Modelos de Distribuição de
Riqueza: Desigualdade e
Criminalidade
José Roberto Iglesias
I.F. e F.C.E. - U.F.R.G.S., Porto Alegre, Brazil
Rio de Janeiro, 9 de novembro 2007
Porto Alegre
(30o S)
Econofis 2007
Rio de Janeiro
09/11/2007
2
Colaboradores
Porto Alegre (Brasil):
• Gaspar Machado Caon
• Sebastián Gonçalves
• Tiago Bonacina
• Vanessa Hoffmann
• Viktoriya Semeshenko
S. C. de Bariloche
(Argentina)
• Miguel Fuentes
• Marcelo Kuperman
• Guillermo Abramson
• Sebastián Risau-Gusman
• M. Fabiana Laguna
França:
• Mirta Gordon
• J.-Pierre Nadal
Mérida (México)
• Cristian Moukarzel
Econofis 2007
Rio de Janeiro
09/11/2007
3
Motivation...
Econofis 2007
Rio de Janeiro
09/11/2007
4
Pareto´s law
Econofis 2007
Rio de Janeiro
09/11/2007
5
Pareto’s law
N ( x) 
Econofis 2007
Rio de Janeiro
09/11/2007
A
( x  a)α
6
The exponential + power law behavior
(Dragulescu & Yakovenko, 2001)
Econofis 2007
Rio de Janeiro
09/11/2007
7
Brazilian income distribution
Econofis 2007
Rio de Janeiro
09/11/2007
8
Inequality (Gini coefficient)
Econofis 2007
Rio de Janeiro
09/11/2007
9
Econofis 2007
Rio de Janeiro
09/11/2007
11
Gini coefficient Map
Econofis 2007
Rio de Janeiro
09/11/2007
12
Models of Wealth Distribution
Econofis 2007
Rio de Janeiro
09/11/2007
13
Non-interacting agents
Econofis 2007
Rio de Janeiro
09/11/2007
14
A model with fluctuations and interactions
Other non-conservative
model: Richmond –
Solomon (LotkaVolterra)
Econofis 2007
Rio de Janeiro
09/11/2007
15
Interacting conservative models
 Agents are molecules of an ideal gas,
that exchange money as molecules
exchange energy.
wi (t  t )  wi (t )  w
 The simplest version (D-Y 2000)
delivers a Boltzmann – Gibbs
(exponential) distribution
w j (t  t )  w j (t )  w
 Many authors (Iglesias et. al.; A.
Chatterjee et. al.) introduced a kind of
multiplicative noise: “saving propensity”
and are able to obtain power laws
distribution
 Effect of size of market and taxes
(Ausloss, Pekalski, 2006)
Econofis 2007
Rio de Janeiro
09/11/2007
16
A model with Risk Aversion
A random (or not) fraction,
, of the agent´s wealth is
saved
 An agent site with wealth w1
exchanges with another of
wealth w2 a quantity (fair
rule):

dw  min[(1  1 )w1; (1   2 )w2 ]
Or: The winner takes all,
(winner rule) he receives dw
from his partner.

Econofis 2007
Rio de Janeiro
09/11/2007
What happens?
Condensation (or a frozen
society, where just one agent
concentrates all the wealth)
This transaction occurs with a
given probability of favoring
the poorer agent p, being either
p fixed for all the agents or p
given by:
p
1
w  w1
f 2
2
w2  w1
 being f : 0  f  0.5
17
Effect of Risk aversion and pexch
Econofis 2007
Rio de Janeiro
09/11/2007
18
About wealth condensation
The European Physical Journal – Special Topics, 143, 75-79 (2007)
p*  
log 
2
log

Critical line for condensation
(Moukarzel et al, 2007)
Before arriving to condensation the system exhibits power law
With growing Pareto exponent, leading to a “thermal death of
trade”.
But the final state is one of equilibrium but with no equipartition
Econofis 2007
Rio de Janeiro
09/11/2007
19
About exchange models:
“Man is an animal that makes bargains: no
other animal does this - no dog exchanges
bones with another”
Adam Smith
Econofis 2007
Rio de Janeiro
09/11/2007
20
Comparing exchange rules
“Fair” Rule
(equal opportunities)
dw  min[(1  1 )w1; (1  2 )w2 ]
A
Econofis 2007
Rio de Janeiro
09/11/2007
B
Rule the winner takes all
dwwinner  (1  loser )wloser
A
B
21
Econofis 2007
Rio de Janeiro
09/11/2007
22
Hierarchy evolution
Econofis 2007
Rio de Janeiro
09/11/2007
23
Interactions within the same “economic” class
Econofis 2007
Rio de Janeiro
09/11/2007
24
Wealth
depending
interactions
Agents only
interact when
their wealth is
within a
threshold u
|wi-wk| < u
Econofis 2007
Rio de Janeiro
09/11/2007
25
Wealth distribution vs. time
Econofis 2007
Rio de Janeiro
09/11/2007
26
And if correlations are included
between risk-aversion and expected profits?
Econofis 2007
Rio de Janeiro
09/11/2007
27
Wealth distribution of “rational” agents
The poorer agent changes strategy
N=100.000 agents
Econofis 2007
initial
wealth uniformly distributed {0,1000}
Rio de Janeiro
09/11/2007
Gini, red points
28
Wealth distribution of
“irrational” agents
The richer agent changes
strategy
Econofislaw
2007 exponent –1.125
Power
Rio de Janeiro
09/11/2007
Gini: green points,
(blue points, poorer agent
Change strategy)
29
Economic effects of criminality
M.B. Gordon, J.R.I., J.P. Nadal, V. Semeshenko (to appear)
Agents are characerized by its wealth wi and
a honesty coefficient Hi (changing)
Each “month” agents perceive a wage
Number of crime attemps each month
depends on <H>
p0 is probability of punishment of small
felonies and p1 of big ones. It varies as a
function of booty
Punishment consist in prison + fines
Econofis 2007
Rio de Janeiro
09/11/2007
30
Criminality
Econofis 2007
Rio de Janeiro
09/11/2007
31
Economic indicators
Econofis 2007
Rio de Janeiro
09/11/2007
32
Time evolution
Econofis 2007
Rio de Janeiro
09/11/2007
33
Wealth distribution
Econofis 2007
Rio de Janeiro
09/11/2007
34
Honesty distribution
Econofis 2007
Rio de Janeiro
09/11/2007
35
Conclusions
 Probability of punishment of light and
heavy felonies are correlated.
 Inequality increases and Economic
growth decreases with high criminality
 Time evolution is in avalanches
 Future: what treatment to relapses
Econofis 2007
Rio de Janeiro
09/11/2007
36
It is only by not paying one's bills that one can
hope to live in the memory of the commercial
classes.
Oscar Wilde
Quino
Econofis 2007
Rio de Janeiro
09/11/2007
37
Publicações: www.if.ufrgs.br/~iglesias
MUITO OBRIGADO!
Econofis 2007
Rio de Janeiro
09/11/2007
38
Download

Modelos de Distribuição de Riqueza