PG SER e CAP – 1 Período 2010 SER-300 Introdução ao Geoprocessamento Aula 3a Estruturas de Dados Espaciais Antonio Miguel V. Monteiro Gilberto Câmara {[email protected] } “O BraSil não conhece o BraSil” Planisfério de Cantino (cerca 1502) O primeiro mapa mundi em que se faz referência à existência do País. Foi feito por um cartógrafo português, que teria sido subornado por um espião italiano. Acredita-se que o mapa tenha sido desenhado nos Armazéns da Índia, em Lisboa, onde eram confeccionados os mapas na época. Em outubro de 1502, o mapa chegou à Itália e, atualmente, permanece no Museu Estense, em Módena (Itália) O Mapa de Henry de Mainz, 1110 (Orientação com Leste ao topo) O Mapa de Psalter, 1225 -1250 (Orientação com Leste ao topo) Cartográfo, Desconhecido O Mapa de Hereford, 1290 (Orientação com Leste ao topo) Cartográfo, Richard de Bello of Haldingham GLOSSARY OF NATURAL HISTORY AND ABNORMAL PEOPLE ANTS. Africa. Here huge ants guard golden sand. Ants dig up gold and guard it. Os Mapas de Al-Idrisi's, 804/1154/1456 (Orientação com Sul ao topo) Cartográfo, Abu Abdullah Mohammed Ibn al-Sharif al-Idrisi O Planisfério de Cantino, cerca de 1502 Cartográfo: Desconhecido “Ele reúne dois elementos aparentemente incompatíveis num mappaemundi medieval: um mapa de referências detalhadas da Europa medieval e uma carta de enciclopédia. Nele a história e a teologia estão projetadas na imagem física do globo.” Fonte MAPAS e Texto: Marcia Siqueira de Carvalho, Depto Geociências, UEL (http://www.geocities.com/pensamentobr/inicio.html) “Coexistem acontecimentos do passado e do futuro: a Queda, a Crucificação e o Apocalipse. Eles estão localizados num mundo real, entre Paris e Londres, a Espanha e o Egito.” Fonte MAPAS e Texto: Marcia Siqueira de Carvalho, Depto Geociências, UEL (http://www.geocities.com/pensamentobr/inicio.html) Processo de Representação Computacional Universo Universo Universo Universo Ontológico Formal Estrutural Implement. Níveis de abstração Ontologias (conceitos do mundo real): lote, tipo de solos Formal: entidades (objetos) x distribuições (campos) Estruturas de dados: matrizes, vetores Implementação: código em linguagem de Processo de Representação Computacional Universo Universo Universo Universo Ontológico Formal Estrutural Implement. entidade Poligono Tabela lote Lista de coord. Universo Ontológico Domínio de aplicação estabelece conceitos (“visão de mundo”) ex: “refúgio” e “fragmento” em ecologia “concentração de poluentes” Como traduzir os conceitos para o SIG ? Associação formal • campos/objetos (e suas especializações) Mensuração • levantamento de campo Colocando o Mundo no Computador!? Ontologias Modelos Formais Representações Mundo Real Computador Medidas Conversão Dados Níveis de abstração Ontologias (conceitos do mundo real): lote, tipo de solos Modelos de Dados (formais): entidades (objetos) x distribuições (campos) Representações: matrizes, vetores Medidas: censo, GPS Processo de Representação Computacional Decisões concretas Atributos • Que medidas caracterizam os dados ? Partição geométrica do espaço • Que estruturas de dados são necessárias ? Escala • Qual o nível de detalhe? Analise • Que procedimentos de extração de informação serão utilizado? Ex: câncer de esôfago e Representação Computacional Computadores instrumentos de representação do conhecimento capturam modelos formais da realidade exigem quantificação (visão reduzida) O que representar? Aproximações de entidades realmente existentes (e.g. rio) Conceitos abstratos (tipos de solo, exclusão social) Estruturas de Dados Computacionais 2D (estático) vetores (ponto, linha, polígono) matrizes de inteiros espaços celulares 2,5 D (estático) malhas triangulares grades regulares (inclui imagens) Estruturas de Dados Computacionais 2D (dinâmico) representações funcionais no Plano 3D (estático) representações volumétricas 3D (dinâmico) representações funcionais no volume Representações Computacionais do Espaço Objetos Regiões poligonais “Topografias” Superfícies Imagens Redes Topologia das ligações Modelos funcionais Autômata celular Modelos Físicos Geodados X,Y,Z X,Y,Z Eventos / Amostras Superfícies / Grades Regulares Dados de Área- Polígonos Redes e Dados de Fluxo X,Y,Z X,Y,Z X,Y,Z Estruturas de Dados e Topologia Conceito de Topologia Propriedades de um conjunto de dados espaciais que são invariantes a translação, rotação e escala Propriedades Vizinhança (“do lado de”) Pertinência Conexao B (“dentro de”) (“ligado a”) A Estruturas de Dados Vetoriais com Topologia fonte: John Elgy Estruturas de Dados Vetoriais com Topologia Usamos os centróides para recuperar o polígono Cada linha é guardada individualmente Edição de polígonos com Topologia Entrada de linhas • produto: “espaguete” Ajustar linhas • remover “pontas” Formar polígonos • método dos centróides • topologia automática Associar atributos Polig Solo A B Le Ag A C B E D Possíveis Problemas com Estruturas Vetorais com Polígonos Fechados fonte: John Elgy Redes: Topologias Arco-Nó Rede Contém objetos com topologia arco-nó Rede Objetos endereçados no espaço Exemplo: rede de distribuição elétrica rede primária rede secundária sub-estações, alimentadores postes, transformadores, chaves cadastro urbano cadastro de consumidores Representações Vetoriais de Regiões 2D Polígonos fechados As coordenadas de cada polígono são guardadas em separado Vantagens Facilita a inserção num banco de dados geográfico Desvantagens Duplicação de linhas e possíveis erros Representações Vetoriais de Regiões 2D Estrutura arco-nó (topológica) Cada polígono é uma lista de linhas Vantagens Evita erros e duplicação de linhas Desvantagens Mais complicado de produzir Vetores + Tabelas Dualidade entre localização e atributos Lotes geoid 23 dono endereço cadastro IPTU 22 Guimarães Caetés 768 250186 23 Bevilácqua São João 456 110427 24 Ribeiro Caetés 790 22 271055 Ligação entre Geometria e Atributos Integração Localização - Atributos Praia de Boiçucanga Praia Brava Exemplo de Unidade Territorial Básica - UTB Representações 2D do espaço Vetor Matriz fonte: Mohamed Yagoub Representação Matricial Le Li Componentes Ls Aq matriz de células índice espacial para cada elemento cada célula, um ou mais valores Indica o que ocorre em cada lugar do espaço Estrutura de uma matriz Extensão célula Resolução fonte: Mohamed Yagoub O que representamos em uma célula? Célula Qualidades: “Alto, baixo” (temático) Quantidades: teor de cobre (numérico) fonte: Mohamed Yagoub Conversão Vetorial Matricial fonte: Mohamed Yagoub Representação Matricial fonte: Mohamed Yagoub Matrizes x Vetores fonte: Mohamed Yagoub O problema da mistura das células Água domina Maioria Bordas A A G A G G A B G A A G A A G A B G A A G A G G B B G fonte: Mohamed Yagoub Espaço Celular Le Li Cada elemento da grade Ls índice espacial para uma tabela Generalização de uma matriz Aq Modelagem Computacional Espaços celulares Componentes conjunto de células georeferenciadas identificador único vários atributos por células matriz genérica de proximidade - GPM Amazônia em 2015? Representações 2D Vetorial • Preserva relacionamentos topológicos Preferida quando necessitamos de precisão (e.g. cadastro urbano e rural) Matricial Processos contínuos Preferida quando tratamos com dados de recursos naturais (e.g., geologia, solos, etc..) Vetores ou Matrizes ? “Os limites desenhados em mapas temáticos (como solo, vegetação, ou geologia) raramente são precisos e desenhá-los como linhas finas muitas vezes não representa adequadamente seu caráter. Assim, talvez não nos devamos preocupar tanto com localizações exatas e representações gráficas elegantes. Vetores ou Matrizes ? Se pudermos aceitar que limites precisos entre padrões de vegetação e solo raramente ocorrem, nós estaríamos livres dos problemas de erros topológicos associados como superposição e intersecção de mapas.” (P. A. Burrough) Matrizes ou Vetores? Matrizes ou Vetores ? Matrizes ou Vetores? (RADAM x SRTM) Matrizes ou Vetores? (RADAM x LANDSAT) Modelos Numéricos de Terreno Variação espacial quantitativa São utilizadas para representar uma grandeza que varia continuamente no espaço - altimetria, precipitação, propriedades do solo ou subsolo (como aeromagnetismo). Estruturas de Dados para MNT Grade regular (matriz de reais) • elemento com espaçamento fixo • valor estimado da grandeza Estruturas de Dados para MNT Malha triangular (TIN) • conexão entre amostras • estrutura topológica arco-nó Modelos Numéricos de Terreno Curvas de nível Triangulação Modelos Numéricos de Terreno Imagem MNT Relevo sombreado Imagens são Modelos Numéricos de Terreno Fontes: satélites, fotografias aéreas Elemento de imagem (“pixel”) proporcional à energia eletromagnética refletida ou emitida por área da superfície terrestre Estruturas de Dados para MNT Malha triangular Vantagens 1. Melhor representação de relevo complexo 2. Incorporação de restrições como linhas de crista Problemas 1. Complexidade de manuseio 2. Inadequada para Álgebra de mapas Grade regular 1. Facilita manuseio e conversão 2. Adequada para dados não-altimétrico 1. Representação de relevo complexo 2. Cálculo de declividade Conversão entre Representações Resumo Geoprocessamento Representações Computacionais do Espaço Cada representação computacional Potencial de modelar a natureza Necessidade de combinar representações Dados espaciais Localização + atributos Dependência espacial