 29) A 34) D 39) A 44) A 4–E 4–E 05) C 10) A 15) E 20) C 25) C 30) B 35) D 40) B 45) D 5–C 5–E PROF PEDRÃO MACETE DA MULHER CIUMENTA mulher ciumenta é uma NEGAÇÃO você “E” aquela bandida me traíram! “OU” vai negar? “NEGA TUDO” “E”, “SE” ela insistir, “ENTÃO” “NEGA A SEGUNDA” vez PEDRÃO QUESTÕES CESPE Texto para os itens a seguir TABELAS-VERDADE “e” p V V F F q V F V F p∧ q V F F F “ou” p V V F F q V F V F p∨ q V V V F “VoVo FeFe” PEDRÃO TABELAS-VERDADE “se...então” p V V F F q p →q V V F F V V F V “se, e somente se” p V V F F q p ↔q V V F F V F F V “Se Você Foi então Foi” PEDRÃO 14 2010 O número de mulheres no mercado de trabalho mundial é o maior da História, tendo alcançado, em 2007, a marca de 1,2 bilhão, segundo relatório da Organização 4 Internacional do Trabalho (OIT). Em dez anos, houve um incremento de 200 milhões na ocupação feminina. Ainda assim, as mulheres representaram um contingente distante do 7 universo de 1,8 bilhão de homens empregados. Em 2007, 36,1% delas trabalhavam no campo, ante 46,3% em serviços. Entre os homens, a proporção é de 34% 10 para 40,4%. O universo de desempregadas subiu de 70,2 milhões para 81,6 milhões, entre 1997 e 2007 — quando a taxa de desemprego feminino atingiu 6,4%, ante 13 5,7% da de desemprego masculino. Há, no mundo, pelo menos 70 mulheres economicamente ativas para 100 homens. O relatório destaca que a proporção de assalariadas 16 subiu de 41,8% para 46,4% nos últimos dez anos. Ao mesmo tempo, houve queda no emprego vulnerável (sem proteção social e direitos trabalhistas), de 56,1% para 51,7%. Apesar 19 disso, o universo de mulheres nessas condições continua superando o dos homens. O Globo, 7/3/2007, p. 31 (com adaptações). Com referência ao texto e considerando o gráfico nele apresentado, julgue os itens a seguir. Proposição é uma frase que pode ser julgada como verdadeira – V – ou falsa – F –, não cabendo a ela ambos os julgamentos. Um argumento correto é uma sequência de proposições na qual algumas são premissas,e consideradas V, e as demais são concusões, que, por conseqüência da veracidade das premissas, também são V. proposições simples podem ser representadas simbolicamente pelas letras A, B, C etc. Conexões entre proposições podem ser feitas por meio de símbolos especiais. Uma proposição da forma A v B, lida como “A ou B”, tem valor lógico F quando A e B são F; caso contrário, é V. Uma proposição da forma A ∧ B, lida como “A e B”, tem valor lógico V quando A e B são V; Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF caso contrário, é F. Uma proposição da forma ¬ A, a negação de A, é F quando A é V, e é V quando A é F. Uma expressão da forma P(x), proposição da lógica de primeira ordem, em que P denota uma propriedade a respeito dos elementos x de um conjunto U, tem a sua veracidade ou falsidade dependente de U e do significado dado a P. Se a proposição for da forma ∃ xP(x), lida como “Existe x tal que P(x)”, tem a sua valoração V ou F dependente de existir ou não um elemento em U que satisfaça a P. De acordo com as definições apresentadas acima e a veracidade de todas as informações apresentadas no texto precedente, julgue os itens a seguir. 01) Infere-se do texto que a proposição “Há mais mulheres economicamente ativas do que homens, no mercado de trabalho mundial” é verdadeira. 02) A frase “Quanto subiu o percentual de mulheres assalariadas nos últimos 10 anos?” não pode ser considerada uma proposição. 03) Suponha um argumento no qual as premissas sejam as proposições I e II abaixo. I Se uma mulher está desempregada, então, ela é infeliz. II Se uma mulher é infeliz, então, ela vive pouco. Nesse caso, se a conclusão for a proposição “Mulheres desempregadas vivem pouco”, tem-se um argumento correto. 04) Considere que A seja a proposição “O número de mulheres no mercado de trabalho mundial atingiu 1,2 bilhão, em 2007” e B seja a proposição “O percentual de mulheres que trabalhavam no campo era maior que o percentual de mulheres que trabalhavam em serviços, em 2007”. Atribuindo valores lógicos, V ou F, à proposição A e à proposição B, de acordo com o referido texto, pode-se garantir que a proposição (¬A) v B é V. 05) Se P(x) é a proposição “Entre 1997 e 2007, verificou-se que 70,2 milhões ≤ x ≤ 81,6 milhões”, e se x pertence ao conjunto de todas as mulheres desempregadas, então P(x) é V. 06) Suponha-se que U seja o conjunto de todas as pessoas, que M(x) seja a propriedade “x é mulher” e que D(x) seja a propriedade “x é desempregada”. Nesse caso, a proposição “Nenhuma mulher é desempregada” fica corretamente simbolizada por ¬∃x( M ( x) ∧ D( x)) 07) A proposição “Não existem mulheres que ganham menos que os homens” pode ser corretamente simbolizada na forma ∃x( M ( x ) → G( x)) Proposições são frases que podem ser julgadas como verdadeiras – V – ou como falsas – F –, mas não ambas; são frequentemente simbolizadas por letras maiúsculas do alfabeto. A proposição simbolizada por A → B – lida como “se A, então B”, “A é condição suficiente para B”, ou “B é condição necessária para A” – tem valor lógico F quando A é V e B é F; nos demais casos, seu valor lógico é V. A proposição A ∧ B – lida como “A e B” – tem valor lógico V quando A e B forem V e valor lógico F, nos demais casos. A proposição ¬ A, a negação de A, tem valores lógicos contrários aos de A. 08) A negação da proposição A→B possui os mesmos valores lógicos que a proposição A٨(¬B). 09) Considere que A seja a proposição “As palavras têm vida” e B seja a proposição “Vestem-se de significados”, e que sejam consideradas verdadeiras. Nesse caso, a proposição A٨(¬B) é F. 10) A negação da proposição “As palavras mascaram-se” pode ser corretamente expressa pela proposição “Nenhuma palavra se mascara”. 2010 PROF PEDRÃO 11) A proposição “Se as reservas internacionais em moeda forte aumentam, então o país fica protegido de ataques especulativos” pode também ser corretamente expressa por “O país ficar protegido de ataques especulativos é condição necessária para que as reservas internacionais aumentem”. 12) A proposição “Se o Brasil não tem reservas de 190 milhões de dólares, então o Brasil tem reservas menores que as da Índia” tem valor lógico F. 13) Toda proposição simbolizada na forma A→B tem os mesmos valores lógicos que a proposição B→A. 14) A proposição “Existem países cujas reservas ultrapassam meio bilhão de dólares” é F quando se considera que o conjunto dos países em questão é {Brasil, Índia, Coréia do Sul, Rússia}. 15) Considerando como V as proposições “Os países de economias emergentes têm grandes reservas internacionais” e “O Brasil tem grandes reservas internacionais”, é correto concluir que a proposição “O Brasil é um país de economia emergente” é V. Proposições são sentenças que podem ser julgadas como verdadeiras – V – ou como falsas – F –, mas não ambas simultaneamente. As proposições são frequentemente representadas por letras maiúsculas e, a partir de proposições simples, novas proposições podem ser construídas utilizando-se símbolos especiais. Uma expressão da forma A → B, que é lida como “se A, então B”, é F se A for V e se B for F e, nos demais casos, será sempre V. Uma expressão da forma A ∧ B, que é lida como “A e B”, é V se A e B forem V e, nos demais casos, será sempre F. Uma expressão da forma A v B, que é lida como “A ou B”, é F se A e B forem F e, nos demais casos, será sempre V. Uma expressão da forma ¬ A, a negação de A, é V se A for F e é F se A for V. Para preencher a tabela a seguir, considere que os filmes A e B sejam de categorias distintas — documentário ou ficção —, e, em um festival de cinema, receberam premiações diferentes —melhor fotografia ou melhor diretor. Tendo como base as células já preenchidas, preencha as outras células com V ou F, conforme o cruzamento da informação da linha e da coluna correspondentes constitua uma proposição verdadeira ou falsa, respectivamente. A partir do preenchimento das células da tabela e das definições apresentadas no texto, julgue os itens subseqüentes. 16) A proposição “O documentário recebeu o prêmio de melhor fotografia ou o filme B não recebeu o prêmio de melhor diretor” é V. 17) A proposição “Se o filme B é um documentário, então o filme de ficção recebeu o prêmio de melhor fotografia” é V. 18) A proposição “O filme A é um filme de ficção” é V. Julgue os itens que seguem, a respeito de lógica sentencial e de primeira ordem, tendo como referência as definições apresentadas no texto. 19) A negação da proposição “Existe banco brasileiro que fica com mais de 32 dólares de cada 100 dólares investidos” pode ser assim redigida: “Nenhum banco brasileiro fica com mais de 32 dólares de cada 100 dólares investidos.” Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 15 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF 28) A proposição funcional “Existem números que são divisíveis por 2 e por 3” é verdadeira para elementos do conjunto {2, 3, 9, 10, 15, 16}. No livro Alice no País dos Enigmas, o professor de matemática e lógica Raymond Smullyan apresenta vários desafios ao raciocínio lógico que têm como objetivo distinguir-se entre verdadeiro e falso. Considere o seguinte desafio inspirado nos enigmas de Smullyan. Duas pessoas carregam fichas nas cores branca e preta. Quando a primeira pessoa carrega a ficha branca, ela fala somente a verdade, mas, quando carrega a ficha preta, ela fala somente mentiras. Por outro lado, quando a segunda pessoa carrega a ficha branca, ela fala somente mentira, mas, quando carrega a ficha preta, fala somente verdades. Com base no texto acima, julgue o item a seguir. 29) Se a primeira pessoa diz “Nossas fichas não são da mesma cor” e a segunda pessoa diz “Nossas fichas são da mesma cor”, então, pode-se concluir que a segunda pessoa está dizendo a verdade. Uma proposição é uma afirmação que pode ser julgada como verdadeira (V) ou falsa (F), mas não como ambas. As proposições são usualmente simbolizadas por letras maiúsculas do alfabeto, como, por exemplo, P, Q, R etc. Se a conexão de duas proposições é feita pela preposição “e”, simbolizada usualmente por v, então obtém-se a forma PvQ, lida como “P e Q” e avaliada como V se P e Q forem V, caso contrário, é F. Se a conexão for feita pela preposição “ou”, simbolizada usualmente por w, então obtém-se a forma PwQ, lida como “P ou Q” e avaliada como F se P e Q forem F, caso contrário, é V. A negação de uma proposição é simbolizada por ¬P, e avaliada como V, se P for F, e como F, se P for V. Um argumento é uma seqüência de proposições P1, P2, ..., Pn, chamadas premissas, e uma proposição Q, chamada conclusão. Um argumento é válido, se Q é V sempre que P1, P2, ..., Pn forem V, caso contrário, não é argumento válido. A partir desses conceitos, julgue os próximos itens. 30) A proposição simbólica (P v Q) v R possui, no máximo, 4 avaliações V. 31) O quadro abaixo pode ser completamente preenchido com algarismos de 1 a 6, de modo que cada linha e cada coluna tenham sempre algarismos diferentes. 4 20) Se a proposição “Algum banco lucra mais no Brasil que nos EUA” tiver valor lógico V, a proposição “Se todos os bancos lucram mais nos EUA que no Brasil, então os correntistas têm melhores serviços lá do que aqui” será F. 21) Atribuindo-se todos os possíveis valores lógicos V ou F às proposições A e B, a proposição [(¬A)→B]٨A terá três valores lógicos F. 22) Considerando-se como V a proposição “Sem linguagem, não há acesso à realidade”, conclui-se que a proposição “Se não há linguagem, então não há acesso à realidade” é também V. 23) Se o valor lógico da proposição “Se as operações de crédito no país aumentam, então os bancos ganham muito dinheiro” é V, então é correto concluir que o valor lógico da proposição “Se os bancos não ganham muito dinheiro, então as operações de crédito no país não aumentam” é também V. Na lógica sentencial, denomina-se proposição uma frase que pode ser julgada como verdadeira (V) ou falsa (F), mas não, como ambas. Assim, frases como “Como está o tempo hoje?” e “Esta frase é falsa” não são proposições porque a primeira é pergunta e a segunda não pode ser nem V nem F. As proposições são representadas simbolicamente por letras maiúsculas do alfabeto — A, B, C etc. Uma proposição da forma “A ou B” é F se A e B forem F, caso contrário é V; e uma proposição da forma “Se A então B” é F se A for V e B for F, caso contrário é V. Um raciocínio lógico considerado correto é formado por uma seqüência de proposições tais que a última proposição é verdadeira sempre que as proposições anteriores na seqüência forem verdadeiras. Considerando as informações contidas no texto acima, julgue os itens subseqüentes. 24) É correto o raciocínio lógico dado pela seqüência de proposições seguintes: Se Antônio for bonito ou Maria for alta, então José será aprovado no concurso. Maria é alta. Portanto José será aprovado no concurso. 25) É correto o raciocínio lógico dado pela seqüência de proposições seguintes: Se Célia tiver um bom currículo, então ela conseguirá um emprego. Ela conseguiu um emprego. Portanto, Célia tem um bom currículo. 26) Na lista de frases apresentadas a seguir, há exatamente três proposições. “A frase dentro destas aspas é uma mentira.” A expressão X + Y é positiva. +3=7 O valor de . Pelé marcou dez gols para a seleção brasileira. O que é isto? Na lógica de primeira ordem, uma proposição é funcional quando é expressa por um predicado que contém um número finito de variáveis e é interpretada como verdadeira (V) ou falsa (F) quando são atribuídos valores às variáveis e um significado ao predicado. Por exemplo, a proposição “Para qualquer x, tem-se que x 2 > 0” possui interpretação V quando x é um número real maior do que 2 e possui interpretação F quando x pertence, por exemplo, ao conjunto {4, 3, 2, 1, 0}. Com base nessas informações, julgue os próximos itens. 27) A proposição funcional “Para qualquer x, tem-se que x2 > x” é verdadeira para todos os valores de x que estão no PROF PEDRÃO 1,2 2 , 3,2 3 , 5,2 5 conjunto 16 2010 32) Há duas proposições no seguinte conjunto de sentenças: (I) O BB foi criado em 1980. (II) Faça seu trabalho corretamente. (III) Manuela tem mais de 40 anos de idade. 33) Considere as seguintes proposições: P: “Mara trabalha” e Q: “Mara ganha dinheiro” Nessa situação, é válido o argumento em que as premissas são “Mara não trabalha ou Mara ganha dinheiro” e “Mara não trabalha”, e a conclusão é “Mara não ganha dinheiro”. As afirmações que podem ser julgadas como verdadeira (V) ou falsas (F), mas não ambas, são chamadas proposições. As proposições são usualmente simbolizadas por letras maiúsculas: A, B , C etc. A Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF expressão A → B, lida, entre outras formas, como “se A então B”, é uma proposição que tem valoração F quando A é V e B é F, e tem valoração V nos demais casos. Uma expressão da forma ¬ A, lida como “não A”, é uma proposição que tem valoração V quando A é F, e tem valoração F quando A é V. A expressão da forma A ∧ B, lida como “A e B”, é uma proposição que tem valoração V apenas quando A e B são V, nos demais casos tem valoração F. Uma expressão da forma A v B, lida como “A ou B”, é uma proposição que tem valoração F apenas quando A e B são F; nos demais casos, é V. Com base nessas definições, julgue os itens que se seguem. 34) Considere que as afirmativas “Se Mara acertou na loteria então ela ficou rica” e “Mara não acertou na loteria” sejam ambas proposições verdadeiras. Simbolizando adequadamente essas proposições pode-se garantir que a proposição “Ela não ficou rica” é também verdadeira. 35) A proposição simbolizada por (A→B)→(B→A) possui uma única valoração F. 36) Considere que a proposição “Sílvia ama Joaquim ou Sílvia ama Tadeu” seja verdadeira. Então pode-se garantir que a proposição “Sílvia ama Tadeu” é verdadeira. 37) Uma expressão da forma ¬(A ٨ ¬B) é uma proposição que tem exatamente as mesmas valorações V ou F da proposição A→B. O fluxograma abaixo contém uma seqüência finita de instruções a serem executadas na ordem em que são apresentadas, começando-se da posição designada por “início” e seguindo-se as setas. Dentro das formas retangulares, a seta para a esquerda indica que o valor escrito ou obtido à direita é atribuído à variável à esquerda. A expressão no losango é avaliada e, quando resultar verdadeira, prossegue-se na direção indicada por V, e, quando for falsa, prossegue-se na direção indicada por F. Se P e Q representam PR oposições que podem ter valorações V ou F, então as expressões ¬P, P→Q, P٧Q e P٨Q, que são lidas “não P”, “P implica Q”, “P ou Q” e “P e Q”, respectivamente, também são proposições e podem ter valorações V ou F conforme as valorações dadas a P e a Q. A partir do texto e do fluxograma precedente, em que A, B, X e Y são proposições quaisquer, siga as instruções do fluxograma e julgue os itens a seguir. 38) A valoração atribuída a X será igual à valoração de A→B. 39) A proposição ¬(A→B) tem as mesmas valorações V e F que a proposição (¬A)→(¬B). 40) Se as valorações iniciais de A e de B fossem, respectivamente, F e F, então a valoração de Y seria também F. 2010 PROF PEDRÃO 41) A seguinte proposição é verdadeira: Se a capital de São Paulo é Manaus, então 1 + 1 = 3. 42) Considere-se que A e B sejam enunciados verdadeiros. Nesse caso, denotando por “¬X” a negação de um enunciado X e por “X..Y” o enunciado “ou X ou Y”, então o enunciado (¬A)..B é um enunciado falso. 43) Considere as seguintes proposições: P: “Está quente” e Q: “Está chovendo”. Então a proposição R: “Se está quente e não está chovendo, então está quente” pode ser escrita na forma simbólica P..(¬Q) .. P, em que “P..(¬Q)” significa “P e ¬Q”. Uma proposição é uma declaração que pode ser afirmativa ou negativa. Uma proposição pode ser julgada verdadeira ou falsa. Quando ela é verdadeira, atribui-se o valor lógico V e, quando é falsa, atribui-se o valor lógico F. Uma proposição simples é uma proposição única, como, por exemplo, “Paulo é engenheiro”. As proposições simples são representadas por letras maiúsculas A, B, C etc. Ligando duas ou mais proposições simples entre si por conectivos operacionais, podem-se formar proposições compostas. Entre os conectivos operacionais, podem-se citar: “e”, representado por v; “ou”, representado por w; “se, ..., então”, representado por ÷; e “não”, representado por ¬. A partir dos valores lógicos de duas (ou mais) proposições simples A e B, pode-se construir a tabelaverdade de proposições compostas. Duas proposições são equivalentes quando possuem a mesma tabelaverdade. A seguir, são apresentadas as tabelas-verdade de algumas proposições. Com base nessas informações, julgue os itens de 117 a 120. 44) Considere as seguintes proposições. A: Maria não é mineira. B: Paulo é engenheiro. Nesse caso, a proposição “Maria não é mineira ou Paulo é engenheiro”, que é representada por A v B, é equivalente à proposição “Se Maria é mineira, então Paulo é engenheiro”, simbolicamente representada por (¬A)→B. 45) Considere as seguintes proposições. A: Está frio. B: Eu levo agasalho. Nesse caso, a negação da proposição composta “Se está frio, então eu levo agasalho” — A→B — pode ser corretamente dada pela proposição “Está frio e eu não levo agasalho” — A٨(¬B). 46) O número de linhas da tabela-verdade de uma proposição composta (A٨B)٧C é igual a 6. 47) Uma proposição composta é uma tautologia quando todos os seus valores lógicos são V, independentemente dos valores lógicos das proposições simples que a compõem. Então, a proposição [A٨(A→B)]→B é uma tautologia. Para julgar os itens de 21 a 25, considere as seguintes informações a respeito de estruturas lógicas, lógicas de argumentação e diagramas lógicos. Uma proposição é uma frase a respeito da qual é possível afirmar se é verdadeira (V) ou se é falsa (F). Por exemplo: “A Terra é plana”; “Fumar faz mal à saúde”. As letras maiúsculas A, B, C etc. serão usadas para identificar as Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 17 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF proposições, por exemplo: A: A Terra é plana; B: Fumar faz mal à saúde. As proposições podem ser combinadas de modoa representar outras proposições, denominadas proposições compostas. Para essas combinações, usam-se os denominados conectivos lógicos: ∧ significando “e”; V significando “ou”; → significando “se...então”; ↔ significando “se e somente se”; e ¬ significando “não”. Por exemplo, com as notações do parágrafo anterior, a proposição “A Terra é plana e fumar faz mal à saúde” pode ser representada, simbolicamente, por A ∧ B. “A Terra é plana ou fumar faz mal à saúde” pode ser representada, simbolicamente por A V B. “Se a Terra é plana, então fumar faz mal à saúde” pode ser representada, simbolicamente, por A → B. “A Terra não é plana” pode ser representada, simbolicamente, por ¬ A. Os parênteses são usados para marcar a pertinência dos conectivos, por exemplo: (A ∧ B) → ¬ A, significando que “Se a Terra é plana e fumar faz mal à saúde, então a Terra não é plana”. Na lógica, se duas proposições são tais que uma é a negação de outra, então uma delas é F. Dadas duas proposições em que uma contradiz a outra, então uma delas é V. Para determinar a valoração (V ou F) de uma proposição composta, conhecidas as valorações das proposições simples que as compõem, usam-se as tabelas abaixo, denominadas tabelas-verdade. Uma proposição composta que é valorada sempre como V, independentemente das valorações V ou F das proposições simples que a compõem, é denominada tautologia. Por exemplo, a proposição A V ( ¬ A) é uma tautologia. Tendo como referência as informações apresentadas no texto, julgue os seguintes itens. 48) Considere que a proposição “O Ministério da Saúde cuida das políticas públicas de saúde do Brasil e a educação fica a cargo do Ministério da Educação” seja escrita simbolicamente na forma P٨Q. Nesse caso, a negação da referida proposição é simbolizada corretamente na forma ¬P٨¬Q, ou seja: “O Ministério da Saúde não cuida das políticas públicas de saúde do Brasil nem a educação fica a cargo do Ministério da Educação”. 49) Se A e B são proposições, completando a tabela abaixo, se necessário, conclui-se que a proposição ¬(AVB) → ¬AV¬B é uma tautologia. 50) Se A e B são proposições simples, então, completando a coluna em branco na tabela abaixo, se necessário, concluise que a última coluna da direita corresponde à tabelaverdade da proposição composta A → (B→A). 18 2010 PROF PEDRÃO Raul, Sidnei, Célio, João e Adélio, agentes administrativos do MS, nascidos em diferentes unidades da Federação: São Paulo, Paraná, Bahia, Ceará e Acre, participaram, no último final de semana, de uma reunião em Brasília – DF, para discutir projetos do MS. Raul, Célio e o paulista não conhecem nada de contabilidade; o paranaense foi almoçar com Adélio; Raul, Célio e João fizeram duras críticas às opiniões do baiano; o cearense, Célio, João e Sidnei comeram um lauto churrasco no jantar, e o paranaense preferiu fazer apenas um lanche. Com base na situação hipotética apresentada acima, julgue os itens a seguir. Se necessário, utilize a tabela à disposição no espaço para rascunho. 51) A proposição “Se Célio nasceu no Acre, então Adélio não nasceu no Ceará”, que pode ser simbolizada na forma A→(¬B), em que A é a proposição “Célio nasceu no Acre” e B, “Adélio nasceu no Ceará”, é valorada como V. 52) Considere que P seja a proposição “Raul nasceu no Paraná”, Q seja a proposição “João nasceu em São Paulo” e R seja a proposição “Sidnei nasceu na Bahia”. Nesse caso, a proposição “Se Raul não nasceu no Paraná, então João não nasceu em São Paulo e Sidnei nasceu na Bahia” pode ser simbolizada como (¬P) → [(¬Q)^R)] e é valorada como V. Toda afirmativa que pode ser julgada como verdadeira ou falsa é denominada proposição. Considere que A e B representem proposições básicas e que as expressões AVB e ¬A sejam proposições compostas. A proposição AVB é F quando A e B são F, caso contrário, é V, e ¬A é F quando A é V, e é V quando A é F. De acordo com essas definições, julgue os itens a seguir. 53) Se a proposição A for F e a proposição (¬A)v B for V, então, obrigatoriamente, a proposição B é V. 54) Independentemente da valoração V ou F atribuída às proposições A e B, é correto concluir que a proposição ¬(A v B) v (A v B) é sempre V. 55) Se a afirmativa “todos os beija-flores voam rapidamente” for considerada falsa, então a afirmativa “algum beija-flor não voa rapidamente” tem de ser considerada verdadeira. Julgue os itens seguintes, que versam acerca de estruturas lógicas, lógica de argumentação e diagramas lógicos. 56) Considere que o aniversário de Mariana ocorre no mês de janeiro, cujo mês/calendário do ano de 2007 é mostrado a seguir. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF Nesta situação, se o número corresponde a data do aniversário de Mariana tem dois algarismos, a diferença entre eles é igual a 6 e, em 2007, o seu aniversário não ocorreu em uma quarta-feira, então o aniversário de Mariana ocorreu em uma segunda-feira. 57) Considere que, no fluxograma ilustrado abaixo, as instruções devam ser executadas seguindo o fluxo das setas, de acordo com a avaliação verdadeira — V —, ou falsa — F —, da expressão lógica que ocorre em cada caixa oval. Nessa situação, a execução do fluxograma termina em ACEITA se, e somente se A e B forem ambas V. Uma proposição é uma frase afirmativa que pode ser julgada como verdadeira ou falsa. Um argumento é considerado válido se, sendo sua hipótese verdadeira, a sua conclusão também é verdadeira. Considerando essas informações e a figura acima, em que estão colocadas algumas figuras geométricas conhecidas — quadrados, triângulos e pentágonos (5 lados) — dispostas em uma grade, julgue os itens seguintes. 58) Considere que sejam verdadeiras as seguintes proposições. Se B é um quadrado pequeno então E é um pentágono grande. B não é um quadrado pequeno. Nessa situação, é correto concluir que é verdadeira a proposição E não é um pentágono grande. 59) A proposição: Se A é um triângulo pequeno, então A está atrás de C é verdadeira. 60) A afirmativa: Existe um pentágono grande e todos os triângulos são pequenos é uma proposição falsa. Considere que as letras P, Q, R e T representem proposições e que os símbolos ¬, ∧,∨ e → sejam operadores lógicos que constroem novas proposições e significam não, e, ou e então, respectivamente. Na lógica proposicional, cada proposição assume um único valor (valor-verdade), que pode ser verdadeiro (V) ou falso (F), mas nunca ambos. 2010 PROF PEDRÃO Com base nas informações apresentadas no texto acima, julgue os itens a seguir. 61) Se as proposições P e Q são ambas verdadeiras, então a proposição (¬ P) V (¬ Q) também é verdadeira. 62) Se a proposição T é verdadeira e a proposição R é falsa, então a proposição R → (¬ T) é falsa. 63) Se as proposições P e Q são verdadeiras e a proposição R é falsa, então a proposição (P ∧ R) → (¬ Q) é verdadeira. Considere as sentenças abaixo. I Fumar deve ser proibido, mas muitos europeus fumam. II Fumar não deve ser proibido e fumar faz bem à saúde. III Se fumar não faz bem à saúde, deve ser proibido. IV Se fumar não faz bem à saúde e não é verdade que muitos europeus fumam, então fumar deve ser proibido. V Tanto é falso que fumar não faz bem à saúde como é falso que fumar deve ser proibido; conseqüentemente, muitos europeus fumam. Considere também que P, Q, R e T representem as sentenças listadas na tabela a seguir. Com base nas informações acima e considerando a notação introduzida no texto, julgue os itens seguintes. 64) A sentença I pode ser corretamente representada por P ^ (¬ T). 65) A sentença II pode ser corretamente representada por (¬ P) ^ (¬ R). 66) A sentença III pode ser corretamente representada por R → P. 67) A sentença IV pode ser corretamente representada por (R ^ (¬ T)) → P. 68) A sentença V pode ser corretamente representada por T → ((¬ R) ^ (¬ P)). Uma proposição é uma afirmação que pode ser julgada como verdadeira — V —, ou falsa — F —, mas não como ambas. Uma proposição é denominada simples quando não contém nenhuma outra proposição como parte de si mesma, e é denominada composta quando for formada pela combinação de duas ou mais proposições simples. De acordo com as informações contidas no texto, julgue os itens a seguir. 69) A frase “Você sabe que horas são?” é uma proposição. 70) A frase “Se o mercúrio é mais leve que a água, então o planeta Terra é azul”, não é considerada uma proposição composta. Uma proposição simples é representada, freqüentemente, por letras maiúsculas do alfabeto. Se A e B são proposições simples, então a expressão A V B representa uma proposição composta, lida como “A ou B”, e que tem valor lógico F quando A e B são ambos F e, nos demais casos, é V. A expressão ¬A representa uma proposição composta, lida como “não A”, e tem valor lógico V quando A é F, e tem valor lógico F quando A é V. Com base nessas informações e no texto, julgue os itens seguintes. 71) Considere que a proposição composta “Alice não mora aqui ou o pecado mora ao lado” e a proposição simples “Alice mora aqui” sejam ambas verdadeiras. Nesse caso, a proposição simples “O pecado mora ao lado” é verdadeira. 72) Uma proposição da forma (¬A) V (B V ¬C) tem, no máximo, 6 possíveis valores lógicos V ou F. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 19 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF Denomina-se proposição toda frase que pode ser julgada como verdadeira — V — ou falsa — F —, mas não como V e F simultaneamente. As proposições simples são aquelas que não contêm mais de uma proposição como parte. As proposições compostas são construídas a partir de outras proposições, usando-se símbolos lógicos e parênteses para evitar ambiguidades. As proposições são usualmente simbolizadas por letras maiúsculas do alfabeto: A, B, C etc. Uma proposição composta na forma A V B, chamada disjunção, é lida como “A ou B” e tem valor lógico F se A e B são F, e V, nos demais casos. Uma proposição composta na forma A ^ B, chamada conjunção, é lida como “A e B” e tem valor lógico V se A e B são V, e F, nos demais casos. Uma proposição composta na forma A → B, chamada implicação, é lida como “se A, então B” e tem valor lógico F se A é V e B é F, e V, nos demais casos. Além disso, ¬A, que simboliza a negação da proposição A, é V se A for F, e é F se A for V. A partir do texto, julgue os itens a seguir. 73) Na sequência de frases abaixo, há três proposições. » Quantos tribunais regionais do trabalho há na região Sudeste do Brasil? » O TRT/ES lançou edital para preenchimento de 200 vagas. »Se o candidato estudar muito, então ele será aprovado no concurso do TRT/ES. »Indivíduo com 50 anos de idade ou mais não poderá se inscrever no concurso do TRT/ES. 74) A negação da proposição “O juiz determinou a libertação de um estelionatário e de um ladrão” é expressa na forma “O juiz não determinou a libertação de um estelionatário nem de um ladrão”. 75) Caso a proposição “No Brasil havia, em média, em 2007, seis juízes para cada 100 mil habitantes na justiça do trabalho estadual, mas, no estado do Espírito Santo, essa média era de 13 juízes” tenha valor lógico V, também será V a proposição “Se no Brasil não havia, em média, em 2007, seis juízes para cada 100 mil habitantes na justiça do trabalho estadual, então, no estado do Espírito Santo, essa média não era de 13 juízes”. 76) As proposições (¬A) V (¬B) e A → B têm os mesmos valores lógicos para todas as possíveis valorações lógicas das proposições A e B. 77) Para todos os possíveis valores lógicos atribuídos às proposições simples A e B, a proposição composta [A ^ (¬B)] V B tem exatamente 3 valores lógicos V e um F. 78) Considere que uma proposição Q seja composta apenas das proposições simples A e B e cujos valores lógicos V ocorram somente nos casos apresentados na tabela abaixo. Nessa situação, uma forma simbólica correta para Q é [A ^ (¬B)] v [(¬A) ^ (¬B)]. 79) A sequência de frases a seguir contém exatamente duas proposições. < A sede do TRT/ES localiza-se no município de Cariacica. < Por que existem juízes substitutos? < Ele é um advogado talentoso. 80) A proposição “Carlos é juiz e é muito competente” tem como negação a proposição “Carlos não é juiz nem é muito competente”. 20 2010 PROF PEDRÃO 81) A proposição “A Constituição brasileira é moderna ou precisa ser refeita” será V quando a proposição “A Constituição brasileira não é moderna nem precisa ser refeita” for F, e vice-versa. Considere que cada pessoa cujo nome está indicado na tabela abaixo exerça apenas uma profissão. Se a célula que é o cruzamento de uma linha com uma coluna apresenta o valor V, então a pessoa correspondente àquela linha exerce a profissão correspondente àquela coluna; se o valor for F, então a pessoa correspondente à linha não exerce a profissão correspondente àquela coluna. Assim, de acordo com a tabela, Júlio é administrador, Flávio não é contador nem Mário é técnico de informática. Considerando as informações e a tabela apresentadas acima, é correto afirmar que a proposição 82) “Júlio não é técnico em informática e Mário é contador” é F. 83) “Mário não é contador ou Flávio é técnico em informática” é V. 84) “Flávio não é técnico em informática” é V. Considere que cada uma das proposições seguintes tenha valor lógico V. I Tânia estava no escritório ou Jorge foi ao centro da cidade. II Manuel declarou o imposto de renda na data correta e Carla não pagou o condomínio. III Jorge não foi ao centro da cidade. A partir dessas proposições, é correto afirmar que a proposição 85) “Carla pagou o condomínio” tem valor lógico F. 86) “Manuel declarou o imposto de renda na data correta e Jorge foi ao centro da cidade” tem valor lógico V. 87) “Tânia não estava no escritório” tem, obrigatoriamente, valor lógico V. Uma dedução é uma sequência de proposições em que algumas são premissas e as demais são conclusões. Uma dedução é denominada válida quando tanto as premissas quanto as conclusões são verdadeiras. Suponha que as seguintes premissas sejam verdadeiras. I Se os processos estavam sobre a bandeja, então o juiz os analisou. II O juiz estava lendo os processos em seu escritório ou ele estava lendo os processos na sala de audiências. III Se o juiz estava lendo os processos em seu escritório, então os processos estavam sobre a mesa. IV O juiz não analisou os processos. V Se o juiz estava lendo os processos na sala de audiências, então os processos estavam sobre a bandeja. A partir do texto e das informações e premissas acima, é correto afirmar que a proposição 88) “Se o juiz não estava lendo os processos em seu escritório, então ele estava lendo os processos na sala de audiências” é uma conclusão verdadeira. 89) “Se os processos não estavam sobre a mesa, então o juiz estava lendo os processos na sala de audiências” não é uma conclusão verdadeira. 90) “Os processos não estavam sobre bandeja” é uma conclusão verdadeira. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF 91) “Se o juiz analisou os processos, então ele não esteve no escritório” é uma conclusão verdadeira. Nos diagramas acima, estão representados dois conjuntos de pessoas que possuem o diploma do curso superior de direito, dois conjuntos de juízes e dois elementos desses conjuntos: Mara e Jonas. Julgue os itens subsequentes tendo como referência esses diagramas e o texto. 92) A proposição “Mara é formada em direito e é juíza” é verdadeira. 93) A proposição “Se Jonas não é um juiz, então Mara e Jonas são formados em direito” é falsa. Para a análise de processos relativos a arrecadação e aplicação de recursos de certo órgão público, foram destacados os analistas Alberto, Bruno e Carlos. Sabese que Alberto recebeu a processos para análise, Bruno recebeu b processos e Carlos recebeu c processos, sendo que a × b × c = 30. Nessa situação, considere as proposições seguintes. P: A quantidade de processos que cada analista recebeu é menor ou igual a 5; Q: a + b + c = 10; R: Um analista recebeu mais que 8 processos e os outros 2 receberam, juntos, um total de 4 processos; S: Algum analista recebeu apenas 2 processos. Com base nessas informações, julgue os itens que se seguem. 94) P →Q é sempre verdadeira. 95) Se R é verdadeira, então S é falsa. 96) A proposição ¬Q é equivalente à proposição seguinte: Pelo menos um analista recebeu apenas um processo. 97) Maria, Míriam e Marina são componentes de uma orquestra. Cada uma delas toca somente um dos seguintes instrumentos: flauta, piano e violino. Questionadas por um desconhecido a respeito do instrumento que tocavam, elas apresentaram as respostas a seguir. Maria: Marina toca flauta. Míriam: Maria não toca flauta. Marina: Míriam não toca piano. Com base nessas informações, pode-se afirmar que A) Marina toca violino. B) Maria toca violino. C) Míriam toca piano. D) Maria toca flauta. E) Míriam toca violino. Uma proposição é uma sentença declarativa que pode ser julgada como verdadeira ou falsa, mas não como verdadeira e falsa simultaneamente. As proposições são denotadas por letras maiúsculas A, B, C etc. A partir de proposições dadas, podem-se construir novas proposições mediante o emprego de símbolos lógicos: A ^ B (lê-se: A e B), A V B (lê-se: A ou B) e A → B (lê-se: se A, então B). A proposição ¬A denota a negação da proposição A. Considerando que os 3 filhos de um casal têm idades que, expressas em anos, são números inteiros positivos cuja soma é igual a 13 e sabendo também que 2 filhos 2010 PROF PEDRÃO são gêmeos e que todos têm menos de 7 anos de idade, julgue os itens seguintes. 98) A proposição “As informações acima são suficientes para determinar-se completamente as idades dos filhos” é falsa. 99) A proposição “Se um dos filhos tem 5 anos de idade, então ele não é um dos gêmeos” é verdadeira. 100) A proposição “Se o produto das 3 idades for inferior a 50, então o filho não gêmeo será o mais velho dos 3” é falsa. Julgue os itens que se seguem, acerca de proposições e seus valores lógicos. 101) A negação da proposição “O concurso será regido por este edital e executado pelo CESPE/UnB” estará corretamente simbolizada na forma (¬A)^(¬B), isto é, “O concurso não será regido por este edital nem será executado pelo CESPE/UnB”. 102) A proposição (A ^ B) → (A V B) é uma tautologia. Uma proposição é uma declaração que pode ser julgada como verdadeira — V —, ou falsa — F —, mas não como V e F simultaneamente. As proposições são, frequentemente, simbolizadas por letras maiúsculas: A, B, C, D etc. As proposições compostas são expressões construídas a partir de outras proposições, usando-se símbolos lógicos, como nos casos a seguir. # A→B, lida como “se A, então B”, tem valor lógico F quando A for V e B for F; nos demais casos, será V; # AvB, lida como “A ou B”, tem valor lógico F quando A e B forem F; nos demais casos, será V; # A^B, lida como “A e B”, tem valor lógico V quando A e B forem V; nos demais casos, será F; # ¬A é a negação de A: tem valor lógico F quando A for V, e V, quando A for F. Uma sequência de proposições A1, A2, ..., Ak é uma dedução correta se a última proposição, Ak, denominada conclusão, é uma consequência das anteriores, consideradas V e denominadas premissas. Duas proposições são equivalentes quando têm os mesmos valores lógicos para todos os possíveis valores lógicos das proposições que as compõem. A regra da contradição estabelece que, se, ao supor verdadeira uma proposição P, for obtido que a proposição Pv(¬P) é verdadeira, então P não pode ser verdadeira; P tem de ser falsa. A partir dessas informações, julgue os itens os itens subsequentes. 103) Considere as proposições A, B e C a seguir. A: Se Jane é policial federal ou procuradora de justiça, então Jane foi aprovada em concurso público. B: Jane foi aprovada em concurso público. C: Jane é policial federal ou procuradora de justiça. Nesse caso, se A e B forem V, então C também será V. 104) As proposições “Se o delegado não prender o chefe da quadrilha, então a operação agarra não será bem-sucedida” e “Se o delegado prender o chefe da quadrilha, então a operação agarra será bem-sucedida” são equivalentes. 105) Considere que um delegado, quando foi interrogar Carlos e José, já sabia que, na quadrilha à qual estes pertenciam, os comparsas ou falavam sempre a verdade ou sempre mentiam. Considere, ainda, que, no interrogatório, Carlos disse: José só fala a verdade, e José disse: Carlos e eu somos de tipos opostos. Nesse caso, com base nessas declarações e na regra da contradição, seria correto o delegado concluir que Carlos e José mentiram. 106) Se A for a proposição “Todos os policiais são honestos”, então a proposição ¬A estará enunciada corretamente por “Nenhum policial é honesto”. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 21 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF 107) A sequência de proposições a seguir constitui uma dedução correta. Se Carlos não estudou, então ele fracassou na prova de Física. Se Carlos jogou futebol, então ele não estudou. Carlos não fracassou na prova de Física. Carlos não jogou futebol. GABARITO – QUESTÕES CESPE 01) E 06) C 11) C 16) C 21) E 26) E 31) C 36) E 41) C 46) E 51) E 56) E 61) E 66) C 71) C 76) E 81) C 86) E 91) C 96) C 101) E 106) E 02) C 07) E 12) E 17) C 22) C 27) E 32) C 37) C 42) E 47) C 52) C 57) E 62) E 67) C 72) E 77) C 82) E 87) E 92) E 97) E 102) C 107) C 03) C 08) C 13) E 18) E 23) C 28) E 33) E 38) C 43) C 48) E 53) E 58) E 63) E 68) E 73) C 78) C 83) C 88) C 93) E 98) C 103) E 04) E 09) C 14) E 19) C 24) C 29) C 34) E 39) E 44) C 49) C 54) C 59) E 64) E 69) E 74) E 79) E 84) E 89) E 94) C 99) E 104) E 05) C 10) E 15) E 20) E 25) E 30) E 35) C 40) C 45) C 50) E 55) C 60) C 65) C 70) E 75) C 80) E 85) C 90) C 95) C 100) C 105) C QUESTÕES ESAF 01) A negação de: Milão é a capital da Itália ou Paris é a capital da Inglaterra é: a) Milão não é a capital da Itália e Paris não é a capital da Inglaterra. b) Paris não é a capital da Inglaterra. c) Milão não é a capital da Itália ou Paris não é a capital da Inglaterra. d) Milão não é a capital da Itália. e) Milão é a capital da Itália e Paris não é a capital da Inglaterra. 02)Se Maria vai ao cinema, Pedro ou Paulo vão ao cinema. Se Paulo vai ao cinema, Teresa e Joana vão ao cinema. Se Pedro vai ao cinema, Teresa e Ana vão ao cinema. Se Tereza não foi ao cinema, pode-se afirmar que: a) Ana não foi ao cinema. b) Paulo não foi ao cinema. c) Pedro não foi ao cinema. d) Maria não foi ao cinema. e) Joana não foi ao cinema. 03) Assinale a opção verdadeira. a) 3 = 4 e 3 + 4 = 9 b) Se 3 = 3, então 3 + 4 = 9 c) Se 3 = 4, então 3 + 4 = 9 d) 3 = 4 ou 3 + 4 = 9 e) 3 = 3 se e somente se 3 + 4 = 9 04) Determinado rio passa pelas cidades A, B e C. Se chove em A, o rio transborda. Se chove em B, o rio transborda e, se chove em C, o rio não transborda. Se o rio transbordou, pode-se afirmar que: a) choveu em A e choveu em B. b) não choveu em C. c) choveu em A ou choveu em B. d) choveu em C. e) choveu em A. 05)Três meninos, Pedro, Iago e Arnaldo, estão fazendo um curso de informática. A professora sabe que os meninos que estudam são aprovados e os que não estudam não são 22 2010 PROF PEDRÃO aprovados. Sabendo-se que: se Pedro estuda, então Iago estuda; se Pedro não estuda, então Iago ou Arnaldo estudam; se Arnaldo não estuda, então Iago não estuda; se Arnaldo estuda então Pedro estuda. Com essas informações pode-se, com certeza, afirmar que: a) Pedro, Iago e Arnaldo são aprovados. b) Pedro, Iago e Arnaldo não são aprovados. c) Pedro é aprovado, mas Iago e Arnaldo são reprovados. d) Pedro e Iago são reprovados, mas Arnaldo é aprovado. e) Pedro e Arnaldo são aprovados, mas Iago é reprovado. 06)Um renomado economista afirma que “A inflação não baixa ou a taxa de juros aumenta”. Do ponto de vista lógico, a afirmação do renomado economista equivale a dizer que: a) se a inflação baixa, então a taxa de juros aumenta. b) se a taxa de juros aumenta, então a inflação baixa. c) se a inflação não baixa, então a taxa de juros aumenta. d) se a inflação baixa, então a taxa de juros não aumenta. e) se a inflação não baixa, então a taxa de juros não aumenta. 07)Sou amiga de Abel ou sou amiga de Oscar. Sou amiga de Nara ou não sou amiga de Abel. Sou amiga de Clara ou não sou amiga de Oscar. Ora, não sou amiga de Clara. Assim, a) não sou amiga de Nara e sou amiga de Abel. b) não sou amiga de Clara e não sou amiga de Nara. c) sou amiga de Oscar e não sou amiga de Clara. d) sou amiga de Oscar e amiga de Nara. e) sou amiga de Nara e amiga de Abel. 08)Se X > Y, então Z > Y; se X < Y, então Z > Y ou W > Y; se W < Y, então Z < Y; se W > Y, então X > Y. Com essas informações pode-se, com certeza, afirmar que: a) X > Y; Z > Y; W > Y b) X < Y; Z < Y; W < Y c) X > Y; Z < Y; W < Y d) X < Y; W < Y; Z > Y e) X > Y; W < Y; Z > Y 09)Ao resolver um problema de matemática, Ana chegou à conclusão de que: x = a e x = p, ou x = e. Contudo, sentindose insegura para concluir em definitivo a resposta do problema, Ana telefona para Beatriz, que lhe dá a seguinte informação: x ≠ e. Assim, Ana corretamente conclui que: a) x ≠ a ou x ≠ e b) x = a ou x = p c) x = a e x = p d) x = a e x ≠ p e) x ≠ a e x ≠ p 10)Márcia não é magra ou Renata é ruiva. Beatriz é bailarina ou Renata não é ruiva. Renata não é ruiva ou Beatriz não é bailarina. Se Beatriz não é bailarina então Márcia é magra. Assim, a) Márcia não é magra, Renata não é ruiva, Beatriz é bailarina. b) Márcia é magra, Renata não é ruiva, Beatriz é bailarina. c) Márcia é magra, Renata não é ruiva, Beatriz não é bailarina. d) Márcia não é magra, Renata é ruiva, Beatriz é bailarina. e) Márcia não é magra, Renata é ruiva, Beatriz não é bailarina. 11) Ana é artista ou Carlos é compositor. Se Mauro gosta de música, então Flávia não é fotógrafa. Se Flávia não é fotógrafa, então Carlos não é compositor. Ana não é artista e Daniela não fuma. Pode-se,então, concluir corretamente que a) Ana não é artista e Carlos não é compositor. b) Carlos é compositor e Flávia é fotógrafa. c) Mauro gosta de música e Daniela não fuma. d) Ana não é artista e Mauro gosta de música. e) Mauro não gosta de música e Flávia não é fotógrafa. 12)Se X está contido em Y, então X está contido em Z. Se X está contido em P, então X está contido em T. Se X não está contido em Y, então X está contido em P. Ora, X não está contido em T. Logo: a) Z está contido em T e Y está contido em X. b) X está contido em Y e X não está contido em Z. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF 0 − 0 0 2 0 0 x 2 2 y 2 2010 Sabe-se, também, que Denise dançar é condição necessária e suficiente para Ana chorar. Assim, quando Carmem canta, a) Beto não bebe ou Ana não chora. b) Denise dança e Beto não bebe. c) Denise não dança ou Ana não chora. d) nem Beto bebe nem Denise dança. e) Beto bebe e Ana chora. + − 21)Se , então é necessariamente verdade = x c) X está contido em Z e X não está contido em Y. d) Y está contido em T e X está contido em Z. e) X não está contido em P e X está contido em Y. 13)Amigas desde a infância, Beatriz, Dalva e Valna seguiram diferentes profissões e hoje uma delas é arquiteta, outra é psicóloga, e outra é economista. Sabe-se que ou Beatriz é a arquiteta ou Dalva é a arquiteta. Sabe-se, ainda, que ou Dalva é a psicóloga ou Valna é a economista. Sabese, também, que ou Beatriz é a economista ou Valna é a economista. Finalmente, sabe-se que ou Beatriz é a psicóloga ou Valna é a psicóloga. As profissões de Beatriz, Dalva e Valna são, pois, respectivamente, a) psicóloga, economista, arquiteta. b) arquiteta, economista, psicóloga. c) arquiteta, psicóloga, economista. d) psicóloga, arquiteta, economista. e) economista, arquiteta, psicóloga. 14)Todo amigo de Luiza é filho de Marcos. Todo primo de Carlos, se não for irmão de Ernesto, ou é amigo de Luiza ou é neto de Tânia. Ora, não há irmão de Ernesto ou neto de Tânia que não seja filho de Marcos. Portanto, tem-se, necessariamente, que: a) todo filho de Marcos é irmão de Ernesto ou neto de Tânia. b) todo filho de Marcos é primo de Carlos. c) todo primo de Carlos é filho de Marcos. d) algum irmão de Ernesto é neto de Tânia. e) algum amigo de Luiza é irmão de Ernesto. 15)Pedro toca piano se e somente se Vítor toca violino. Ora, Vítor toca violino, ou Pedro toca piano. Logo, a) Pedro toca piano, e Vítor não toca violino. b) se Pedro toca piano, então Vítor não toca violino. c) se Pedro não toca piano, então Vítor toca violino. d) Pedro não toca piano, e Vítor toca violino. e) Pedro toca piano, e Vítor toca violino. 16)A negação da afirmação condicional “se Ana viajar, Paulo vai viajar” é: a) Ana não está viajando e Paulo vai viajar. b) se Ana não viajar, Paulo vai viajar. c) Ana está viajando e Paulo não vai viajar. d) Ana não está viajando e Paulo não vai viajar. e) se Ana estiver viajando, Paulo não vai viajar. 17)Se o anão foge do tigre, então o tigre é feroz. Se o tigre é feroz, então o rei fica no castelo. Se o rei fica no castelo, então a rainha briga com o rei. Ora, a rainha não briga com o rei. Logo: a) o rei não fica no castelo e o anão não foge do tigre. b) o rei fica no castelo e o tigre é feroz. c) o rei não fica no castelo e o tigre é feroz. d) o tigre é feroz e o anão foge do tigre. e) o tigre não é feroz e o anão foge do tigre. 18)Se Elaine não ensaia, Elisa não estuda. Logo, a) Elaine ensaiar é condição necessária para Elisa não estudar. b) Elaine ensaiar é condição suficiente para Elisa estudar. c) Elaine não ensaiar é condição necessária para Elisa não estudar. d) Elaine não ensaiar é condição suficiente para Elisa estudar. e) Elaine ensaiar é condição necessária para Elisa estudar. 19)Uma sentença logicamente equivalente a “Se Ana é bela, então Carina é feia” é: a) Se Ana não é bela, então Carina não é feia. b) Ana é bela ou Carina não é feia. c) Se Carina é feia, Ana é bela. d) Ana é bela ou Carina é feia. e) Se Carina não é feia, então Ana não é bela. 20)Sabe-se que Beto beber é condição necessária para Carmem cantar e condição suficiente para Denise dançar. PROF PEDRÃO que: 2 a) x + 2x ≠ 200 e y = 200 b) x2 + 2x = 200 e y = 200 c) x2 + 2x = 200 e y ≠ 200 d) x = 0 e y ≠ 0 e) x ≠ 0 e y = 200 22)Carmem, Gerusa e Maribel são suspeitas de um crime. Sabe-se que o crime foi cometido por uma ou mais de uma delas, já que podem ter agido individualmente ou não. Sabese que, se Carmem é inocente, então Gerusa é culpada. Sabe-se também que ou Maribel é culpada ou Gerusa é culpada, mas não as duas. Maribel não é inocente. Logo, a) Gerusa e Maribel são as culpadas. b) Carmem e Maribel são culpadas. c) somente Carmem é inocente. d) somente Gerusa é culpada. e) somente Maribel é culpada. 23)Nas férias, Carmem não foi ao cinema. Sabe-se que sempre que Denis viaja, Denis fica feliz. Sabe-se, também, que nas férias, ou Dante vai à praia ou vai à piscina. Sempre que Dante vai à piscina, Carmem vai ao cinema, e sempre que Dante vai à praia, Denis viaja. Então, nas férias, a) Denis não viajou e Denis ficou feliz. b) Denis não ficou feliz, e Dante não foi à piscina. c) Dante foi à praia e Denis ficou feliz. d) Denis viajou e Carmem foi ao cinema. e) Dante não foi à praia e Denis não ficou feliz. 24)Dizer que “Ana não é alegre ou Beatriz é feliz” é do ponto de vista lógico, o mesmo que dizer: a) se Ana não é alegre, então Beatriz é feliz. b) se Beatriz é feliz, então Ana é alegre. c) se Ana é alegre, então Beatriz é feliz. d) se Ana é alegre, então Beatriz não é feliz. e) se Ana não é alegre, então Beatriz não é feliz. 25)Ana possui tem três irmãs: uma gremista, uma corintiana e outra fluminense. Uma das irmãs é loira, a outra morena, e a outra ruiva. Sabe-se que: 1) ou a gremista é loira, ou a fluminense é loira; 2) ou a gremista é morena, ou a corintiana é ruiva; 3) ou a fluminense é ruiva, ou a corintiana é ruiva; 4) ou a corintiana é morena, ou a fluminense é morena. Portanto, a gremista, a corintiana e a fluminense, são, respectivamente, a) loira, ruiva, morena. b) ruiva, morena, loira. c) ruiva, loira, morena. d) loira, morena, ruiva. e) morena, loira, ruiva. 26)Ana, Beatriz e Carla desempenham diferentes papéis em uma peça de teatro. Uma delas faz o papel de bruxa, a outra o de fada, e a outra o de princesa. Sabe-se que: ou Ana é bruxa, ou Carla é bruxa; ou Ana é fada, ou Beatriz é princesa; ou Carla é princesa, ou Beatriz é princesa; ou Beatriz é fada, ou Carla é fada. Com essas informações conclui-se que os papéis desempenhados por Ana e Carla são, respectivamente: a) bruxa e fada b) bruxa e princesa c) fada e bruxa d) princesa e fada e) fada e princesa 27)Carlos não ir ao Canadá é condição necessária para Alexandre ir à Alemanha. Helena não ir à Holanda é condição suficiente para Carlos ir ao Canadá. Alexandre não ir à Alemanha é condição necessária para Carlos não ir ao Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 23 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF Canadá. Helena ir à Holanda é condição suficiente para Alexandre ir à Alemanha. Portanto: a) Helena não vai à Holanda, Carlos não vai ao Canadá, Alexandre não vai à Alemanha. b) Helena vai à Holanda, Carlos vai ao Canadá, Alexandre não vai à Alemanha. c) Helena não vai à Holanda, Carlos vai ao Canadá, Alexandre não vai à Alemanha. d) Helena vai à Holanda, Carlos não vai ao Canadá, Alexandre vai à Alemanha. e) Helena vai à Holanda, Carlos não vai ao Canadá, Alexandre não vai à Alemanha. 28)A afirmação “Não é verdade que, se Pedro está em Roma, então Paulo está em Paris” é logicamente equivalente à afirmação: a) É verdade que ‘Pedro está em Roma e Paulo está em Paris’. b) Não é verdade que ‘Pedro está em Roma ou Paulo não está em Paris’. c) Não é verdade que ‘Pedro não está em Roma ou Paulo não está em Paris’. d) Não é verdade que ‘Pedro não está em Roma ou Paulo está em Paris’. e) É verdade que ‘Pedro está em Roma ou Paulo está em Paris’. 29)Considere a afirmação P: P: “A ou B” onde A e B, por sua vez, são as seguintes afirmações: A: “Carlos é dentista” B: “Se Enio é economista, então Juca é arquiteto” Ora, sabe-se que a afirmação P é falsa. Logo: a) Carlos não é dentista; Enio não é economista; Juca não é arquiteto. b) Carlos não é dentista; Enio é economista; Juca não é arquiteto. c) Carlos não é dentista; Enio é economista; Juca é arquiteto. d) Carlos é dentista; Enio não é economista; Juca não é arquiteto. e) Carlos é dentista; Enio é economista; Juca não é arquiteto. 30)O reino está sendo atormentado por um terrível dragão. O mago diz ao rei: “O dragão desaparecerá amanhã se e somente se Aladim beijou a princesa ontem”. O rei, tentando compreender melhor as palavras do mago, faz as seguintes perguntas ao lógico da corte: 1. Se a afirmação do mago é falsa e se o dragão desaparecer amanhã, posso concluir corretamente que Aladim beijou a princesa ontem? 2. Se a afirmação do mago é verdadeira e se o dragão desaparecer amanhã, posso concluir corretamente que Aladim beijou a princesa ontem? 3. Se a afirmação do mago é falsa e se Aladim não beijou a princesa ontem, posso concluir corretamente que o dragão desaparecerá amanhã?O lógico da corte, então, diz acertadamente que as respostas logicamente corretas para as três perguntas são, respectivamente: a) Não, sim, não b) Não, não, sim c) Sim, sim, sim d) Não, sim, sim e) Sim, não, sim 31)Se André é culpado, então Bruno é inocente. Se André é inocente, então Bruno é culpado. Se André é culpado, Leo é inocente. Se André é inocente, então Leo é culpado. Se Bruno é inocente, então Leo é culpado. Logo, André, Bruno e Leo são, respectivamente: a) Culpado, culpado, culpado. b) Inocente, culpado, culpado. c) Inocente, culpado, inocente. 24 2010 PROF PEDRÃO d) Inocente, inocente, culpado. e) Culpado, culpado, inocente. 32)Ana é prima de Bia, ou Carlos é filho de Pedro. Se Jorge é irmão de Maria, então Breno não é neto de Beto. Se Carlos é filho de Pedro, então Breno é neto de Beto. Ora, Jorge é irmão de Maria. Logo: a) Carlos é filho de Pedro ou Breno é neto de Beto. b) Breno é neto de Beto e Ana é prima de Bia. c) Ana não é prima de Bia e Carlos é filho de Pedro. d) Jorge é irmão de Maria e Breno é neto de Beto. e) Ana é prima de Bia e Carlos não é filho de Pedro. 33)Uma professora de matemática faz as três seguintes afirmações: “X > Q e Z < Y”; “X > Y e Q > Y, se e somente se Y > Z”; “R ≠ Q, se e somente se Y = X”. Sabendo-se que todas as afirmações da professora são verdadeiras, conclui-se corretamente que: a) X > Y > Q > Z b) X > R > Y > Z c) Z < Y < X < R d) X > Q > Z > R e) Q < X < Z < Y 34)Homero não é honesto, ou Júlio é justo. Homero é honesto, ou Júlio é justo, ou Beto é bondoso. Beto é bondoso, ou Júlio não é justo. Beto não é bondoso, ou Homero é honesto. Logo, a) Beto é bondoso, Homero é honesto, Júlio não é justo. b) Beto não é bondoso, Homero é honesto, Júlio não é justo. c) Beto é bondoso, Homero é honesto, Júlio é justo. d) Beto não é bondoso, Homero não é honesto, Júlio não é justo. e) Beto não é bondoso, Homero é honesto, Júlio é justo. 35)Ricardo, Rogério e Renato são irmãos. Um deles é médico, outro é professor, e o outro é músico. Sabe-se que: 1) ou Ricardo é médico, ou Renato é médico, 2) ou Ricardo é professor, ou Rogério é músico; 3) ou Renato é músico, ou Rogério é músico, 4) ou Rogério é professor, ou Renato é professor. Portanto, as profissões de Ricardo, Rogério e Renato são, respectivamente, a) professor, médico, músico. b) médico, professor, músico. c) professor, músico, médico. d) músico, médico, professor. e) médico, músico, professor. 36)Se Pedro é pintor ou Carlos é cantor, Mário não é médico e Sílvio não é sociólogo. Dessa premissa pode-se corretamente concluir que, a) se Pedro é pintor e Carlos não é cantor, Mário é médico ou Sílvio é sociólogo. b) se Pedro é pintor e Carlos não é cantor, Mário é médico ou Sílvio não é sociólogo. c) se Pedro é pintor e Carlos é cantor, Mário é médico e Sílvio não é sociólogo. d) se Pedro é pintor e Carlos é cantor, Mário é médico ou Sílvio é sociólogo. e) se Pedro não é pintor ou Carlos é cantor, Mário não é médico e Sílvio é sociólogo. 37) Sabe-se que João estar feliz é condição necessária para Maria sorrir e condição suficiente para Daniela abraçar Paulo. Sabe-se, também, que Daniela abraçar Paulo é condição necessária e suficiente para a Sandra abraçar Sérgio. Assim, quando Sandra não abraça Sérgio, a) João está feliz, e Maria não sorri, e Daniela abraça Paulo. b) João não está feliz, e Maria sorri, e Daniela não abraça Paulo. c) João está feliz, e Maria sorri, e Daniela não abraça Paulo. d) João não está feliz, e Maria não sorri, e Daniela não abraça Paulo. e) João não está feliz, e Maria sorri, e Daniela abraça Paulo. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF 38)Surfo ou estudo. Fumo ou não surfo. Velejo ou não estudo. Ora, não velejo. Assim, a) estudo e fumo. b) não fumo e surfo. c) não velejo e não fumo. d) estudo e não fumo. e) fumo e surfo. 39)Se não leio, não compreendo. Se jogo, não leio. Se não desisto, compreendo. Se é feriado, não desisto. Então, a) se jogo, não é feriado. b) se não jogo, é feriado. c) se é feriado, não leio. d) se não é feriado, leio. e) se é feriado, jogo. 40)Investigando uma fraude bancária, um famoso detetive colheu evidências que o convenceram da verdade das seguintes afirmações: 1) Se Homero é culpado, então João é culpado. 2) Se Homero é inocente, então João ou Adolfo são culpados. 3) Se Adolfo é inocente, então João é inocente. 4) Se Adolfo é culpado, então Homero é culpado. As evidências colhidas pelo famoso detetive indicam, portanto, que: a) Homero, João e Adolfo são inocentes. b) Homero, João e Adolfo são culpados. c) Homero é culpado, mas João e Adolfo são inocentes. d) Homero e João são inocentes, mas Adolfo é culpado. e) Homero e Adolfo são culpados, mas João é inocente. 41)Se não durmo, bebo. Se estou furioso, durmo. Se durmo, não estou furioso. Se não estou furioso, não bebo. Logo, a) não durmo, estou furioso e não bebo b) durmo, estou furioso e não bebo c) não durmo, estou furioso e bebo d) durmo, não estou furioso e não bebo e) não durmo, não estou furioso e bebo 42)Um jardineiro deve plantar cinco árvores em um terreno em que não há qualquer árvore. As cinco árvores devem ser escolhidas entre sete diferentes tipos, a saber: A, B, C, D, E, F, G, obedecidas as seguintes condições: 1. não pode ser escolhida mais de uma árvore de um mesmo tipo; 2. deve ser escolhida uma árvore ou do tipo D ou do tipo G, mas não podem ser escolhidas árvores de ambos os tipos; 3. se uma árvore do tipo B for escolhida, então não pode ser escolhida uma árvore do tipo D. Ora, o jardineiro não escolheu nenhuma árvore do tipo G. Logo, ele também não escolheu nenhuma árvore do tipo: a) D b) A c) C d) B e) E 43)Pedro, após visitar uma aldeia distante, afirmou: “Não é verdade que todos os aldeões daquela aldeia não dormem a sesta”. A condição necessária e suficiente para que a afirmação de Pedro seja verdadeira é que seja verdadeira a seguinte proposição: a) No máximo um aldeão daquela aldeia não dorme a sesta. b) Todos os aldeões daquela aldeia dormem a sesta. c) Pelo menos um aldeão daquela aldeia dorme a sesta. d) Nenhum aldeão daquela aldeia não dorme a sesta. e) Nenhum aldeão daquela aldeia dorme a sesta. 44)André é inocente ou Beto é inocente. Se Beto é inocente, então Caio é culpado. Caio é inocente se e somente se Dênis é culpado. Ora, Dênis é culpado. Logo: a) Caio e Beto são inocentes b) André e Caio são inocentes c) André e Beto são inocentes d) Caio e Dênis são culpados e) André e Dênis são culpados 45)Ana é artista ou Carlos é carioca. Se Jorge é juiz, então Breno não é bonito. Se Carlos é carioca, então Breno é bonito. Ora, Jorge é juiz. Logo: a) Jorge é juiz e Breno é bonito 2010 PROF PEDRÃO b) Carlos é carioca ou Breno é bonito c) Breno é bonito e Ana é artista d) Ana não é artista e Carlos é carioca e) Ana é artista e Carlos não é carioca 46)M = 2x + 3y, então M = 4p + 3r. Se M = 4p + 3r, então M = 2w – 3r. Por outro lado, M = 2x + 3y, ou M = 0. Se M = 0, então M+ H = 1. Ora, M+H ≠ 1. Logo, a) 2w – 3r = 0 b) 4p + 3r ≠ 2w – 3r c) M ≠ 2x + 3y d) 2x + 3y ≠ 2w – 3r e) M = 2w – 3r 47)No final de semana, Chiquita não foi ao parque. Ora, sabe-se que sempre que Didi estuda, Didi é aprovado. Sabe-se, também, que, nos finais de semana, ou Dadá vai à missa ou vai visitar tia Célia. Sempre que Dadá vai visitar tia Célia, Chiquita vai ao parque, e sempre que Dadá vai à missa, Didi estuda. Então, no final de semana, a) Dadá foi à missa e Didi foi aprovado. b) Didi não foi aprovado e Dadá não foi visitar tia Célia. c) Didi não estudou e Didi foi aprovado. d) Didi estudou e Chiquita foi ao parque. e) Dadá não foi à missa e Didi não foi aprovado. 48)Se X ≥ Y, então Z > P ou Q ≤ R. Se Z > P, então S ≤ T. Se S ≤ T, então Q ≤ R. Ora, Q > R, logo: a) S > T e Z ≤ P b) S ≥ T e Z > P c) X ≥ Y e Z ≤ P d) X > Y e Z ≤ P e) X < Y e S < T 49)O rei ir à caça é condição necessária para o duque sair do castelo, e é condição suficiente para a duquesa ir ao jardim. Por outro lado, o conde encontrar a princesa é condição necessária e suficiente para o barão sorrir e é condição necessária para a duquesa ir ao jardim. O barão não sorriu. Logo: a) A duquesa foi ao jardim ou o conde encontrou a princesa. b) Se o duque não saiu do castelo, então o conde encontrou a princesa. c) O rei não foi à caça e o conde não encontrou a princesa. d) O rei foi à caça e a duquesa não foi ao jardim. e) O duque saiu do castelo e o rei não foi à caça. 50)Ou Lógica é fácil, ou Artur não gosta de Lógica. Por outro lado, se Geografia não é difícil, então Lógica é difícil. Daí segue-se que, se Artur gosta de Lógica, então: a) Se Geografia é difícil, então Lógica é difícil. b) Lógica é fácil e Geografia é difícil. c) Lógica é fácil e Geografia é fácil. d) Lógica é difícil e Geografia é difícil. e) Lógica é difícil ou Geografia é fácil. 51)Se Iara não fala italiano, então Ana fala alemão. Se Iara fala italiano, então ou Ching fala chinês ou Débora fala dinamarquês. Se Débora fala dinamarquês, Elton fala espanhol. Mas Elton fala espanhol se e somente se não for verdade que Francisco não fala francês. Ora, Francisco não fala francês e Ching não fala chinês. Logo, a) Iara não fala italiano e Débora não fala dinamarquês. b) Ching não fala chinês e Débora fala dinamarquês. c) Francisco não fala francês e Elton fala espanhol. d) Ana não fala alemão ou Iara fala italiano. e) Ana fala alemão e Débora fala dinamarquês. 52)Dizer que não é verdade que Pedro é pobre e Alberto é alto, é logicamente equivalente a dizer que é verdade que: a) Pedro não é pobre ou Alberto não é alto. b) Pedro não é pobre e Alberto não é alto. c) Pedro é pobre ou Alberto não é alto. d) se Pedro não é pobre, então Alberto é alto. e) se Pedro não é pobre, então Alberto não é alto. 53)Se Carina é amiga de Carol, então Carmem é cunhada de Carol. Carmem não é cunhada de Carol. Se Carina não é cunhada de Carol, então Carina é amiga de Carol. Logo, a) Carina é cunhada de Carmem e é amiga de Carol. b) Carina não é amiga de Carol ou não é cunhada de Carmem. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 25 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF c) Carina é amiga de Carol ou não é cunhada de Carol. d) Carina é amiga de Carmem e é amiga de Carol. e) Carina é amiga de Carol e não é cunhada de Carmem. 54)Cinco aldeões foram trazidos à presença de um pomar real. Abelim, o primeiro a falar, falou tão baixo que o rei – que era um pouco surdo – não ouviu o que ele disse. Os outros quatro acusados disseram: Bebelim: “Cebelim é inocente”. Cebelim: “Dedelim é inocente”. Dedelim: “Ebelim é culpado”. Ebelim: “Abelim é culpado”. O mago Merlim, que vira o roubo das laranjas e ouvira as declarações dos cinco acusados, disse então ao rei: “Majestade, apenas um dos cinco acusados é culpado, e ele disse a verdade; os outros quatro são inocentes e todos os quatro mentiram”. O velho rei, que embora um pouco surdo era muito sábio, logo concluiu corretamente que o culpado era: a) Abelim b) Bebelim c) Cebelim d) Dedelim e) Ebelim 55)M = 2x + 3y, então M = 4p + 3r. Se M = 4p + 3r, então M = 2w – 3r. Por outro lado, M = 2x + 3y, ou M = 0. Se M = 0, então M+ H = 1. Ora, M+H ≠ 1. Logo, a) 2w – 3r = 0 b) 4p + 3r ≠ 2w – 3r c) M ≠ 2x + 3y d) 2x + 3y ≠ 2w – 3r e) M = 2w – 3r 56)No final de semana, Chiquita não foi ao parque. Ora, sabe-se que sempre que Didi estuda, Didi é aprovado. Sabe-se, também, que, nos finais de semana, ou Dadá vai à missa ou vai visitar tia Célia. Sempre que Dadá vai visitar tia Célia, Chiquita vai ao parque, e sempre que Dadá vai à missa, Didi estuda. Então, no final de semana, a) Dadá foi à missa e Didi foi aprovado. b) Didi não foi aprovado e Dadá não foi visitar tia Célia. c) Didi não estudou e Didi foi aprovado. d) Didi estudou e Chiquita foi ao parque. e) Dadá não foi à missa e Didi não foi aprovado. 57)Se X ≥ Y, então Z > P ou Q ≤ R. Se Z > P, então S ≤ T. Se S ≤ T, então Q ≤ R. Ora, Q > R, logo: a) S > T e Z ≤ P b) S ≥ T e Z > P c) X ≥ Y e Z ≤ P d) X > Y e Z ≤ P e) X < Y e S < T 58) Cícero quer ir ao circo, mas não tem certeza se o circo ainda está na cidade. Suas amigas, Cecília, Célia e Cleusa, têm opiniões discordantes sobre se o circo está na cidade. Se Cecília estiver certa, então Cleusa está enganada. Se Cleusa estiver enganada, então Célia está enganada. Se Célia estiver enganada, então o circo não está na cidade. Ora, ou o circo está na cidade, ou Cícero não irá ao circo. Verificou-se que Cecília está certa. Logo, a) o circo está na cidade. b) Célia e Cleusa não estão enganadas. c) Cleusa está enganada, mas não Célia. d) Célia está enganada, mas não Cleusa. e) Cícero não irá ao circo. 59)No último domingo, Dorneles não saiu para ir à missa. Ora, sabe-se que sempre que Denise dança, o grupo de Denise é aplaudido de pé. Sabe-se, também, que, aos domingos, ou Paula vai ao parque ou vai pescar na praia. Sempre que Paula vai pescar na praia, Dorneles sai para ir à missa e, sempre que Paula vai ao parque, Denise dança. Então, no último domingo, a) Paula não foi ao parque e o grupo de Denise foi aplaudido de pé. b) o grupo de Denise não foi aplaudido de pé e Paula não foi pescar na praia. c) Denise não dançou e o grupo de Denise foi aplaudido de pé. d) Denise dançou e seu grupo foi aplaudido de pé. e) Paula não foi ao parque e o grupo de Denise não foi aplaudido de pé. 26 2010 PROF PEDRÃO 60)Considere o seguinte argumento: “Se Soninha sorri, Sílvia é miss simpatia. Ora, Soninha não sorri. Logo, Sílvia não é miss simpatia”. Este não é um argumento logicamente válido, uma vez que: a) a conclusão não é decorrência necessária das premissas. b) a segunda premissa não é decorrência lógica da primeira. c) a primeira premissa pode ser falsa, embora a segunda possa ser verdadeira. d) a segunda premissa pode ser falsa, embora a primeira possa ser verdadeira. e) o argumento só é válido se Soninha na realidade não sorri. 61)A condição necessária e suficiente para a identidade sen 2 α = 2 sen α ser verdadeira é que α seja, em radianos, igual a: a) π/3 b) π/2 c) n π sendo n um número inteiro qualquer d) n π/2, sendo n um número inteiro qualquer e) n π/3 ,sendo n um número inteiro qualquer 62)Se Vera viajou, nem Camile nem Carla foram ao casamento. Se Carla não foi ao casamento, Vanderléia viajou. Se Vanderléia viajou, o navio afundou. Ora, o navio não afundou. Logo, a) Vera não viajou e Carla não foi ao casamento b) Camile e Carla não foram ao casamento c) Carla não foi ao casamento e Vanderléia não viajou d) Carla não foi ao casamento ou Vanderléia viajou e) Vera e Vanderléia não viajaram 63)Se a = b+p, então a = z+r. Se a = z+r, então a = w-r. Por outro lado, a = b+p, ou a = 0. Se a = 0, então a+u = 5. Ora, a+u ≠ 5. Logo, a) w-r = 0 b) a ≠ b+p c) a = w-r d) z+r ≠ w-r e) b+p ≠ w-r 64) Dizer que a afirmação “todos os economistas são médicos” é falsa, do ponto de vista lógico, equivale a dizer que a seguinte afirmação é verdadeira: a) pelo menos um economista não é médico b) nenhum economista é médico c) nenhum médico é economista d) pelo menos um médico não é economista e) todos os não médicos são não economistas 65) João e José sentam-se, juntos, em um restaurante. O garçom, dirigindo-se a João, pergunta-lhe:“Acaso a pessoa que o acompanha é seu irmão?”. João responde ao garçom: “Sou filho único, e o pai da pessoa que me acompanha é filho de meu pai”. Então, José é: a) pai de João b) filho de João c) neto de João d) avô de João e) tio de João 66) A partir das seguintes premissas: Premissa 1: "X é A e B, ou X é C" Premissa 2: "Se Y não é C, então X não é C" Premissa 3: "Y não é C" Conclui-se corretamente que X é: a) A e B b) não A ou não C c) A ou B d) A e não B e) não A e não B 67) Se -5 < 5x + 1 < 5, então 1 - x está entre: a) - 6/5 e - 4/5 b) - 11/5 e - 1/5 c) 4/5 e 6/5 d) - 4/5 e 6/5 e) 1/5 e 11/5 68)Dizer que “André é artista ou Bernardo não é engenheiro” é logicamente equivalente a dizer que: a) André é artista se e somente se Bernardo não é engenheiro. b) Se André é artista, então Bernardo não é engenheiro. c) Se André não é artista, então Bernardo é engenheiro d) Se Bernardo é engenheiro, então André é artista. e) André não é artista e Bernardo é engenheiro 69)Ou Anaís será professora, ou Anelise será cantora, ou Anamélia será pianista. Se Ana for atleta, então Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF Anaméliaserá pianista. Se Anelise for cantora, então Ana será atleta. Ora, Anamélia não será pianista. Então: a) Anaís será professora e Anelise não será cantora b) Anaís não será professora e Ana não será atleta c) Anelise não será cantora e Ana será atleta d) Anelise será cantora ou Ana será atleta e) Anelise será cantora e Anamélia não será pianista 70)Se é verdade que “Nenhum artista é atleta”, então também será verdade que: a) todos não-artistas são não-atletas b) nenhum atleta é não-artista c) nenhum artista é não-atleta d) pelo menos um não-atleta é artista e) nenhum não-atleta é artista 71)Em uma pequena comunidade, sabe-se que: "nenhum filósofo é rico" e que "alguns professores são ricos". Assim, pode-se afirmar, corretamente, que nesta comunidade a) alguns filósofos são professores b) alguns professores são filósofos c) nenhum filósofo é professor d) alguns professores não são filósofos e) nenhum professor é filósofo 72)Maria é magra ou Bernardo é barrigudo. Se Lúcia é linda, então César não é careca. Se Bernardo é barrigudo, então César é careca. Ora, Lúcia é linda. Logo: a) Maria é magra e Bernardo não é barrigudo b) Bernardo é barrigudo ou César é careca c) César é careca e Maria é magra d) Maria não é magra e Bernardo é barrigudo e) Lúcia é linda e César é careca 73)As seguintes afirmações, todas elas verdadeiras, foram feitas sobre a ordem de chegada dos convidados a uma festa: (a) Gustavo chegou antes de Alberto e depois de Danilo (b) Gustavo chegou antes de Beto e Beto chegou antes de Alberto se e somente se Alberto chegou depois de Danilo (c) Carlos não chegou junto com Beto se e somente se Alberto chegou junto com Gustavo. Logo, a) Carlos chegou antes de Alberto e depois de Danilo b) Gustavo chegou junto com Carlos c) Alberto chegou junto com Carlos e depois de Beto d) Alberto chegou depois de Beto e junto com Gustavo e) Beto chegou antes de Alberto e junto com Danilo 74)Se é verdade que "Alguns escritores são poetas" e que "Nenhum músico é poeta", então, também é necessariamente. a) nenhum músico é escritor b) algum escritor é músico c) algum músico é escritor d) algum escritor não é músico e) nenhum escritor é músico 75) Se Beraldo briga com Beatriz, então Beatriz briga com Bia. Se Beatriz briga com Bia, então Bia vai ao bar. Se Bia vai. Ora, Beto não briga com Bia. Logo, a) Bia não vai ao bar e Beatriz briga com Bia b) Bia vai ao bar e Beatriz briga com Bia c) Beatriz não briga com Bia e Beraldo não briga com Beatriz d) Beatriz briga com Bia e Beraldo briga com Beatriz e) Beatriz não briga com Bia e Beraldo briga com Beatriz 76) Se Flávia é filha de Fernanda, então Ana não é filha de Alice. Ou Ana é filha de Alice, ou Ênia é filha de Elisa. Se Paula é filha de Fernanda. Ora, nem Ênia é filha de Elisa nem Inês é filha de Isa. a) Paula é filha de Paulete e Flávia é filha de Fernanda. b) Paula é filha de Paulete e Ana é filha de Alice. c) Paula não é filha de Paulete e Ana é filha de Alice. d) Ênia é filha de Elisa ou Flávia é filha de Fernanda. 2010 PROF PEDRÃO e) Se Ana é filha de Alice, Flávia é filha de Fernanda. 77)Em uma comunidade, todo trabalhador é responsável. Todo artista, se não for filósofo, ou é trabalhador ou é poeta que não seja responsável. Portanto, tem-se que, necessariamente, a) todo responsável é artista b) todo responsável é filósofo ou poeta c) todo artista é responsável d) algum filósofo é poeta e) algum trabalhador é filósofo 78)Considere as seguintes premissas (onde X, Y, Z e P são conjuntos não vazios): Premissa 1: "X está contido em Y e em Z, ou X está contido em P" Premissa 2: "X não está contido em P" Pode-se, então, concluir que, necessariamente a) Y está contido em Z b) X está contido em Z c) Y está contido em Z ou em P d) X não está contido nem em P nem em Y e) X não está contido nem em Y e nem em Z 79) Chama-se tautologia a toda proposição que é sempre verdadeira, independentemente da verdade dos termos que a compõem. Um exemplo de tautologia é: a) se João é alto, então João é alto ou Guilherme é gordo b) se João é alto, então João é alto e Guilherme é gordo c) se João é alto ou Guilherme é gordo, então Guilherme é gordo d) se João é alto ou Guilherme é gordo, então João é alto e Guilherme é gordo e) se João é alto ou não é alto, então Guilherme é gordo 80)Ou A=B, ou B=C, mas não ambos. Se B=D, então A=D. Ora, B=D. Logo: a) B ≠ C b) B ≠ A c) C = A d) C = D e) D ≠ A 81)De três irmãos – José, Adriano e Caio –, sabe-se que ou José é o mais velho, ou Adriano é o mais moço. Sabe-se, também, que ou Adriano é o mais velho, ou Caio é o mais velho. Então, o mais velho e o mais moço dos três irmãos são, respectivamente: a) Caio e José b) Caio e Adriano c) Adriano e Caio d) Adriano e José e) José e Adriano 82)Se o jardim não é florido, então o gato mia. Se o jardim é florido, então o passarinho não canta. Ora, o passarinho canta. Logo: a) o jardim é florido e o gato mia b) o jardim é florido e o gato não mia c) o jardim não é florido e o gato mia d) o jardim não é florido e o gato não mia e) se o passarinho canta, então o gato não mia 83) Se Frederico é francês, então Alberto não é alemão. Ou Alberto é alemão, ou Egídio é espanhol. Se Pedro não é português, então Frederico é francês. Ora, nem Egídio é espanhol nem Isaura é italiana. Logo: a) Pedro é português e Frederico é francês b) Pedro é português e Alberto é alemão c) Pedro não é português e Alberto é alemão d) Egídio é espanhol ou Frederico é francês e) Se Alberto é alemão, Frederico é francês 84) Se Luís estuda História, então Pedro estuda Matemática. Se Helena estuda Filosofia, então Jorge estuda Medicina. Ora, Luís estuda História ou Helena estuda Filosofia. Logo, segue-se necessariamente que: a) Pedro estuda Matemática ou Jorge estuda Medicina b) Pedro estuda Matemática e Jorge estuda Medicina c) Se Luís não estuda História, então Jorge não estuda Medicina d) Helena estuda Filosofia e Pedro estuda Matemática e) Pedro estuda Matemática ou Helena não estuda Filosofia 85)Se Pedro é inocente, então Lauro é inocente. Se Roberto Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 27 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF é inocente, então Sônia é inocente. Ora, Pedro é culpado ou Sônia é culpada. Segue-se logicamente, portanto, que: a) Lauro é culpado e Sônia é culpada b) Sônia é culpada e Roberto é inocente c) Pedro é culpado ou Roberto é culpado d) Se Roberto é culpado, então Lauro é culpado e) Roberto é inocente se e somente se Lauro é inocente 86)Maria tem três carros: um Gol, um Corsa e um Fiesta. Um dos carros é branco, o outro é preto, e o outro é azul. Sabe-se que: 1) ou o Gol é branco, ou o Fiesta é branco, 2) ou o Gol é preto, ou o Corsa é azul, 3) ou o Fiesta é azul, ou o Corsa é azul, 4) ou o Corsa é preto, ou o Fiesta é preto. Portanto, as cores do Gol, do Corsa e do Fiesta são, respectivamente, a) branco, preto, azul b) preto, azul, branco c) azul, branco, preto d) preto, branco, azul e) branco, azul, preto 87)Um rei diz a um jovem sábio: "dizei-me uma frase e se ela for verdadeira prometo que vos darei ou um cavalo veloz, ou uma linda espada, ou a mão da princesa; se ela for falsa, não vos darei nada". O jovem sábio disse, então: "Vossa Majestade não me dará nem o cavalo veloz, nem a linda espada". Para manter a promessa feita, o rei: a) deve dar o cavalo veloz e a linda espada b) deve dar a mão da princesa, mas não o cavalo veloz nem a linda espada c) deve dar a mão da princesa e o cavalo veloz ou a linda espada d) deve dar o cavalo veloz ou a linda espada, mas não a mão da princesa e) não deve dar nem o cavalo veloz, nem a linda espada, nem a mão da princesa 88)Sabe-se que a ocorrência de B é condição necessária para a ocorrência de C e condição suficiente para a ocorrência de D. Sabe-se, também, que a ocorrência de D é condição necessária e suficiente para a ocorrência de A. Assim, quando C ocorre, a) D ocorre e B não ocorre b) D não ocorre ou A não ocorre c) B e A ocorrem d) nem B nem D ocorrem e) B não ocorre ou A não ocorre 89)Há três suspeitos de um crime: o cozinheiro, a governanta e o mordomo. Sabe-se que o crime foi efetivamente cometido por um ou por mais de um deles, já que podem ter agido individualmente ou não. Sabe- se, ainda, que: A) se o cozinheiro é inocente, então a governanta é culpada; B) ou o mordomo é culpado ou a governanta é culpada, mas não os dois; C) o mordomo não é inocente. Logo: a) a governanta e o mordomo são os culpados b) somente o cozinheiro é inocente c) somente a governanta é culpada d) somente o mordomo é culpado e) o cozinheiro e o mordomo são os culpados 90)José quer ir ao cinema assistir ao filme "Fogo contra Fogo", mas não tem certeza se o mesmo está sendo exibido. Seus amigos, Maria, Luís e Júlio têm opiniões discordantes sobre se o filme está ou não em cartaz. Se Maria estiver certa, então Júlio está enganado. Se Júlio estiver enganado, então Luís está enganado. Se Luís estiver enganado, então o filme não está sendo exibido. Ora, ou o filme "Fogo contra Fogo" está sendo exibido, ou José não irá ao cinema. Verificou-se que Maria está certa. Logo: a) o filme "Fogo contra Fogo" está sendo exibido b) Luís e Júlio não estão enganados c) Júlio está enganado, mas não Luís d) Luís está engando, mas não Júlio e) José não irá ao cinema 91) Cinco moças, Ana, Beatriz, Carolina, Denise e Eduarda, 28 2010 PROF PEDRÃO estão vestindo blusas vermelhas ou amarelas. Sabe-se que as moças que vestem blusas vermelhas sempre contam a verdade e as que vestem blusas amarelas sempre mentem. Ana diz que Beatriz veste blusa vermelha. Beatriz diz que Carolina veste blusa amarela. Carolina, por sua vez, diz que Denise veste blusa amarela. Por fim, Denise diz que Beatriz e Eduarda vestem blusas de cores diferentes. Por fim, Eduarda diz que Ana veste blusa vermelha. Desse modo, as cores das blusas de Ana, Beatriz, Carolina, Denise e Eduarda são, respectivamente: a) amarela, amarela, vermelha, vermelha e amarela. b) amarela, amarela, vermelha, amarela e amarela. c) vermelha, amarela, amarela, amarela e amarela. d) vermelha, amarela, vermelha, amarela e amarela. e) vermelha, vermelha, vermelha, amarela e amarela. 92)Maria foi informada por João que Ana é prima de Beatriz e Carina é prima de Denise. Como Maria sabe que João sempre mente, Maria tem certeza que a afirmação é falsa. Desse modo, e do ponto de vista lógico, Maria pode concluir que é verdade que: a) Ana é prima de Beatriz ou Carina não é prima de Denise. b) Ana não é prima de Beatriz e Carina não é prima de Denise. c) Ana não é prima de Beatriz ou Carina não é prima de Denise. d) se Ana não é prima de Beatriz, então Carina é prima de Denise. e) se Ana não é prima de Beatriz, então Carina não é prima de Denise. 93)Dois colegas estão tentando resolver um problema de matemática. Pedro afirma para Paulo que X = B e Y = D. Como Paulo sabe que Pedro sempre mente, então, do ponto de vista lógico, Paulo pode afirmar corretamente que: a) X ≠ B e Y ≠ D b) X = B ou Y ≠ D c) X ≠ B ou Y ≠ D d) se X ≠ B, então Y ≠ D e) se X ≠ B, então Y = D 94)Três amigos Lucas, Mário e Nelson moram em Teresina, Rio de Janeiro e São Paulo – não necessariamente nesta ordem. Todos eles vão ao aniversário de Maria que há tempos não os encontrava. Tomada de surpresa e felicidade, Maria os questiona onde cada um deles mora, obtendo as seguintes declarações: - Nelson: “Mário mora em Teresina”. - Lucas: “Nelson está mentindo, pois Mário mora em São Paulo”. - Mário: “Nelson e Lucas mentiram, pois eu moro em São Paulo”. Sabendo que o que mora em São Paulo mentiu e que o que mora em Teresina disse a verdade, segue-se que Maria concluiu que, Lucas e Nelson moram, respectivamente em a) Rio de Janeiro e Teresina. b) Teresina e Rio de Janeiro. c) São Paulo e Teresina. d) Teresina e São Paulo. e) São Paulo e Rio de Janeiro. 95)Um professor de lógica encontra-se em viajem em um país distante, habitado pelos verdamanos e pelos mentimanos. O que os distingue é que os verdamanos sempre dizem a verdade, enquanto os mentimanos sempre mentem. Certo dia, o professor depara-se com um grupo de cinco habitantes locais. Chamemo-los de Alfa, Beta, Gama, Delta e Épsilon. O professor sabe que um e apenas um no grupo é verdamano, mas não sabe qual deles o é. Pergunta, então, a cada um do grupo quem entre eles é verdamano e obtém as seguintes respostas: Alfa: “Beta é mentimano” Beta: “Gama é mentimano” Gama: “Delta é verdamano” Delta: “Épsilon é verdamano” Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF Épsilon, afônico, fala tão baixo que o professor não consegue ouvir sua resposta. Mesmo assim, o professor de lógica conclui corretamente que o verdamano é: a) Delta b) Alfa c) Gama d) Beta e) Épsilon 96)Pedro encontra-se à frente de três caixas, numeradas de 1 a 3. Cada uma das três caixas contém um e somente um objeto. Uma delas contém um livro; outra, uma caneta; outra, um diamante. Em cada uma das caixas existe uma inscrição, a saber: Caixa 1: “O livro está na caixa 3.” Caixa 2: “A caneta está na caixa 1.” Caixa 3: “O livro está aqui.” Pedro sabe que a inscrição da caixa que contém o livro pode ser verdadeira ou falsa. Sabe, ainda, que a inscrição da caixa que contém a caneta é falsa, e que a inscrição da caixa que contém o diamante é verdadeira. Com tais informações, Pedro conclui corretamente que nas caixas 1, 2 e 3 estão, respectivamente, a) a caneta, o diamante, o livro. b) o livro, o diamante, a caneta. c) o diamante, a caneta, o livro. d) o diamante, o livro, a caneta. e) o livro, a caneta, o diamante. 97)Perguntado sobre as notas de cinco alunas (Alice, Beatriz, Cláudia, Denise e Elenise), um professor de Matemática respondeu com as seguintes afirmações: 1. “A nota de Alice é maior do que a de Beatriz e menor do que a de Cláudia”; 2. “A nota de Alice é maior do que a de Denise e a nota de Denise é maior do que a de Beatriz, se e somente se a nota de Beatriz é menor do que a de Cláudia”; 3. “Elenise e Denise não têm a mesma nota, se e somente se a nota de Beatriz é igual à de Alice”. Sabendo-se que todas as afirmações do professor são verdadeiras, conclui-se corretamente que a nota de: a) Alice é maior do que a de Elenise, menor do que a de Cláudia e igual à de Beatriz. b) Elenise é maior do que a de Beatriz, menor do que a de Cláudia e igual à de Denise. c) Beatriz é maior do que a de Cláudia, menor do que a de Denise e menor do que a de Alice. d) Beatriz é menor do que a de Denise, menor do que a de Elenise e igual à de Cláudia. e) Denise é maior do que a de Cláudia, maior do que a de Alice e igual à de Elenise. 98)Ana encontra-se à frente de três salas cujas portas estão pintadas de verde, azul e rosa. Em cada uma das três salas encontra-se uma e somente uma pessoa – em uma delas encontra-se Luís; em outra, encontra-se Carla; em outra, encontra-se Diana. Na porta de cada uma das salas existe uma inscrição, a saber: Sala verde; “Luís está na sala de porta rosa” Sala azul: “Carla está na sala de porta verde” Sala Rosa: “Luís está aqui”. Ana sabe que a inscrição na porta onde Luís se encontra pode ser verdadeira ou falsa. Sabe, ainda, que a inscrição na porta da sala onde Carla se encontra é falsa, e que a inscrição na porta da sala em que Diana se encontra é verdadeira. Com tais informações, Ana conclui corretamente que nas salas de portas verdes, azul e rosa encontram-se, respectivamente, a) Diana, Luís, Carla b) Luís, Diana, Carla c) Diana, Carla, Luís d) Carla, Diana, Luis e) Luís, Carla, Diana. 99)Três rapazes - Alaor, Marcelo e Celso - chegam a um estacionamento dirigindo carros de cores diferentes. Um dirigindo um carro amarelo, o outro um carro bege e o terceiro um carro verde. Chegando ao estacionamento, o 2010 PROF PEDRÃO manobrista perguntou quem era cada um deles. O que dirigia o carro amarelo respondeu: “Alaor é o que estava dirigindo o carro bege”. O que estava dirigindo o carro bege falou: “eu sou Marcelo”. E o que estava dirigindo o carro verde disse: “Celso é quem estava dirigindo o carro bege” Como o manobrista sabia que Alaor sempre diz a verdade, que Marcelo às vezes diz a verdade e que Celso nunca diz a verdade, ele foi capaz de identificar quem era cada pessoa. As cores dos carros que Alaor e Celso dirigiam eram, respectivamente, iguais a: a) amarelo e bege b) verde e amarelo c) verde e bege d) bege e amarelo e) amarelo e verde 100)Em determinada universidade, foi realizado um estudo para avaliar o grau de satisfação de seus professores e alunos. O estudo mostrou que, naquela universidade, nenhum aluno é completamente feliz e alguns professores são completamente felizes. Uma conclusão logicamente necessária destas informações é que, naquela universidade, objeto da pesquisa, a) nenhum aluno é professor. b) alguns professores são alunos. c) alguns alunos são professores. d) nenhum professor é aluno. e) alguns professores não são alunos. 101)Três meninos estão andando de bicicleta. A bicicleta de um deles é azul, a do outro é preta, a do outro é branca. Eles vestem bermudas destas mesmas três cores, mas somente Artur está com bermuda de mesma cor que sua bicicleta. Nem a bermuda nem a bicicleta de Júlio são brancas. Marcos está com bermuda azul. Desse modo, a) a bicicleta de Júlio é azul e a de Artur é preta. b) a bicicleta de Marcos é branca e sua bermuda é preta. c) a bermuda de Júlio é preta e a bicicleta de Artur é branca. d) a bermuda de Artur é preta e a bicicleta de Marcos é branca. e) a bicicleta de Artur é preta e a bermuda de Marcos é azul. 102) Cinco irmãs nasceram, cada uma, em um Estado diferente do Brasil. Lúcia é morena como a cearense, é mais moça do que a gaúcha e mais velha do que Maria. A cearense, a paulista e Helena gostam de teatro tanto quanto Norma. A paulista, a mineira e Lúcia são, todas, psicólogas. A mineira costuma ir ao cinema com Helena e Paula. A paulista é mais moça do que a goiana, mas é mais velha do que a mineira; esta, por sua vez, é mais velha do que Paula. Logo: a) Norma é gaúcha, a goiana é mais velha do que a mineira, e Helena é mais moça do que a paulista. b) Paula é gaúcha, Lúcia é mais velha do que Helena, e a mineira é mais velha do que Maria. c) Norma é mineira, a goiana é mais velha do que a gaúcha, e Maria é mais moça do que a cearense. d) Lúcia é goiana, a gaúcha é mais moça do que a cearense, e Norma é mais velha do que a mineira. e) Paula é cearense, Lúcia é mais velha do que a paulista, e Norma é mais moça do que a gaúcha. 103)Quatro carros de cores diferentes, amarelo, verde, azul e preto, não - necessariamente nessa ordem, formam uma fila. O carro que está imediatamente antes do carro azul é menos veloz do que o que está imediatamente depois do carro azul. O carro verde é o menos veloz de todos e está depois do carro azul. O carro amarelo está depois do carro preto. As cores do primeiro e do segundo carro da fila, são, respectivamente, a) amarelo e verde b) preto e azul c) azul e verde. d) verde e preto. e) preto e amarelo. 104) Mauro, José e Lauro são três irmãos. Cada um deles nasceu em um estado diferente: um é mineiro, outro é Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 29 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF carioca, e outro é paulista (não necessariamente nessa ordem). Os três têm, também, profissões diferentes: um é engenheiro, outro é veterinário, e outro é psicólogo (não necessariamente nessa ordem). Sabendo que José é mineiro, que o engenheiro é paulista, e que Lauro é veterinário, conclui-se corretamente que: a) Lauro é paulista e José é psicólogo. b) Mauro é carioca e José é psicólogo. c) Lauro é carioca e Mauro é psicólogo. d) Mauro é paulista e José é psicólogo. e) Lauro é carioca e Mauro é engenheiro. 105) O sultão prendeu Aladim em uma sala. Na sala há três portas. Delas, uma e apenas uma conduz à liberdade; as duas outras escondem terríveis dragões. Uma porta é vermelha, outra é azul e a outra branca. Em cada porta há uma inscrição. Na porta vermelha está escrito: “esta porta conduz à liberdade”. Na porta azul está escrito: “esta porta não conduz à liberdade”. Finalmente, na porta branca está escrito: “a porta azul não conduz à liberdade”. Ora, a princesa – que sempre diz a verdade e que sabe o que há detrás de cada porta – disse a Aladim que pelo menos uma das inscrições é verdadeira, mas não disse nem quantas, nem quais. E disse mais a princesa: que pelo menos uma das inscrições é falsa, mas não disse nem quantas nem quais. Com tais informações, Aladim concluiu corretamente que: a) a inscrição na porta branca é verdadeira e a porta vermelha conduz à liberdade. b) a inscrição na porta vermelha é falsa e a porta azul conduz à liberdade. c) a inscrição na porta azul é verdadeira e a porta vermelha conduz à liberdade. d) a inscrição na porta branca é falsa e a porta azul conduz à liberdade. e) a inscrição na porta vermelha é falsa e a porta branca conduz à liberdade. 106) Fátima, Beatriz, Gina, Sílvia e Carla são atrizes de teatro infantil, e vão participar de uma peça em que representarão, não necessariamente nesta ordem, os papéis de Fada, Bruxa, Rainha, Princesa e Governanta. Como todas são atrizes versáteis, o diretor da peça realizou um sorteio para determinar a qual delas caberia cada papel. Antes de anunciar o resultado, o diretor reuniu-as e pediu que cada uma desse seu palpite sobre qual havia sido o resultado do sorteio. Disse Fátima: “Acho que eu sou a Governanta, Beatriz é a Fada, Sílvia é a Bruxa e Carla é a Princesa”. Disse Beatriz: “Acho que Fátima é a Princesa ou a Bruxa”. Disse Gina: “Acho que Silvia é a Governanta ou a Rainha”. Disse Sílvia: “Acho que eu sou a Princesa”. Disse Carla: “Acho que a Bruxa sou eu ou Beatriz”. Neste ponto, o diretor falou: “Todos os palpites estão completamente errados; nenhuma de vocês acertou sequer um dos resultados do sorteio” ! Um estudante de Lógica, que a tudo assistia, concluiu então, corretamente, que os papéis sorteados para Fátima, Beatriz, Gina e Sílvia foram, respectivamente, a) rainha, bruxa, princesa, fada. b) rainha, princesa, governanta, fada. c) fada, bruxa, governanta, princesa. d) rainha, princesa, bruxa, fada. e) fada, bruxa, rainha, princesa. 107) Três homens são levados à presença de um jovem lógico. Sabe-se que um deles é um honesto marceneiro, que sempre diz a verdade. Sabe-se, também, que um outro é um pedreiro, igualmente honesto e trabalhador, mas que tem o estranho costume de sempre mentir, de jamais dizer a verdade. Sabe-se, ainda, que o restante é um vulgar ladrão 30 2010 PROF PEDRÃO que ora mente, ora diz a verdade. O problema é que não se sabe quem, entre eles, é quem. À frente do jovem lógico, esses três homens fazem, ordenadamente, as seguintes declarações: O primeiro diz: “Eu sou o ladrão.” O segundo diz: “É verdade; ele, o que acabou de falar, é o ladrão.” O terceiro diz: “Eu sou o ladrão.” Com base nestas informações, o jovem lógico pode, então, concluir corretamente que: a) O ladrão é o primeiro e o marceneiro é o terceiro. b) O ladrão é o primeiro e o marceneiro é o segundo. c) O pedreiro é o primeiro e o ladrão é o segundo. d) O pedreiro é o primeiro e o ladrão é o terceiro. e) O marceneiro é o primeiro e o ladrão é o segundo. 108) Fernanda atrasou-se e chega ao estádio da Ulbra quando o jogo de vôlei já está em andamento. Ela pergunta às suas amigas, que estão assistindo à partida, desde o início, qual o resultado até o momento. Suas amigas dizemlhe: Amanda: “Neste set, o escore está 13 a 12”. Berenice: “O escore não está 13 a 12, e a Ulbra já ganhou o primeiro set”. Camila: “Este set está 13 a 12, a favor da Ulbra”. Denise: “O escore não está 13 a 12, a Ulbra está perdendo este set, e quem vai sacar é a equipe visitante”. Eunice: “Quem vai sacar é a equipe visitante, e a Ulbra está ganhando este set”. Conhecendo suas amigas, Fernanda sabe que duas delas estão mentindo e que as demais estão dizendo a verdade. Conclui, então, corretamente, que a) o escore está 13 a 12, e a Ulbra está perdendo este set, e quem vai sacar é a equipe visitante. b) o escore está 13 a 12, e a Ulbra está vencendo este set, e quem vai sacar é a equipe visitante. c) o escore não está 13 a 12, e a Ulbra está vencendo este set, e quem vai sacar é a equipe visitante. d) o escore não está 13 a 12, e a Ulbra não está vencendo este set, e a Ulbra venceu o primeiro set. e) o escore está 13 a 12, e a Ulbra vai sacar, e a Ulbra venceu o primeiro set. 109) Sócrates encontra-se em viagem por um distante e estranho país, formado por apenas duas aldeias, uma grande e outra pequena. Os habitantes entendem perfeitamente o português, mas falam apenas no idioma local, desconhecido por Sócrates. Ele sabe, contudo, que os habitantes da aldeia menor sempre dizem a verdade, e os da aldeia maior sempre mentem. Sabe, também, que “Milango” e “Nabungo” são as palavras no idioma local que significam “sim” e “não”, mas não sabe qual delas significa “sim” e nem, conseqüentemente, qual significa “não”. Um dia, Sócrates encontra um casal acompanhado de um jovem. Dirigindo-se a ele, e apontando para o casal, Sócrates pergunta: – Meu bom jovem, é a aldeia desse homem maior do que a dessa mulher? – Milango –, responde o jovem. – E a tua aldeia é maior do que a desse homem? –, voltou Sócrates a perguntar. – Milango –, tornou o jovem a responder. – E, dize-me ainda, és tu da aldeia maior? – perguntou Sócrates. – Nabungo –, disse o jovem. Sócrates, sorrindo, concluiu corretamente que a) o jovem diz a verdade, e o homem é da aldeia grande e a mulher da grande. b) o jovem mente, e o homem é da aldeia grande e a mulher da pequena. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF c) o jovem mente, e o homem é da aldeia pequena e a mulher da pequena. d) o jovem diz a verdade, e o homem é da aldeia pequena e a mulher da pequena. e) o jovem mente, e o homem é da aldeia grande e a mulher da grande. 110)Uma empresa produz andróides de dois tipos: os de tipo V, que sempre dizem a verdade, e os de tipo M, que sempre mentem. Dr. Turing, um especialista em Inteligência Artificial, está examinando um grupo de cinco andróides – rotulados de Alfa, Beta, Gama, Delta e Épsilon –, fabricados por essa empresa, para determinar quantos entre os cinco são do tipo V. Ele pergunta a Alfa: “Você é do tipo M?” Alfa responde mas Dr. Turing, distraído, não ouve a resposta. Os andróides restantes fazem, então, as seguintes declarações: Beta: “Alfa respondeu que sim”. Gama: “Beta está mentindo”. Delta: “Gama está mentindo”. Épsilon: “Alfa é do tipo M”. Mesmo sem ter prestado atenção à resposta de Alfa, Dr. Turing pôde, então, concluir corretamente que o número de andróides do tipo V, naquele grupo, era igual a a) 1 b) 2 c) 3 d) 4 e) 5. 111)Cinco irmãos exercem, cada um, uma profissão diferente. Luís é paulista, como o agrônomo, e é mais moço do que o engenheiro e mais velho do que Oscar. O agrônomo, o economista e Mário residem no mesmo bairro. O economista, o matemático e Luís são, todos, torcedores do Flamengo. O matemático costuma ir ao cinema com Mário e Nédio. O economista é mais velho do que Nédio e mais moço do que Pedro; este, por sua vez, é mais moço do que o arquiteto. Logo, a) Mário é engenheiro, e o matemático é mais velho do que o agrônomo, e o economista é mais novo do que Luís. b) Oscar é engenheiro, e o matemático é mais velho do que o agrônomo, e Luís é mais velho do que o matemático. c) Pedro é matemático, e o arquiteto é mais velho do que o engenheiro, e Oscar é mais velho do que o agrônomo. d) Luís é arquiteto, e o engenheiro é mais velho do que o agrônomo, e Pedro é mais velho do que o matemático. e) Nédio é engenheiro, e o arquiteto é mais velho do que o matemático, e Mário é mais velho do que o economista. 112)Caio, Décio, Éder, Felipe e Gil compraram, cada um, um barco. Combinaram, então, dar aos barcos os nomes de suas filhas. Cada um tem uma única filha, e todas têm nomes diferentes. Ficou acertado que nenhum deles poderia dar a seu barco o nome da própria filha e que a cada nome das filhas corresponderia um e apenas um barco. Décio e Éder desejavam, ambos, dar a seus barcos o nome de Laís, mas acabaram entrando em um acordo: o nome de Laís ficou para o barco de Décio e Éder deu a seu barco o nome de Mara. Gil convenceu o pai de Olga a pôr o nome de Paula em seu barco (isto é, no barco dele, pai de Olga). Ao barco de Caio, coube o nome de Nair, e ao barco do pai de Nair, coube o nome de Olga. As filhas de Caio, Décio, Éder, Felipe e Gil são, respectivamente, a) Mara, Nair, Paula, Olga, Laís. b) Laís, Mara, Olga, Nair, Paula. c) Nair, Laís, Mara, Paula, Olga. d) Paula, Olga, Laís, Nair, Mara. e) Laís, Mara, Paula, Olga, Nair. 113)Ana, Bia, Clô, Déa e Ema estão sentadas, nessa ordem e em sentido horário, em torno de uma mesa redonda. Elas estão reunidas para eleger aquela que, entre elas, passará a ser a representante do grupo. Feita a votação, verificou-se que nenhuma fôra eleita, pois cada uma delas havia recebido exatamente um voto. Após conversarem sobre tão inusitado resultado, concluíram que cada uma havia votado 2010 PROF PEDRÃO naquela que votou na sua vizinha da esquerda (isto é, Ana votou naquela que votou na vizinha da esquerda de Ana, Bia votou naquela que votou na vizinha da esquerda de Bia, e assim por diante). Os votos de Ana, Bia, Clô, Déa e Ema foram, respectivamente, para, a) Ema, Ana, Bia, Clô, Déa. b) Déa, Ema, Ana, Bia, Clô. c) Clô, Bia, Ana, Ema, Déa. d) Déa, Ana, Bia, Ema, Clô. e) Clô, Déa, Ema, Ana, Bia. 114) Ana e Júlia, ambas filhas de Márcia, fazem aniversário no mesmo dia. Ana, a mais velha, tem olhos azuis; Júlia, a mais nova, tem olhos castanhos. Tanto o produto como a soma das idades de Ana e Júlia, consideradas as idades em número de anos completados, são iguais a números primos. Segue-se que a idade de Ana – a filha de olhos azuis –, em número de anos completados, é igual a) à idade de Júlia mais 7 anos. b) ao triplo da idade de Júlia. c) à idade de Júlia mais 5 anos. d) ao dobro da idade de Júlia. e) à idade de Júlia mais 11 anos. 115) As seguintes afirmações, todas elas verdadeiras, foram feitas sobre a ordem de chegada dos participantes de uma prova de ciclismo: 1. Guto chegou antes de Aires e depois de Dada; 2. Guto chegou antes de Juba e Juba chegou antes de Aires, se e somente se Aires chegou depois de Dada; 3. Cacau não chegou junto com Juba, se e somente se Aires chegou junto com Guto. Logo, a) Cacau chegou antes de Aires, depois de Dada e junto com Juba b) Guto chegou antes de Cacau, depois de Dada e junto com Aires c) Aires chegou antes de Dada, depois de Juba e antes de Guto d) Aires chegou depois de Juba, depois de Cacau e junto com Dada e) Juba chegou antes de Dada, depois de Guto e junto com Cacau 116)Ana, Bia e Cátia disputaram um torneio de tênis. Cada vez que uma jogadora perdia, era substituída pela jogadora que estava esperando sua vez de jogar. Ao final do torneio verificou-se que Ana venceu 12 partidas e Bia venceu 21 partidas. Sabendo-se que Cátia não jogou a partida inicial, o número de vezes que Ana e Bia se enfrentaram foi: a) 14 b) 15 c) 16 d) 17 e) 18 117) Três amigos, Beto, Caio e Dario, juntamente com suas namoradas, sentaram-se, lado a lado, em um teatro, para assistir um grupo de dança. Um deles é carioca, outro é nordestino, e outro catarinense. Sabe-se, também que um é médico, outro é engenheiro, e outro é professor. Nenhum deles sentou-se ao lado da namorada, e nenhuma pessoa sentou-se ao lado de outra do mesmo sexo. As namoradas chamam-se, não necessariamente nesta ordem, Lúcia, Samanta e Teresa. O médico sentou-se em um dos dois lugares do meio, ficando mais próximo de Lúcia do que de Dario ou do que do carioca. O catarinense está sentado em uma das pontas, e a namorada do professor está sentada à sua direita. Beto está sentado entre Teresa, que está à sua esquerda, e Samanta. As namoradas de Caio e de Dario são, respectivamente: a) Teresa e Samanta b) Samanta e Teresa c) Lúcia e Samanta d) Lúcia e Teresa e) Teresa e Lúcia 118)Um professor de Lógica percorre uma estrada que liga, em linha reta, as vilas Alfa, Beta e Gama. Em Alfa, ele avista Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 31 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF dois sinais com as seguintes indicações: “Beta a 5 km” e “Gama a 7 km”. Depois, já em Beta, encontra dois sinais com as indicações: “Alfa a 4 km” e “Gama a 6 km”. Ao chegar a Gama, encontra mais dois sinais: “Alfa a 7 km” e “Beta a 3 km”. Soube, então, que, em uma das três vilas, todos os sinais têm indicações erradas; em outra, todos os sinais têm indicações corretas; e na outra um sinal tem indicação correta e outro sinal tem indicação errada (não necessariamente nesta ordem). O professor de Lógica pode concluir, portanto, que as verdadeiras distâncias, em quilômetros, entre Alfa e Beta, e entre Beta e Gama, são, respectivamente: a) 5 e 3 b) 5 e 6 c) 4 e 6 d) 4 e 3 e) 5 e 2 119) Três amigas encontram-se em uma festa. O vestido de uma delas é azul, o de outra é preto, e o da outra é branco. Elas calçam pares de sapatos destas mesmas três cores, mas somente Ana está com vestido e sapatos de mesma cor. Nem o vestido nem os sapatos de Júlia são brancos. Marisa está com sapatos azuis. Desse modo, a) o vestido de Júlia é azul e o de Ana é preto. b) o vestido de Júlia é branco e seus sapatos são pretos. c) os sapatos de Júlia são pretos e os de Ana são brancos. d) os sapatos de Ana são pretos e o vestido de Marisa é branco. e) o vestido de Ana é preto e os sapatos de Marisa são azuis. 120)Quatro casais reúnem-se para jogar xadrez. Como há apenas um tabuleiro, eles combinam que: a) nenhuma pessoa pode jogar duas partidas seguidas; b) marido e esposa não jogam entre si. Na primeira partida, Celina joga contra Alberto. Na segunda, Ana joga contra o marido de Júlia. Na terceira, a esposa de Alberto joga contra o marido de Ana. Na quarta, Celina joga contra Carlos. E na quinta, a esposa de Gustavo joga contra Alberto. A esposa de Tiago e o marido de Helena são, respectivamente: a) Celina e Alberto b) Ana e Carlos c) Júlia e Gustavo d) Ana e Alberto e) Celina e Gustavo 121)Três suspeitos de haver roubado o colar da rainha foram levados à presença de um velho e sábio professor de Lógica. Um dos suspeitos estava de camisa azul, outro de camisa branca e o outro de camisa preta. Sabe-se que um e apenas um dos suspeitos é culpado e que o culpado às vezes fala a verdade e às vezes mente. Sabe-se, também, que dos outros dois (isto é, dos suspeitos que são inocentes), um sempre diz a verdade e o outro sempre mente. O velho e sábio professor perguntou, a cada um dos suspeitos, qual entre eles era o culpado. Disse o de camisa azul: “Eu sou o culpado”. Disse o de camisa branca, apontando para o de camisa azul: “Sim, ele é o culpado”. Disse, por fim, o de camisa preta: “Eu roubei o colar da rainha; o culpado sou eu”. O velho e sábio professor de Lógica, então, sorriu e concluiu corretamente que: a) O culpado é o de camisa azul e o de camisa preta sempre mente. b) O culpado é o de camisa branca e o de camisa preta sempre mente. c) O culpado é o de camisa preta e o de camisa azul sempre mente. d) O culpado é o de camisa preta e o de camisa azul sempre diz a verdade. e) O culpado é o de camisa azul e o de camisa azul sempre diz a verdade. 122) Cinco amigas, Ana, Bia, Cati, Dida e Elisa, são tias ou irmãs de Zilda. As tias de Zilda sempre contam a verdade e as irmãs de Zilda sempre mentem. Ana diz que Bia é tia de Zilda. Bia diz que Cati é irmã de Zilda. Cati diz que Dida é irmã de Zilda. Dida diz que Bia e Elisa têm diferentes graus de parentesco com Zilda, isto é: se uma é tia a outra é irmã. 32 2010 PROF PEDRÃO Elisa diz que Ana é tia de Zilda. Assim, o número de irmãs de Zilda neste conjunto de cinco amigas é dado por: a) 1 b) 2 c) 3 d) 4 e) 5 123)Ana, Beatriz, Carlos, Deoclides, Ernani, Flávio e Germano fazem parte de uma equipe de vendas. O gerente geral acredita que se esses vendedores forem distribuídos em duas diferentes equipes haverá um aumento substancial nas vendas. Serão então formadas duas equipes: equipe A com 4 vendedores e equipe B com 3 vendedores. Dadas as características dos vendedores, na divisão, deverão ser obedecidas as seguintes restrições: a) Beatriz e Deoclides devem estar no mesmo grupo; b) Ana não pode estar no mesmo grupo nem com Beatriz, nem com Carlos. Ora, sabese que, na divisão final, Ana e Flávio foram colocados na equipe A. Então, necessariamente, a equipe B tem os seguintes vendedores: a) Beatriz, Carlos e Germano. b) Carlos, Deoclides e Ernani. c) Carlos, Deoclides e Germano. d) Beatriz, Carlos e Ernani. e) Beatriz, Carlos e Deoclides. 124) Quatro meninas que formam uma fila estão usando blusas de cores diferentes, amarelo, verde, azul e preto. A menina que está imediatamente antes da menina que veste blusa azul é menor do que a que está imediatamente depois da menina de blusa azul. A menina que está usando blusa verde é a menor de todas e está depois da menina de blusa azul. A menina de blusa amarela está depois da menina que veste blusa preta. As cores das blusas da primeira e da segunda menina da fila são, respectivamente: a) amarelo e verde b) azul e verde c) preto e azul. d) verde e preto. e) preto e amarelo. 125)No reino de Leones, em 1995, o setor público e o setor privado empregavam o mesmo número de pessoas. De 1995 para 2000, o número de empregados no setor público decresceu mais do que cresceu o número de empregados no setor privado. Curiosamente, porém, a taxa de desemprego no reino (medida pela razão entre o número total de desempregados e o número total da força de trabalho) permaneceu exatamente a mesma durante o período 1995-2000. Ora, sabe-se que as estatísticas econômicas e demográficas, em Leones, são extremamente precisas. Sabe-se, ainda, que toda a pessoa que faz parte da força de trabalho do reino encontra-se em uma e em somente uma das seguintes situações: a) está desempregada; b) está empregada no setor público; c) está empregada no setor privado. Pode-se portanto concluir que, durante o período considerado (1995-2000), ocorreu em Leones necessariamente o seguinte: a) A força de trabalho total diminuiu. b) O emprego total aumentou. c) O total de desempregados permaneceu constante. d) Os salários pagos pelo setor privado aumentaram, em média, mais do que os do setor público. e) Um número crescente de pessoas procuraram trabalho no setor privado. 126) Um agente de viagens atende três amigas. Uma delas é loura, outra é morena e a outra é ruiva. O agente sabe que uma delas se chama Bete, outra se chama Elza e a outra se chama Sara. Sabe, ainda, que cada uma delas fará uma viagem a um país diferente da Europa: uma delas irá à Alemanha, outra irá à França e a outra irá à Espanha. Ao agente de viagens, que queria identificar o nome e o destino de cada uma, elas deram as seguintes informações: A loura: “Não vou à França nem à Espanha”. A morena: “Meu nome não é Elza nem Sara”. A ruiva: “Nem eu nem Elza vamos à França”. O agente de viagens concluiu, então, acertadamente, que: Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF a) A loura é Sara e vai à Espanha. b) A ruiva é Sara e vai à França. c) A ruiva é Bete e vai à Espanha. d) A morena é Bete e vai à Espanha. e) A loura é Elza e vai à Alemanha. 127)Percival encontra-se à frente de três portas, numeradas de 1 a 3, cada uma das quais conduz a uma sala diferente. Em uma das salas encontra-se uma linda princesa; em outra, um valioso tesouro; finalmente, na outra, um feroz dragão. Em cada uma das portas encontra-se uma inscrição: Porta 1: “Se procuras a linda princesa, não entres; ela está atrás da porta 2.” Porta 2: “Se aqui entrares, encontrarás um valioso tesouro; mas cuidado: não entres na porta 3 pois atrás dela encontrase um feroz dragão.” Porta 3: “Podes entrar sem medo pois atrás desta porta não há dragão algum.” Alertado por um mago de que uma e somente uma dessas inscrições é falsa (sendo as duas outras verdadeiras), Percival conclui, então, corretamente que atrás das portas 1, 2 e 3 encontram-se, respectivamente: a) o feroz dragão, o valioso tesouro, a linda princesa b) a linda princesa, o valioso tesouro, o feroz dragão c) o valioso tesouro, a linda princesa, o feroz dragão d) a linda princesa, o feroz dragão, o valioso tesouro e) o feroz dragão, a linda princesa, o valioso tesouro 128) Anelise, Anaís e Anália estão sentadas lado a lado, nesta ordem. Sabe-se que Anália é mais velha do que Anaís, que é mais velha do que Anelise. São dadas a Beto, Dario e Caio as seguintes informações: - as idades das meninas são números inteiros positivos; - a soma das idades é igual a 13. Beto ao saber a idade de Anelise diz: "Não tenho informações suficientes para determinar as idades das outras duas meninas.” Em seguida, Caio, ao saber a idade de Anália diz: "Não tenho informações suficientes para determinar as idades das outras duas meninas." Por fim, Dario, ao saber a idade de Anaís diz: "Não tenho informações suficientes para determinar as idades das outras duas meninas." Sabendo que cada um deles sabe que os outros dois são inteligentes e escuta os comentários dos outros, qual é a idade de Anaís? a) 2 b) 3 c) 4 d) 5 e) Não há informações suficientes para determinar a idade de Anaís. 129)Os cursos de Márcia, Berenice e Priscila são, não necessariamente nesta ordem, Medicina, Biologia e Psicologia. Uma delas realizou seu curso em Belo Horizonte, a outra em Florianópolis, e a outra em São Paulo. Márcia realizou seu curso em Belo Horizonte. Priscila cursou Psicologia. Berenice não realizou seu curso em São Paulo e não fez Medicina. Assim, os cursos e os respectivos locais de estudo de Márcia, Berenice e Priscila são, pela ordem: a) Medicina em Belo Horizonte, Psicologia em Florianópolis, Biologia em São Paulo b) Psicologia em Belo Horizonte, Biologia em Florianópolis, Medicina em São Paulo c) Medicina em Belo Horizonte, Biologia em Florianópolis, Psicologia em São Paulo d) Biologia em Belo Horizonte, Medicina em São Paulo, Psicologia em Florianópolis e) Medicina em Belo Horizonte, Biologia em São Paulo, Psicologia em Florianópolis 130)Todas as amigas de Aninha que foram à sua festa de aniversário estiveram, antes, na festa de aniversário de Betinha. Como nem todas amigas de Aninha estiveram na festa de aniversário de Betinha, conclui-se que, das amigas de Aninha, 2010 PROF PEDRÃO a) todas foram à festa de Aninha e algumas não foram à festa de Betinha. b) pelo menos uma não foi à festa de Aninha.c) todas foram à festa de Aninha e nenhuma foi à festa de Betinha. d) algumas foram à festa de Aninha mas não foram à festa de Betinha. e) algumas foram à festa de Aninha e nenhuma foi à festa de Betinha. 131)Daniel encontra-se em visita ao país X. Este país é formado por apenas duas tribos, a saber, a tribo dos Nuncamentem e a dos Semprementem. Embora utilizem exatamente a mesma língua, os Nuncamentem sempre dizem a verdade, e os Semprementem jamais dizem a verdade. Daniel ainda não domina o idioma local. Sabe que “balá” e “melé” são as palavras utilizadas para significar “sim” e “não”. O que Daniel não sabe é qual delas significa “sim” e qual delas significa “não”. Daniel encontra três amigos, habitantes de X, sem saber quantos deles são Nuncamentem e quantos são Semprementem. Daniel pergunta a cada um dos três separadamente: “Os teus dois amigos são Nuncamentem?”. A esta pergunta, todos os três respondem “balá”. A seguir, Daniel pergunta a cada um dos três separadamente: “Os teus dois amigos são Semprementem?”. A esta pergunta, os dois primeiros respondem “balá”, enquanto o terceiro responde “melé”. Daniel pode, então, concluir corretamente que: a) exatamente dois amigos são Semprementem e “balá” significa “sim”. b) exatamente dois amigos são Nuncamentem e “balá” significa “sim”. c) exatamente dois amigos são Semprementem e “balá” significa “não”. d) os três amigos são Semprementem e “balá” significa “não”. e) exatamente dois amigos são Nuncamentem e “balá” significa “não”. 132) Depois de um assalto a um banco, quatro testemunhas deram quatro diferentes descrições do assaltante segundo quatro características, a saber: estatura, cor de olhos, tipo de cabelos e usar ou não bigode. Testemunha 1: “Ele é alto, olhos verdes, cabelos crespos e usa bigode.” Testemunha 2: “Ele é baixo, olhos azuis, cabelos crespos e usa bigode.” Testemunha 3: “Ele é de estatura mediana, olhos castanhos, cabelos lisos e usa bigode.” Testemunha 4: “Ele é alto, olhos negros, cabelos crespos e não usa bigode.” Cada testemunha descreveu corretamente uma e apenas uma das características do assaltante, e cada característica foi corretamente descrita por uma das testemunhas. Assim, o assaltante é: a) baixo, olhos azuis, cabelos lisos e usa bigode. b) alto, olhos azuis, cabelos lisos e usa bigode. c) baixo, olhos verdes, cabelos lisos e não usa bigode. d) estatura mediana, olhos verdes, cabelos crespos e não usa bigode. e) estatura mediana, olhos negros, cabelos crespos e não usa bigode. 133)Cinco colegas foram a um parque de diversões e um deles entrou sem pagar. Apanhados por um funcionário do parque, que queria saber qual deles entrou sem pagar, eles informaram: – “Não fui eu, nem o Manuel”, disse Marcos. – “Foi o Manuel ou a Maria”, disse Mário. – “Foi a Mara”, disse Manuel. – “O Mário está mentindo”, disse Mara. Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 33 ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF – “Foi a Mara ou o Marcos”, disse Maria. Sabendo-se que um e somente um dos cinco colegas mentiu, conclui-se logicamente que quem entrou sem pagar foi: a) Mário b) Marcos c) Mara d) Manuel e) Maria 134) Beatriz encontrava-se em viagem por um país distante, habitado pelos vingos e pelos mingos. Os vingos sempre dizem a verdade; já os mingos sempre mentem. Certo dia, vendo-se perdida em uma estrada, Beatriz dirigiu-se a um jovem que por ali passava e perguntou-lhe: “Esta estrada leva à Aldeia Azul?”. O jovem respondeu-lhe: “Sim, esta estrada leva à Aldeia Azul”. Como não soubesse se o jovem era vingo ou mingo, Beatriz fez-lhe outra pergunta: “E se eu te perguntasse se és mingo, o que me responderias?”. E o jovem respondeu: “Responderia que sim”. Dadas as respostas do jovem, Beatriz pôde concluir corretamente que a) o jovem era mingo e a estrada não levava à Aldeia Azul b) o jovem era mingo e a estrada levava à Aldeia Azul c) o jovem era vingo e a estrada não levava à Aldeia Azul d) o jovem era vingo e a estrada levava à Aldeia Azul e) o jovem poderia ser vingo ou mingo, e a estrada levava à Aldeia Azul 135) Três amigos, Mário, Nilo e Oscar, juntamente com suas esposas, sentaram-se, lado a lado, à beira do cais, para apreciar o pôr-do-sol. Um deles é flamenguista, outro é palmeirense, e outro vascaíno. Sabe-se, também, que um é arquiteto, outro é biólogo, e outro é cozinheiro. Nenhum deles sentou-se ao lado da esposa, e nenhuma pessoa sentou-se ao lado de outra do mesmo sexo. As esposas chamam-se, não necessariamente nesta ordem, Regina, Sandra e Tânia. O arquiteto sentou-se em um dos dois lugares do meio, ficando mais próximo de Regina do que de Oscar ou do que do flamenguista. O vascaíno está sentado em uma das pontas, e a esposa do cozinheiro está sentada à sua direita. Mário está sentado entre Tânia, que está à sua esquerda, e Sandra. As esposas de Nilo e de Oscar são, respectivamente: a) Regina e Sandra b) Tânia e Sandra c) Sandra e Tânia d) Regina e Tânia e) Tânia e Regina 136) Um crime foi cometido por uma e apenas uma pessoa de um grupo de cinco suspeitos: Armando, Celso, Edu, Juarez e Tarso. Perguntados sobre quem era o culpado, cada um deles respondeu: Armando: "Sou inocente" Celso: "Edu é o culpado" Edu: "Tarso é o culpado" Juarez: "Armando disse a verdade" Tarso: "Celso mentiu" Sabendo-se que apenas um dos suspeitos mentiu e que todos os outros disseram a verdade, pode-se concluir que o culpado é: a) Armando b) Celso c) Edu d) Juarez e) Tarso 137) Três amigos – Luís, Marcos e Nestor – são casados com Teresa, Regina e Sandra (não necessariamente nesta ordem). Perguntados sobre os nomes das respectivas esposas, os três fizeram as seguintes declarações: Nestor: "Marcos é casado com Teresa" Luís: "Nestor está mentindo, pois a esposa de Marcos é Regina" Marcos: "Nestor e Luís mentiram, pois a minha esposa é Sandra" Sabendo-se que o marido de Sandra mentiu e que o marido de Teresa disse a verdade, segue-se que as esposas de Luís, Marcos e Nestor são, respectivamente: a) Sandra, Teresa, Regina b) Sandra, Regina, Teresa c) Regina, Sandra, Teresa d) Teresa, Regina, Sandra e) Teresa, Sandra, Regina 138) A negação da afirmação condicional "se estiver 34 2010 PROF PEDRÃO chovendo, eu levo o guarda-chuva" é: a) se não estiver chovendo, eu levo o guarda-chuva b) não está chovendo e eu levo o guarda-chuva c) não está chovendo e eu não levo o guarda-chuva d) se estiver chovendo, eu não levo o guarda-chuva e) está chovendo e eu não levo o guarda-chuva 139) Dizer que "Pedro não é pedreiro ou Paulo é paulista" é, do ponto de vista lógico, o mesmo que dizer que: a) se Pedro é pedreiro, então Paulo é paulista b) se Paulo é paulista, então Pedro é pedreiro c) se Pedro não é pedreiro, então Paulo é paulista d) se Pedro é pedreiro, então Paulo não é paulista e) se Pedro não é pedreiro, então Paulo não é paulista 140) Considere as afirmações: A) se Patrícia é uma boa amiga, Vítor diz a verdade; B) se Vítor diz a verdade, Helena não é uma boa amiga; C) se Helena não é uma boa amiga, Patrícia é uma boa amiga. A análise do encadeamento lógico dessas três afirmações permite concluir que elas: a) implicam necessariamente que Patrícia é uma boa amiga b) são consistentes entre si, quer Patrícia seja uma boa amiga, quer Patrícia não seja uma boa amiga c) implicam necessariamente que Vítor diz a verdade e que Helena não é uma boa amiga d) são equivalentes a dizer que Patrícia é uma boa amiga e) são inconsistentes entre si 141) Quatro amigos, André, Beto, Caio e Dênis, obtiveram os quatro primeiros lugares em um concurso de oratória julgado por uma comissão de três juízes. Ao comunicarem a classificação final, cada juiz anunciou duas colocações, sendo uma delas verdadeira e a outra falsa: Juiz 1: “André foi o primeiro; Beto foi o segundo” Juiz 2: “André foi o segundo; Dênis foi o terceiro” Juiz 3: “Caio foi o segundo; Dênis foi o quarto” Sabendo que não houve empates, o primeiro, o segundo, o terceiro e o quarto colocados foram, respectivamente, a) André, Caio, Beto, Dênis b) André, Caio, Dênis, Beto c) Beto, André, Dênis, Caio d) Beto, André, Caio, Dênis e) Caio, Beto, Dênis, André 142) Os carros de Artur, Bernardo e Cesar são, não necessariamente nesta ordem, uma Brasília, uma Parati e um Santana. Um dos carros é cinza, um outro éverde, e o outro é azul. O carro de Artur é cinza; o carro de Cesar é o Santana; o carro de Bernardo não é verde e não é a Brasília. As cores da Brasília, da Parati e do Santana são, respectivamente: a) cinza, verde e azul b) azul, cinza e verde c) azul, verde e cinza d) cinza, azul e verde e) verde, azul e cinza 143) Três amigas, Tânia, Janete e Angélica, estão sentadas lado a lado em um teatro. Tânia sempre fala a verdade; Janete às vezes fala a verdade; Angélica nunca fala a verdade. A que está sentada à esquerda diz: "Tânia é quem está sentada no meio". A que está sentada no meio diz: "Eu sou Janete". Finalmente, a que está sentada à direita diz: "Angélica é quem está sentada no meio". A que está sentada à esquerda, a que está sentada no meio e a que está sentada à direita são, respectivamente: a) Janete, Tânia e Angélica b) Janete, Angélica e Tânia c) Angélica, Janete e Tânia d) Angélica, Tânia e Janete e) Tânia, Angélica e Janete 144)Se Nestor disse a verdade, Júlia e Raul mentiram. Se Raul mentiu, Lauro falou a verdade. Se Lauro falou a verdade, há um leão feroz nesta sala. Ora, não há um leão feroz nesta sala. Logo: a) Nestor e Júlia disseram a verdade b) Nestor e Lauro mentiram c) Raul e Lauro mentiram d) Raul mentiu ou Lauro disse a verdade Neste curso os melhores alunos estão sendo preparados pelos melhores Professores ANÁLISE COMBINATÓRIA E PROBABILIDADES CESPE E ESAF PROF PEDRÃO e) Raul e Júlia mentiram 145)Sabe-se que na equipe do X Futebol Clube (XFC) há um atacante que sempre mente, um zagueiro que sempre fala a verdade e um meio-campista que às vezes fala a verdade e às vezes mente. Na saída do estádio, dirigindo-se a um torcedor que não sabia o resultado do jogo que terminara, um deles declarou "Foi empate", o segundo disse "Não foi empate" e o terceiro falou "Nós perdemos". O torcedor reconheceu somente o meio-campista mas pôde deduzir o resultado do jogo com certeza.AA declaração do meio-campista e o resultado do jogo foram, respectivamente: a) "Foi empate"/ o XFC venceu b) "Não foi empate"/ empate c) "Nós perdemos / o XFC perdeu d) "Não foi empate" / o XFC perdeu e) "Foi empate" / empate GABARITO – QUESTÕES ESAF 01) A 06) A 11) B 16) C 21) C 26) A 31) B 36) B 41) D 46) E 51) A 56) A 61) C 66) C 71) D 76) B 81) B 86) E 91) B 96) C 101)C 106)D 111)A 116)D 121)A 126)E 131)E 136)E 141)B 02) D 07) E 12) E 17) A 22) B 27) C 32) E 37) D 42) D 47) A 52) A 57) A 62) E 67) E 72) A 77) C 82) C 87) B 92) C 97) B 102)E 107)B 112)E 117)B 122)D 127)E 132)C 137)D 142)D 2010 03) C 08) A 13) D 18) E 23) C 28) D 33) B 38) E 43) C 48) A 53) B 58) E 63) C 68) D 73) A 78) B 83) B 88) C 93) C 98) C 103)B 108)B 113)B 118)E 123)E 128) C 133)C 138)E 143)B 04) B 09) E 14) C 19) D 24) C 29) B 34) C 39) A 44) B 49) C 54) C 59) D 64) A 69) A 74) D 79) A 84) A 89) E 94) N 99) C 104)B 109)E 114)D 119)C 124)C 129)C 134)A 139)A 144)B 05) A 10) A 15) E 20) E 25) A 30) A 35) E 40) B 45) E 50) B 55) E 60) A 65) B 70) D 75) C 80) A 85) C 90) E 95) D 100) B 105)E 110)B 115)A 120)A 125)A 130)B 135)C 140)B 145)A Neste curso os melhores alunos estão sendo preparados pelos melhores Professores 35