Interbits – SuperPro ® Web 1. (Insper 2012) De cada vértice de um prisma hexagonal regular foi retirado um tetraedro, como exemplificado para um dos vértices do prisma desenhado a seguir. O plano que definiu cada corte feito para retirar os tetraedros passa pelos pontos médios das três arestas que concorrem num mesmo vértice do prisma. O número de faces do poliedro obtido depois de terem sido retirados todos os tetraedros é a) 24. b) 20. c) 18. d) 16. e) 12. 2. (Ufjf 2012) Uma empresa de sorvete utiliza como embalagem um prisma reto, cuja altura mede 10 cm e cuja base é dada conforme descrição a seguir: de um retângulo de dimensões 20 cm por 10 cm, extrai-se em cada um dos quatro vértices um triângulo retângulo isósceles de catetos de medida 1cm. a) Calcule o volume da embalagem. 1 (um quinto) quando passa 5 do estado líquido para o estado sólido, qual deve ser o volume máximo ocupado por esse sorvete no estado líquido, nessa embalagem, para que, ao congelar, o sorvete não transborde? b) Sabendo que o volume ocupado por esse sorvete aumenta em 3. (Uerj 2012) As figuras a seguir mostram dois pacotes de café em pó que têm a forma de paralelepípedos retângulos semelhantes. Página 1 de 20 Interbits – SuperPro ® Web Se o volume do pacote maior é o dobro do volume do menor, a razão entre a medida da área total do maior pacote e a do menor é igual a: a) 3 3 b) 3 4 c) 6 d) 8 4. (Uff 2012) O sistema de tratamento da rede de esgoto do bairro de lcaraí, em Niterói, tem a capacidade de processar 985 litros de esgoto por segundo, ou seja, 0,985 metros cúbicos de esgoto por segundo. Sendo T o tempo necessário para que esse sistema de tratamento processe o volume de esgoto correspondente ao volume de uma piscina olímpica de 50 metros de comprimento, 25 metros de largura e 2 metros de profundidade, é correto afirmar que o valor de T está mais próximo de a) 3 segundos. b) 4 minutos. c) 1 hora. 2 d) 40 minutos. e) 1 dia. 5. (Unicamp simulado 2011) Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura abaixo. Página 2 de 20 Interbits – SuperPro ® Web Supondo que AB = 6m e AC = 1,5m, podem ser armazenados na caixa a) 1728 litros de água. b) 1440 litros de água. c) 1000 litros de água. d) 572 litros de água. 6. (Uerj 2011) A embalagem de papelão de um determinado chocolate, representada na figura abaixo, tem a forma de um prisma pentagonal reto de altura igual a 5 cm. Em relação ao prisma, considere: - cada um dos ângulos Â, , e da base superior mede 120º; - as arestas AB, BC e CD medem 10 cm cada. 2 Considere, ainda, que o papelão do qual é feita a embalagem custa R$10,00 por m e que 3 = 1,73. Na confecção de uma dessas embalagens, o valor, em reais, gasto somente com o papelão é aproximadamente igual a: a) 0,50 b) 0,95 c) 1,50 d) 1,85 7. (Unicamp 2011) A caixa de um produto longa vida é produzida como mostra a sequência de figuras abaixo. A folha de papel da figura 1 é emendada na vertical, resultando no cilindro da figura 2. Em seguida, a caixa toma o formato desejado, e são feitas novas emendas, uma no topo e outra no fundo da caixa, como mostra a figura 3. Finalmente, as abas da caixa são dobradas, gerando o produto final, exibido na figura 4. Para simplificar, consideramos as emendas como linhas, ou seja, desprezamos a superposição do papel. Página 3 de 20 Interbits – SuperPro ® Web a) Se a caixa final tem 20 cm de altura, 7,2 cm de largura e 7 cm de profundidade, determine as dimensões x e y da menor folha que pode ser usada na sua produção. b) Supondo, agora, que uma caixa tenha seção horizontal quadrada (ou seja, que sua profundidade seja igual a sua largura), escreva a fórmula do volume da caixa final em função das dimensões x e y da folha usada em sua produção. 8. (Ifsp 2011) A base de uma pirâmide hexagonal regular está inscrita em um círculo que é a base de um cilindro reto de altura 6 3 cm. Se esses sólidos têm o mesmo volume, então a medida, em centímetros, da altura da pirâmide é a) 9π. b) 12π. c) 15π. d) 18π. e) 24π. 9. (Ita 2011) Uma esfera está inscrita em uma pirâmide regular hexagonal cuja altura mede 12 10 cm e a aresta da base mede 3cm. . Então o raio da esfera, em cm, é igual a 3 10 a) 3. 3 13 b) . 3 15 . 4 d) 2 3. 10 e) . 3 c) 10. (Fgv 2011) Após t horas do inicio de um vazamento de óleo de um barco em um oceano, constatou-se ao redor da embarcação a formação de uma mancha com a forma de um círculo 30 0,5 cujo raio r varia com o tempo t mediante a função r ( t ) = t metros. A espessura da π mancha ao longo do circulo é de 0,5 centímetro. Desprezando a área ocupada pelo barco na mancha circular, podemos afirmar que o volume de óleo que vazou entre os instantes t = 4 horas e t = 9 horas foi de: 3 a) 12,5m 3 b) 15m 3 c) 17,5m 3 d) 20m 3 e) 22,5m 11. (Enem 2011) É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo, para atrair beija-flores. Mas é importante saber que, na hora de fazer a mistura, você deve sempre usar uma parte de açúcar para cinco partes de água. Além disso, em dias quentes, precisa trocar a água de duas a três vezes, pois com o calor ela pode fermentar e, se for ingerida pela ave, pode deixá-la doente. O excesso de açúcar, ao cristalizar, também pode manter o bico da ave fechado, impedindo-a de se alimentar. Isso pode até matá-la. Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, n. 166, mar 1996. Pretende-se encher completamente um copo com a mistura para atrair beija-flores. O copo tem formato cilíndrico, e suas medidas são 10 cm de altura e 4 cm de diâmetro. A quantidade de água que deve ser utilizada na mistura é cerca de (utilize π = 3 ) a) 20 mL. b) 24 mL. Página 4 de 20 Interbits – SuperPro ® Web c) 100 mL. d) 120 mL. e) 600 mL. 12. (Unicamp 2011) Depois de encher de areia um molde cilíndrico, uma criança virou-o sobre uma superfície horizontal. Após a retirada do molde, a areia escorreu, formando um cone cuja base tinha raio igual ao dobro do raio da base do cilindro. A altura do cone formado pela areia era igual a 3 a) da altura do cilindro. 4 1 b) da altura do cilindro. 2 2 c) da altura do cilindro. 3 1 d) da altura do cilindro. 3 13. (Espm 2011) Um reservatório de água é constituído por uma esfera metálica oca de 4 m de diâmetro, sustentada por colunas metálicas inclinadas de 60° com o plano horizontal e soldadas à esfera ao longo do seu círculo equatorial, como mostra o esquema abaixo. Sendo 3 a) 2,40 m b) 2,80 m c) 3,20 m d) 3,40 m e) 3,60 m ≅ 1,73 , a altura h da esfera em relação ao solo é aproximadamente igual a: 14. (Uff 2011) Para ser aprovada pela FIFA, uma bola de futebol deve passar por vários testes. Um deles visa garantir a esfericidade da bola: o seu “diâmetro” é medido em dezesseis pontos diferentes e, então, a média aritmética desses valores é calculada. Para passar nesse teste, a variação de cada uma das dezesseis medidas do “diâmetro” da bola com relação à média deve Página 5 de 20 Interbits – SuperPro ® Web ser no máximo 1,5%. Nesse teste, as variações medidas na Jabulani, bola oficial da Copa do Mundo de 2010, não ultrapassaram 1%. Se o diâmetro de uma bola tem aumento de 1%, então o seu volume aumenta x %. Dessa forma, é correto afirmar que a) x ∈ [5,6). b) x ∈ [2,3). c) x = 1. d) x ∈ [3,4). e) x ∈ [4,5). 15. (Uerj 2011) Um sólido com a forma de um cone circular reto, constituído de material homogêneo, flutua em um líquido, conforme a ilustração abaixo. Se todas as geratrizes desse sólido forem divididas ao meio pelo nível do líquido, a razão entre o volume submerso e o volume do sólido será igual a: 1 a) 2 3 b) 4 5 c) 6 7 d) 8 TEXTO PARA A PRÓXIMA QUESTÃO: Os sólidos de revolução são gerados pela rotação completa de uma figura plana em torno de um eixo. Por exemplo, rotacionando um quadrado em torno de um eixo que passa por um de seus lados obtemos um cilindro circular reto, como mostra a figura. Página 6 de 20 Interbits – SuperPro ® Web 16. (Insper 2011) Considere o sólido gerado pela rotação completa do triângulo acutângulo ABC, de área S, em torno de um eixo que passa pelo lado BC, que tem comprimento l . O volume desse sólido é igual a a) 4 πS 2 . 3l 2πS2 . 3l 4πSl c) . 3 2πSl d) . 3 πSl e) . 3 b) 17. (Enem 2010) Em um casamento, os donos da festa serviam champanhe aos seus convidados em taças com formato de um hemisfério (Figura 1), porém um acidente na cozinha culminou na quebra de grande parte desses recipientes. Para substituir as taças quebradas, utilizou-se um outro tipo com formato de cone (Figura 2). No entanto, os noivos solicitaram que o volume de champanhe nos dois tipos de taças fosse igual. Considere: 4 1 Vesfera = − π R3 e Vcone = π R2h 3 3 Página 7 de 20 Interbits – SuperPro ® Web Sabendo que a taça com o formato de hemisfério e servida completamente cheia, a altura do volume de champanhe que deve ser colocado na outra taça, em centímetros, é de a) 1,33. b) 6,00. c) 12,00. d) 56,52. e) 113,04. 18. (Uerj 2010) A figura abaixo representa um recipiente cônico com solução aquosa de hipoclorito de sódio a 27%. O nível desse líquido tem 12 cm de altura. Para o preparo de um desinfetante, diluiu-se a solução inicial com água, até completar o recipiente, obtendo-se a solução aquosa do hipoclorito de sódio a 8%. Esse recipiente tem altura H, em centímetros, equivalente a a) 16 b) 18 c) 20 d) 22 19. (Uff 2010) Em 1596, em sua obra Mysterium Cosmographicum, Johannes Kepler estabeleceu um modelo do cosmos onde os cinco poliedros regulares são colocados um dentro do outro, separados por esferas. A ideia de Kepler era relacionar as órbitas dos planetas com as razões harmônicas dos poliedros regulares. A razão harmônica de um poliedro regular é a razão entre o raio da esfera circunscrita e o raio da esfera inscrita no poliedro. A esfera circunscrita a um poliedro regular é aquela que contém todos os vértices do poliedro. A esfera inscrita, por sua vez, é aquela que é tangente a cada uma das faces do poliedro. A razão harmônica de qualquer cubo é igual a: a) 1 b) 2 c) 2 d) e) 3 3 2 20. (Uerj 2010) Uma embalagem em forma de prisma octogonal regular contém uma pizza circular que tangencia as faces do prisma. Página 8 de 20 Interbits – SuperPro ® Web Desprezando a espessura da pizza e do material usado na embalagem, a razão entre a medida do raio da pizza e a medida da aresta da base do prisma é igual a: a) 2 2 3 2 4 2 +1 c) 2 d) 2 2 − 1 b) ( ) 21. (Uerj 2009) Observe o dado ilustrado a seguir, formado a partir de um cubo, com suas seis faces numeradas de 1 a 6. Esses números são representados por buracos deixados por semiesferas idênticas retiradas de cada uma das faces. Todo o material retirado equivale a 4,2% do volume total do cubo. Considerando π= 3, a razão entre a medida da aresta do cubo e a do raio de uma das semiesferas, expressas na mesma unidade, é igual a: a) 6 b) 8 c) 9 d) 10 22. (Uerj 2008) Considere o icosaedro a seguir (Fig.1), construído em plástico inflável, cujos vértices e pontos médios de todas as arestas estão marcados. A partir dos pontos médios, quatro triângulos equiláteros congruentes foram formados em cada face do icosaedro. Admita que o icosaedro é inflado até que todos os pontos marcados fiquem sobre a superfície de uma esfera, e os lados dos triângulos tornem-se arcos de circunferências, como ilustrado na figura 2. Observe agora que, substituindo-se esses arcos por segmentos de reta, obtém-se uma nova estrutura poliédrica de faces triangulares, denominada geodésica. (Fig. 3) Página 9 de 20 Interbits – SuperPro ® Web O número de arestas dessa estrutura é igual a: a) 90 b) 120 c) 150 d) 180 23. (Ufjf 2007) A figura a seguir representa a planificação de um poliedro convexo. O número de vértices deste poliedro é: a) 12. b) 14. c) 16. d) 20. e) 22. 24. (Uerj 2002) Leia os quadrinhos: Página 10 de 20 Interbits – SuperPro ® Web Suponha que o volume de terra acumulada no carrinho-de-mão do personagem seja igual ao do sólido esquematizado na figura 1, formado por uma pirâmide reta sobreposta a um paralelepípedo retângulo. 3 Assim, o volume médio de terra que Hagar acumulou em cada ano de trabalho é, em dm , igual a: a) 12 b) 13 c) 14 d) 15 Página 11 de 20 Interbits – SuperPro ® Web Gabarito: Resposta da questão 1: [B] O prisma triangular regular possui 12 vértices e oito faces. Acrescentando-se uma nova face em cada vértice, teremos um total de 8 + 12 = 20 faces. Resposta da questão 2: a) Área da base (área do retângulo menos 4 vezes a área do triângulo): A = 20 ⋅ 10 − 4 ⋅ 1⋅ 1 2 A = 198cm2 Portanto, seu volume será: V = 198 ⋅ 10 = 1980cm3 b) x = volume inicial do sorvete líquido Portanto, x x + = 1980 5 6 ⋅ x = 1980 ⇔ x = 1650cm3 5 Resposta da questão 3: [B] A razão entre os volumes é o cubo da razão se semelhança. Logo, a razão de semelhança é k = 32; A razão entre as áreas é o quadrado da razão de semelhança. Logo, a razão entre as áreas 2 dos pacotes é k 2 = 3 2 = 3 4 . Resposta da questão 4: [D] 3 Volume da piscina em m = 50.25.2=2500m 2500 Loto T = ; 2538s ; 40min 0,985 3 Resposta da questão 5: Página 12 de 20 Interbits – SuperPro ® Web [A] ΔCDE − ΔCAB 1,5 − x x = ⇔ 1,5 x = 9 − 6 x ⇔ 7,5 x = 9 ⇔ x = 1,2m 1,5 6 3 3 Logo V = (1,2) = 1,728m = 1728L Resposta da questão 6: [B] Área do pentágono = área do triângulo maior (lado 30) menos duas vezes a área do triângulo menor (lado 10) A= 30 2 . 3 2.10 2 . 3 900 3 − 200 3 − = = 175 3 4 4 4 2 Área da superfície da caixa: A = 2. 175 3 + (10 + 10 + 20 + 20 + 10).5 = 955,5 cm = 0,09555 2 m. 2 Como o m de papelão custa 10 reais, o valor de cada caixa será aproximadamente R$ 0,95. Resposta da questão 7: a) Considere a figura. Página 13 de 20 Interbits – SuperPro ® Web Sabendo que a profundidade da caixa mede 2l = 7cm, temos que: y = 20 + 2l = 20 + 7 = 27cm. Por outro lado, a dimensão x é o perímetro da base da caixa final, ou seja, x = 2 ⋅ (7,2 + 2l ) = 2 ⋅ (7,2 + 7) = 28,4cm. b) De forma análoga ao item (a), temos que a aresta da base da caixa final é x cm e sua altura 4 x ⎞ ⎛ vale ⎜ y − ⎟ cm. Portanto, o volume da caixa final em função das dimensões x e y é dado 4 ⎠ ⎝ 2 x ⎞ x 2 ⎛ x ⎞ ⎛ x ⎞ ⎛ por: ⎜ ⎟ ⋅ ⎜ y − ⎟ = ⋅ ⎜ y − ⎟ cm3 . 4 ⎠ 16 ⎝ 4 ⎠ ⎝ 4 ⎠ ⎝ Resposta da questão 8: [B] A aresta da base da pirâmide tem a mesma medida do raio da circunferência. Logo, temos 1 6.r 2 . 3 .h = π.r 2 .6 3 ⇔ h = 12π 3 4 Resposta da questão 9: [E] Aresta da base a = 10 3 3 . =5 3 2 Por semelhança de triângulos, temos 12 − r r = ⇔ r = 10 / 3cm 13 5 Resposta da questão 10: [E] Página 14 de 20 Interbits – SuperPro ® Web A mancha de óleo tem a forma de um cilindro circular reto de raio r(t) e altura 0,5cm. Logo, se V(t) indica o volume de óleo, em m3 , que vazou até o instante t, t em horas, segue que V(t) = π ⋅ [r(t)]2 ⋅ 0,005 2 ⎛ 30 0,5 ⎞ = π ⋅ ⎜ t ⎟ ⋅ 0,005 ⎝ π ⎠ = 4,5t. Portanto, o volume de óleo que vazou entre os instantes t = 4 horas e t = 9 horas foi de V(9) − V(4) = 4,5 ⋅ 9 − 4,5 ⋅ 4 = 4,5 ⋅ (9 − 4) = 22,5 m3. Resposta da questão 11: [C] Supondo que o volume de açúcar e o volume de água somem o volume do copo. De acordo com o texto, temos: Volume de água = 5x Volume de água = x Volume do copo = π.22.10 = 3.22.10 = 120cm3 Então x + 5x = 120 ⇔ 6x = 120 ⇔ x = 20cm3 Portanto, a quantidade de água deverá ser 5.20 = 100 cm3 = 100 mL. Resposta da questão 12: [A] Como o volume de areia é o mesmo, segue que: 1 1 2 2 ⋅ π ⋅ rcon ⋅ hcon = π ⋅ rcil ⋅ hcil ⇔ ⋅ (2R)2 ⋅ hcon = R2 ⋅ hcil 3 3 3 ⇔ hcon = ⋅ hcil. 4 Resposta da questão 13: [C] Considere a figura abaixo. Página 15 de 20 Interbits – SuperPro ® Web Queremos calcular h = PO' = OO' − OP. Temos que O' A = 4 AD 10 = = 5 m e OB = = 2 m = O'C. 2 2 2 Logo, AC = O' A − O'C = 5 − 2 = 3 m. ˆ = BC ⇔ BC = 3 ⋅ tg60° = 3 3 ≅ 3 ⋅ 1,73 = 5,19 m. Do triângulo ABC, vem que tgBAC AC Portanto, h = 5,19 − 2 = 3,19 ≅ 3,20 m. Resposta da questão 14: [D] O volume (V) de uma esfera, em função do seu diâmetro (D), é dado por V= π 3 ⋅D . 6 Se o diâmetro tem aumento de 1%, então o volume dessa esfera passa a valer π π V ' = ⋅ (1,01⋅ D)3 = 1,030301⋅ ⋅ D3 = 1,030301⋅ V. 6 6 { V Portanto, x% = 1,030301⋅ V − V 0,030301⋅ V ⋅ 100% = ≅ 3,03% ∈ [3, 4). V V Resposta da questão 15: [D] Seja g uma geratriz do cone emerso e G uma geratriz do sólido. Segue que g 1 = = k, G 2 com k sendo a constante de proporcionalidade. Assim, se v é o volume emerso e V é o volume do sólido, temos 3 v v ⎛ 1 ⎞ 1 V = k 3 ⇒ = ⎜ ⎟ = ⇒ v = . V V ⎝ 2 ⎠ 8 8 Seja Vs o volume submerso. Vs = V − v = V − V 7V = . 8 8 Portanto, a razão pedida é 7V Vs 7 = 8 = . V V 8 Resposta da questão 16: [A] Uma rotação completa do triângulo ABC em torno da reta suporte do lado BC gera o sólido abaixo, constituído de dois cones. Página 16 de 20 Interbits – SuperPro ® Web Como a área do triângulo do triângulo ABC é S, segue que (ABC) = l ⋅r 2S =S⇔r = . 2 l Portanto, o volume pedido é dado por 1 1 1 ⋅ πr 2 ⋅ x + ⋅ πr 2 ⋅ (l − x) = ⋅ πr 2 ⋅ (x + l − x) 3 3 3 1 = ⋅ πr 2 ⋅ l 3 2 = 1 ⎛ 2S ⎞ ⋅ π ⋅ ⎜ ⎟ ⋅ l 3 ⎝ l ⎠ = 4πS2 . 3l Resposta da questão 17: [B] 2 1 .π.33 = π.32.h ⇔ 3h = 18 ⇔ h = 6cm 3 3 Resposta da questão 18: [B] 1 2 πr ⋅ 12 cm3 , em que r é o raio do cone menor 3 1 definido pelo nível do líquido. O recipiente tem volume igual a πR2 ⋅ H cm3 , em que R é o 3 raio do recipiente e H é a sua altura. A solução inicial ocupa um volume igual a Como os cones são semelhantes, segue que: r 12 12R = ⇔r = . R H H Por outro lado, do enunciado vem: Página 17 de 20 Interbits – SuperPro ® Web 2 1 1 ⎛ 12R ⎞ 2 27% ⋅ πr 2 ⋅ 12 = 8% ⋅ πR2 ⋅ H ⇒ 27 ⋅ ⎜ ⎟ ⋅ 12 = 8 ⋅ R ⋅ H 3 3 H ⎝ ⎠ ⇒ H3 = 33 ⋅ 123 23 3 ⋅ 12 ⇒H= 2 ⇒ H = 18cm. Resposta da questão 19: [D] r= a 3 a e R= 2 2 R = r a 3 2 =a 3 a 22 Resposta da questão 20: [C] Sejam O, A e M, respectivamente, o centro da pizza, um vértice do prisma e o ponto médio de uma das arestas adjacentes ao vértice A. Queremos calcular OM . 2 ⋅ MA ˆ = 180° = 22°30'. MOA 8 ˆ = tg22°30' tgMOA = 1 − cos 45° 1 + cos 45° 2 2 2 = 2 − 2 = (2 − 2) = 2 − 2 = 2 − 1. = 2 2 2+ 2 2 1+ 2 1− ˆ = MA ⇔ 2 − 1 = MA tgMOA OM OM ⇔ OM 1 2 +1 = ⋅ = 2 + 1. MA 2 −1 2 +1 Página 18 de 20 Interbits – SuperPro ® Web Portanto, OM 1 OM 2 +1 = ⋅ = . 2 2MA 2 MA Resposta da questão 21: [D] Resposta da questão 22: [B] Resposta da questão 23: [A] Resposta da questão 24: [D] Página 19 de 20 Interbits – SuperPro ® Web Resumo das questões selecionadas nesta atividade Data de elaboração: Nome do arquivo: 03/06/2012 às 19:11 pvn_aulao Legenda: Q/Prova = número da questão na prova Q/DB = número da questão no banco de dados do SuperPro® Q/prova Q/DB Matéria Fonte Tipo 1 .................. 109414 ............ Matemática ........ Insper/2012 ............................. Múltipla escolha 2 .................. 112348 ............ Matemática ........ Ufjf/2012 ................................. Analítica 3 .................. 107967 ............ Matemática ........ Uerj/2012 ................................ Múltipla escolha 4 .................. 109143 ............ Matemática ........ Uff/2012 .................................. Múltipla escolha 5 .................. 94271 .............. Matemática ........ Unicamp simulado/2011 ......... Múltipla escolha 6 .................. 95126 .............. Matemática ........ Uerj/2011 ................................ Múltipla escolha 7 .................. 102011 ............ Matemática ........ Unicamp/2011 ........................ Analítica 8 .................. 102042 ............ Matemática ........ Ifsp/2011 ................................. Múltipla escolha 9 .................. 101538 ............ Matemática ........ Ita/2011 ................................... Múltipla escolha 10 ................ 100046 ............ Matemática ........ Fgv/2011 ................................. Múltipla escolha 11 ................ 108706 ............ Matemática ........ Enem/2011 ............................. Múltipla escolha 12 ................ 100784 ............ Matemática ........ Unicamp/2011 ........................ Múltipla escolha 13 ................ 103885 ............ Matemática ........ Espm/2011 ............................. Múltipla escolha 14 ................ 100668 ............ Matemática ........ Uff/2011 .................................. Múltipla escolha 15 ................ 99055 .............. Matemática ........ Uerj/2011 ................................ Múltipla escolha 16 ................ 102944 ............ Matemática ........ Insper/2011 ............................. Múltipla escolha 17 ................ 100307 ............ Matemática ........ Enem/2010 ............................. Múltipla escolha 18 ................ 97347 .............. Matemática ........ Uerj/2010 ................................ Múltipla escolha 19 ................ 91296 .............. Matemática ........ Uff/2010 .................................. Múltipla escolha 20 ................ 97341 .............. Matemática ........ Uerj/2010 ................................ Múltipla escolha 21 ................ 86591 .............. Matemática ........ Uerj/2009 ................................ Múltipla escolha 22 ................ 77062 .............. Matemática ........ Uerj/2008 ................................ Múltipla escolha 23 ................ 75300 .............. Matemática ........ Ufjf/2007 ................................. Múltipla escolha 24 ................ 40104 .............. Matemática ........ Uerj/2002 ................................ Múltipla escolha Página 20 de 20