Cerqueira, João; Catarino, Isabel; Fonseca, Maria; Guedes, João; Neno, Miguel
Coordenadora: Pinto, Marta
Serviço de Biologia Celular da Faculdade de Medicina da Universidade do Porto
Hospital S.João
Por definição, Apoptose ou Morte Celular Programada é um modo de "autodestruição celular" que requer energia e síntese proteica, exercendo o papel oposto ao da mitose.
O termo deriva do grego, que se referia à queda das folhas das árvores no Outono…
A apoptose consiste num processo fisiológico de morte celular, necessária e totalmente regulada para a manutenção da saúde de todo o organismo.
A célula em apoptose encolhe-se, destaca-se das células vizinhas e começa a apresentar bolhas na sua superfície (zeiose).
A membrana, os organelos e o citoplasma não mostram alterações evidentes. No entanto, no núcleo observa-se uma fragmentação da cromatina, formando-se
um ou mais aglomerados nas bordas internas da membrana nuclear, o que é suficiente para levar as células à morte.
Os corpos apoptóticos formados são posteriormente fagocitados pelos linfócitos (Fig.1) , podendo o material celular ser reciclado.
As células também morrem de modo não fisiológico, por um mecanismo totalmente distinto da apoptose, a necrose.
Na necrose, a célula incha provocando danos nos organelos, em particular as mitocôndrias, impedindo o equilíbrio interno e levando à lise celular.
A libertação do conteúdo celular causa toxicidade directa para as células vizinhas, podendo também levar a uma reacção inflamatória intensa, por atracção
excessiva de células do sistema imune. Tal inflamação pode limitar infecções ao remover os vestígios celulares, no entanto, a actividade e as secreções dos
linfócitos podem danificar tecidos vizinhos saudáveis.
Fig.3 - Formação dos dedos durante
o desenvolvimento embrionário.
As células têm um conjunto de proteínas capazes de actuar como armas de autodestruição. Enquanto a célula é útil ao
organismo, ela reprime este mecanismo. Se, no entanto, a célula comprometer a saúde do organismo ou deixar de ser
necessária, a apoptose é desencadeada, levando à morte celular.
Fig.4 - Artrite reumatóide, uma de muitas doenças
devid a distúrbios na morte celular programada.
Fig.2 - Ideias como morte e autodestruição são
sempre sinistras e trágicas, mas na natureza tais
conceitos podem muitas vezes significar a vida…
A apoptose pode ser activada por vários factores como a remoção de sinais químicos da célula (factores de crescimento ou de
sobrevivência), o ignorar de mensagens químicas por alguns receptores internos e externos, ou pela presença de sinais com
informação contraditória.
TNF
Na maioria das células e dos organismos multicelulares, o mecanismo de suicídio tem por base as caspases, enzimas
sintetizadas nas células como percursores inactivos (pro-caspases) e activadas por clivagem, por outras caspases previamente
activadas.
TNF
RIP TNFR
RAIDD
TRAF
Tal processo pode ocorrer por mecanismos extracelulares, através de receptores (death receptors) na superfície da célula (FAS,
TNF, Granzima B), ou por mecanismos intracelulares, quando existe dano ou stress celular (stress oxidativo da mitocôndria).
As caspases resultantes desta cascata proteolítica amplificada clivam proteínas-chave à sobrevivência celular, levando ao
desmantelamento da célula e a morte celular.
Por entre as famílias de proteínas reguladoras da apoptose, destaca-se a família das Bcl-2. Alguns membros desta família, como
a Bcl-2 e a Bcl-XL (impedem a libertação do citocromo c da mitocôndria) inibem a apoptose, enquanto que outros, como a Bad
(inibidora de proteínas que impedem a apoptose), a Bax e a Bak (promovem a libertação do citocromo c da mitocôndria) são
promotores da apoptose.
Granzima B
FADD TRADD
ProCaspase 2
p50
p65
Activação da
esfingomielina
I kB
Fig.1 – Fagocitose de uma célula apoptótica
Bcl-2
p50
Caspase 3
Caspase 6
Caspase 7
Fas
A família IAP (inhibitor of apoptosis) é também uma importante reguladora da apoptose, inibindo-a de duas formas: liga-se a
algumas pro-caspases impedindo a sua activação ou então liga-se às caspases impedindo a sua acção.
Caspases
Efectoras
Fas-L
Sobrevivência celular
p65
Ceramida
NF-kB
JNK/SAPK
ProCaspase 6
Smac/
Diablo
TNF – A activação do (TNFR) pelo TNF provoca uma transdução de sinais reguladores de crescimento para o interior da célula. Em células normais, o TNF actua como
estimulador da mitose, no entanto, em células deficientes, ele estimula a apoptose. Isso é devido ao agrupamento de proteínas possuidoras de “death domain” (TRADD, RIP,
RAIDD e FADD), recrutadas aquando da ligação do TNF ao TNFR. Por outro lado, a via de sobrevivência induzida pelo mecanismo TNF é mediada pela transcrição do factor NFkB, cuja activação ocorre através da fosforilação do IkB pelas enzimas Ser32 e Ser36.
Laminas
Endonucleases
p18
p11
p11
p18
IAP
Fas - Membro da superfamília dos receptores TNF (tumor necrosis factor). A ligação do Fas ligando (Fas-L) ao receptor, induz a trimerização do Fas na membrana da célula alvo.
A activação do Fas causa a activação do FADD (Fas-associated protein with death domain) que por sua vez activa a pro-caspase 8. A caspase 8 pode então activar outras nove
pro-caspases levando à apoptose, ou activar a Bid que promove a saída do citocromo c da mitocôndria. Na presença de dATP, o citocromo c forma um complexo com a Apaf-1,
o apoptossoma, que cliva a pro-caspase 9 e conduz à apoptose. Além disso, a Smac/Diablo é libertada da mitocôndria e vai inactivar a IAP. A apoptose induzida pelo
mecanismo Fas pode ser bloqueada através de várias proteínas inibidoras da apoptose, como a Flip e a Bcl-2.
Perforina
DFF
PARP
Xiap
ProCaspase 9
Bcl-2
Citocromo c
APAF-1 Cito C
APAF-1
Cito C
ProCaspase 9
Bcl-XL
p17
SREBP
Fragmentação do DNA
ProCaspase 3
clAP1
clAP
Radicais Livres
ProCaspase 9
ProCaspase 3
Apoptose
Energia
Bid
p12
Granzima B – A granzima B e a perforina são proteínas libertadas pelos linfócitos t citotóxicos induzindo a apoptose nas células alvo. A perforina forma poros transmembranares
que permite a passagem da granzima B. Esta vai clivar proteínas efectoras como a pro-caspase 3, que por sua vez activa a pro-caspase 6, levando à clivagem de proteínas
necessárias para que possa ocorrer fragmentação do DNA, como a DFF(DNA fragmentation factor), a PARP e a SREBP, o que acaba por destruir o núcleo e o DNA.
Caspase 3
Stress Oxidativo da Mitocôndria e Radiação gama – A produção de oxigénio reactivo pela mitocôndria pode levar à morte celular via apoptose ou necrose. O aumento de
Ca2+ citolítico induz uma transição da permeabilidade na membrana mitocondrial, que constitui o primeiro passo para a apoptose. Esta transição de permeabilidade, permite a
saída de factores apoptogénicos, como o citocromo c e o AIF (apoptosis inducing factor) do espaço intermembranar da mitocôndria para o citosol. O stress oxidativo assim como
a radiação gama, pode levar também ao aumento do oxigénio reactivo no núcleo, activando a PARP, proteína que leva a alterações conformacionais da estrutura da cromatina
que permite às proteínas reparadoras de DNA e outros factores de transcrição impedirem danos no DNA. Este processo consome grandes quantidades de NAD+, levando ao
esgotamento do ATP, que leva, em última análise, à necrose.
Apoptose
dATP
Apoptosoma
DNA danificado
Caspases
Efectoras
EndoG
NAD+
AIF
Bcl-2
Necrose
Caspase 3
Caspase 6
Caspase 7
PARP
A apoptose é essencial para o organismo se desenvolver e sobreviver.
Virtualmente todos os tecidos abrigam células apoptóticas nalguma fase do seu desenvolvimento.
Durante o desenvolvimento embrionário (Fig.2), por exemplo, a apoptose é essencial para formação do sistema nervoso, da mão humana(Fig.3) e do olho.
Stress oxidativo da mitocôndria
O mesmo acontece após o nascimento e durante a vida adulta, onde muitas células têm que morrer de maneira a proteger e renovar o organismo, como
acontece na pele, na parede uterina, no timo e nas microvilosidades intestinais.
Assim como a apoptose é essencial para o organismo, distúrbios no processo aparentemente têm um papel importante para uma grande variedade de
doenças humanas.
Essas doenças podem ser: de origem viral (HIV/SIDA; hepatite), em que a infecção vai induzir a apoptose nas células infectadas; autoimune (artrite
reumatóide (Fig.4)), em que linfócitos autoreactivos reconhecem antigénios específicos das células saudáveis do próprio organismo, levando-as à morte;
por resistência à apoptose (maioria dos cancros), em que as células se recusam a morrer, seja pela desactivação do gene p53, que codifica a proteína
que leva à activação da maquinaria apoptótica da célula quando o DNA está danificado, seja pela produção de grandes quantidades de Bcl-2, de modo
inibir a apoptose; por mecanismos desconhecidos (Doença de Alzheimer, Osteoporose, Doença de Parkinson).
Radiação Gama
Referências: • http://www.sciencemuseum.org.uk • http://www.pubmed.com • ALBERTS, Bruce; JOHNSON, Alexander; LEWIS, Julian; RAFF, Martin; ROBERTS, Keith; WALTER, Peter. Molecular Biology Of The Cell, 4th edition.
New York: Garland Science, 2002. Agradecimentos: Os nossos agradecimentos à coordenadora Marta Pinto por toda paciência e ajuda dada. À Joana Pereira…Sem ela este poster não seria o que é. Ao departamento de
Biologia Celular, pela impressão do poster.
Download

Mecanismos de apoptose - Medicina