Sistemas e Sinais (LEIC) – Análise em Frequência Carlos Cardeira Análise em Frequência Até agora a análise que temos feito tem o tempo como domínio. As saídas podiam ser funções no tempo correspondentes a sinais discretos ou contínuos ou mesmo sequências de eventos. Na análise em frequência, vamos ver os sinais não como funções do tempo mas sim como combinações de sinusoides A ferramenta de trabalho vai incidir sobre as séries de Fourrier Análise em Frequência As séries de Fourier permitem definior qualquer função periódica como combinações de sinusoides. A representação de sinais periódicos através de sinusoides está também na base de muitos trabalhos de compressão de sinais. Em sistemas lineares, se um sinal de entrada é uma sinusoide de determinada frequência, a saída é uma sinusoide da mesma frequência (a amplitude e a fase é que poderão variar). Análise em Frequência Um LTI pode ser caracterizado no tempo através da resposta impulsiva e também na frequência através da resposta em frequência. Veremos que a resposta em frequência é a transformada de Fourrier da resposta impulsiva. As respostas no tempo e na frequência estão relacionadas. Exponenciais complexas A melhor forma de estudar sinusoides é através das exponenciais complexas. O apendice B apresenta um resumo dos sinais complexos, que deve ser lido para relembrar conceitos. Sinusoides Como vimos nos capítulos introdutórios vimos como as sinusoides representam sons. Sin (2pi x 880t) corresponde a uma nota músical definida. O argumento de um sinal é um ângulo. Um ângulo mede-se em radianos. 2pi tem unidades radianos, t é em segundos e a frequência mede-se em ciclos por segundo (Hz). Ciclos é adimensional pelo que o resultado é em radianos. Sinusoides sin (wt) é uma representação mais simples. W=2 x pi x f, e mede-se em radianos por segundo. Se o tempo for discreto poderemos ter sin (2 x pi x f x n). n mede-se em amostras (multiplicado por delta daria o tempo). f mede-se em ciclos por amostra e w em radianos por amostra. O resultado final tem que dar sempre em radianos de modo a poder ser um argumento do som. Em Matllab é fácil ver as formas sinousoides dos sons e ouvi-las. Para quem sabe de música, é fácil fazer uma escala musical. Sinusoides A soma de duas sinusoides não se parece com uma sinusoide. No entanto, a partir da soma das sinusoides é possível recuperar cada uma das suas componentes. Sinusoides e sons Os ouvidos conseguem distinguir sons de frequências diferentes. Os ouvidos não são sensíveis a diferenças de fase no sinal. sin (w x t) ou sin (w x t + phi) soam da mesma forma. Um atraso num sinal sinusoidal pode ser representado por um desvio de fase. Nem todos os sinais têm esta característica. Sinusoides e sons Se tivermos um som composto por várias sinusoides e formos mudando a fase de um deles, a forma do sinal pode variar bastante mas o sinal ouvido é o mesmo. Em imagens, qualquer diferença de fase é imediatamente reconhecida Sinusoides e Imagens No lab já vimos imagens que poderiam ser representadas por sinusoides. Existe agora uma frequência vertcial e uma frequencia horizontal que se mede em ciclos por amostra. As diferenças de fase são imediatamente reconhecidas. Jpeg é uma representação da imagem em que se apresentam apenas os coeficientes destas sinusoides. Espectro Rádio Onda média vai de 535 a 1705 kHz com 10 Khz de largura de banda FM vai de 88 a 108 Mhz com 0,2 Mhz de largura de banda TV analógica tem 6 Mhz de largura de banda Com a TV digital terrestre, nos mesmos 6 Mhz seria possível transmitir muito mais canais. Espectro Rádio A potência de emissão é limitada. Como a potência do sinal decai com o quadrado da distância, a mesma frequência pode ser reutilizada noutro local. Em ferquencias elevadas a queda de sinal com a distância é ainda mais notória. As antenas de telemóveis usam frequências elevadas e são em grande número (tipicamente, uma em cada 2 km). Como o alcance é reduzido, podem repetir a mesma frequência alguns kilómetros depois. Quando se muda de estação há um protocolo complexo (uma máquina de estados) para que as frequências mudem sem que o utilizador se aperceba. Sinais Periódicos Sistemas contínuos: Um sinal é periodico de periodo p se: t R, f (t p) f (t ) Sinais Periódicos e Sinusoides Sistemas discretos: Um sinal é periodico de periodo p se: n Inteiros , f (n p) f (n) Sinais Periódicos Em sistemas contínuos o periodo pode ter qualquer valor real (0.47 por exemplo). Em sistemas discretos o periodo apenas assumir valores inteiros uma vez que p+n tem que continuar a pertencer ao domínio de f. Frequência fundamental Se um sinal tiver período p chama-se frequencia fundamental ao valor 2pi/p A frequência fundamental medese em radianos/s uma vez que o período se mede em segundos w0 2 p Frequência fundamental Sinais com a mesma frequência fundamental Teorema fundamental Qualquer sinal periódico pode ser decomposto numa soma de sinusoides múltiplas da frequência fundamental. Frequência fundamental e harmónicas A primeira sinusóide é a da frequência fundamental. Às sinusoides multiplas desta, chamamse harmónicas. As harmónicas tem frequências multiplas da frequencia fundamental e têm amplitudes e fases diferentes. A0 é a componente DC do sinal (o valor médio do sinal) Harmónicas As ondas triangulares como as quadradas apresentadas anteriormente (ou qualquer outro sinal periódico com a mesma frequência fundamental) podem ser representados pela soma de sinusoides, com as mesmas frequências embora as amplitudes e fases de cada harmónica sejam naturalmente diferentes. Exemplos Exemplos Sistemas Lineares Os sistemas lineares não alteram a frequência do sinal, podem apenas mudar a amplitude e a fase. Por exemplo, uma estação de emissão de rádio não é linear porque o sinal de voz não tem a mesma frequência do sinal de emissão. Sinais Finitos f(t) t R f (t ) g t np n p g(t) p p p Sinais finitos Seja f(t) um sinal finito (domínio finito) qualquer Seja g(t) a sua replicação infinita t R f (t ) g t np n g(t) é periódico e pode ser representado por uma série de Fourier. O que quer dizer que a série de Fourier também representará o sinal f no seu domínio Significado de A0 Consideremos o desenvolvimento em série de fourier de um sinal: f (t ) A0 Ak cos(kw0t k ) k 1 Integrando ao longo de um período: a p A0 a Ak cos( kw0t k ) dt k 1 Ou seja, A0 é o valor médio do sinal A0 p Exponenciais Complexas cos sin 1 j 1 e e 2 2 1 j e e 2j Apêndice B j j Série de Fourier na forma exponencial f (t ) A0 k 1 X ke k jkw0t Ak j ( kw0t e 2 X k k ) e j ( kw0t k ) A0 if k 0 j k 0.5 Ak e if k 0 0.5 A k e j k if k 0 Sinais reais Suponhamos que o sinal é real Xk e X-k são necessariamente complexos conjugados X k A0 if k 0 j k 0.5 Ak e if k 0 0 .5 A k e j Xk k X k k if k 0 Tempo Discreto Se f : inteiros → reais for um sinal periódico (p>0 inteiros) e w0=2pi/p (rad/amostra): p 2 f ( n) A0 Ak cos(kw0 n k 1 k ) Tempo Discreto As unidades passam a radianos por amostra. A soma é finita. O número de harmónicas é metade do período. Porquê p/2 ? Frequência máxima Num sinal discreto a frequência máxima que se pode obter é pi rad/s (são necessárias 2 amostras para dar a volta completa) Sinais Discretos A vantagem é que com uma série finita se consegue a representação exacta de qualquer sinal. A frequência máxima que se pode obter corresponde a metade da frequência de amostragem. Em CDs a frequencia de amostragem é de 44 Khz o que permite ouvir frequências até 22 Khz. No telefone a frequência é de 8Khz o que indica que nunca se poderá ouvir um som de frequência superior a 4 Khz. Exemplos t O sinal é periódico O período é 1/10 s Wo=2xpi/p=20pi f (t ) x(t ) cos(2 50t ) cos(2 10t ) A0 A0= 0 A1=1 phi1=0 A2=0 phi2=0 … A5=1 Ak cos(kw0t k 1 k ) Exemplos t R x(t ) cos(2 t ) cos(2 3t ) O sinal não é periódico porque não há um mínimo múltiplo comum para os períodos Exemplos Exemplos Representação em série de Fourier Qualquer sinal periódico pode ser representado pela série de Fourier (uma fundamental e as suas harmónicas). Pode-se fazer compressão da informação se em vez de se enviar o sinal no tempo, se enviarem apenas os coeficientes da série de Fourier. Sinais Aperiódicos Um sinal de voz é tipicamente aperiódico. Pode-se pegar em troços do sinal (por exemplo 16 ms) e calcular a série de Fourier associada. Em cada 16ms basta enviar os coeficientes da Série de Fourier com ganhos de compressão. O mesmo princípio aplicado a imagens está na origem do formato jpeg Lab Mostra-se a decomposição em série de Fourier de vários sinais. O cálculo dos coeficientes é dado no enunciado. Mostra-se a representação dos sinais em frequência e no tempo.