Lista de Exercicios 04 –Matemática Básica Trigonometria: 1) Calcular os catetos de um triângulo retângulo cuja hipotenusa mede 6 cm e um dos ângulos mede 60º. 2) Quando o ângulo de elevação do sol é de 65 º, a sombra de um edifício mede 18 m. Calcule a altura do edifício. (sen 65º = 0,9063, cos 65º = 0,4226 e tg 65º = 2,1445) 3) Quando o ângulo de elevação do sol é de 60º, a sombra de uma árvore mede 15m. Calcule a altura da árvore, considerando √3 = 1,7. 4) Uma escada encostada em um edifício tem seus pés afastados a 50 m do edifício, formando assim, com o plano horizontal, um ângulo de 32º. A altura do edifício é aproximadamente: (sen 32º = 05299, cos 32′ = 0,8480 e tg 32º = 0,6249) a) 28,41m b) 29,87m c) 31,24 m d) 34,65 m 5) Um avião levanta vôo sob um ângulo de 30º. Depois de percorrer 8 km, o avião se encontra a uma altura de: a)2 km b)3 km c)4 km d)5 km 6) Um foguete é lançado sob um ângulo de 30 º. A que altura se encontra depois de percorrer 12 km em linha reta? 7) Do alto de um farol, cuja altura é de 20 m, avista-se um navio sob um ângulo de depressão de 30º. A que distância, aproximadamente, o navio se acha do farol? (Use √3 = 1,73) 8 ) Num exercício de tiro, o alvo está a 30 m de altura e, na horizontal, a 82 m de distância do atirador. Qual deve ser o ângulo (aproximadamente) de lançamento do projétil? (sen 20º = 0,3420, cos 20º = 0,9397 e tg 20º = 0,3640) 9) Se cada ângulo de um triângulo equilátero mede 60 º, calcule a medida da altura de um triângulo equilátero de lado 20 cm. 10) Um alpinista deseja calcular a altura de uma encosta que vai escalar. Para isso, afasta-se, horizontalmente, 80 m do pé da encosta e visualiza o topo sob um ângulo de 55º com o plano horizontal. Calcule a altura da encosta. (Dados: sem 55º = 0,81, cos 55º = 0,57 e tg 55º = 1,42) Gabarito: 1) 3√3 e 3 6) 6 km 2) 38,6m 7) 34,6m 3) 25,Sm 8 ) 20º 4) 31,24m 9) 10√3 5) 4 km 1O) 113,6m Determine a altura de um triângulo eqüilátero de lado l. Determine x nas figuras. a) O triângulo ABC é eqüilátero. b) O triângulo ABC é eqüilátero. c) Determine a diagonal de um quadrado de lado l. Matrizes e determinantes 01. Obter a matriz A = (aij)2x2 definida por aij = 3 i - j. 02. Se A é uma matriz quadrada de ordem 2 e At sua transposta, determine A, tal que A = 2 .At. 03. (UNIV. CATÓLICA DE GOIÁS) Uma matriz quadrada A é dita simétrica se A = AT e é dita anti-simétrica se AT = -A, onde AT é a matriz transposta de A. Sendo A uma matriz quadrada, classifique em verdadeira ou falsa as duas afirmações: (01) A + AT é uma matriz simétrica (02) A - AT é uma matriz anti-simétrica 04. Se uma matriz quadrada A é tal que At = -A, ela é chamada matriz anti-simétrica. Sabe-se que M é anti-simétrica e: Os termos a12, a13 e a23 de M, valem respectivamente: a) -4, -2 e 4 b) 4, 2 e -4 c) 4, -2 e -4 d) 2, -4 e 2 e) 2, 2 e 4 a) x = y = 0 b) x = y = m = n = 0 c) x = y e m = n d) y = -2x e n = -2m e) x = -2y e m = -2n 06. Na confecção de três modelos de camisas (A, B e C) são usados botões grandes (G) e pequenos (p). O número de botões por modelos é dado pela tabela: Camisa A Camisa Camisa B C Botões p 3 1 3 Botões G 6 5 5 O número de camisas fabricadas, de cada modelo, nos meses de maio e junho, é dado pela tabela: Maio Junho Camisa A 100 50 Camisa B 50 100 Camisa C 50 50 Nestas condições, obter a tabela que dá o total de botões usados em maio e junho. 07. Sobre as sentenças: I. O produto das matrizes A3 x 2 . B2 x 1 é uma matriz 3 x 1. II. O produto das matrizes A5 x 4 . B5 x 2 é uma matriz 4 x 2. III. O produto das matrizes A2 x 3 . B3 x 2 é uma matriz quadrada 2 x 2 É verdade que: a) somente I é falsa; b) somente II é falsa; c) somente III é falsa; d) somente I e III são falsas; e) I, II e III são falsas. 08. (MACK) Se A é uma matriz 3 x 4 e B uma matriz n x m, então: a) existe A + B se, e somente se, n = 4 e m = 3; b) existe AB se, e somente se, n = 4 e m = 3; c) existem AB e BA se, e somente se, n = 4 e m = 3; d) existem, iguais, A + B e B + A se, e somente se, A = B; e) existem, iguais, AB e BA se, e somente se, A = B. a) 3 b) 14 c) 39 d) 84 e) 258 10. (PUC) Se A, B e C são matrizes quadradas e At, Bt e Ct são suas matrizes transpostas, e igualdade falsa entre essas matrizes é: a) (A = B) . C = A . C + B . C b) (A + B)t = At + Bt c) (A . B)t = At . Bt d) (A - B)C = AC - BC e) (At)t = A Resolução: 01. 02. 03. (01) verdadeira (02) verdadeira 04. B 05. E 06. Maio Junho Botões p 500 400 Botões 1100 1050 G 07. B 08. C 09. D 10. C