Lista de Exercícios 03 – Matemática Básica Funções polinomiais Questões: 01. (UNIFORM) O gráfico da função f, de R em R, definida por f(x) = x2 + 3x - 10, intercepta o eixo das abscissas nos pontos A e B. A distância AB é igual a: a) 3 b) 5 c) 7 d) 8 e) 9 02. (CEFET - BA) O gráfico da função y = ax2 + bx + c tem uma só intersecção com o eixo Ox e corta o eixo Oy em (0, 1). Então, os valores de a e b obedecem à relação: a) b2 = 4a b) -b2 = 4a c) b = 2a d) a2 = -4a e) a2 = 4b 03. (ULBRA) Assinale a equação que representa uma parábola voltada para baixo, tangente ao eixo das abscissas: a) y = x2 b) y = x2 - 4x + 4 c) y = -x2 + 4x - 4 d) y = -x2 + 5x - 6 e) y = x - 3 04. A solução da inequação (x - 3) (-x2 + 3x + 10) < 0 é: a) -2 < x < 3 ou x > 5 b) 3 < x < 5 ou x < -2 c) -2 < x < 5 d) x > 6 e) x < 3 05. Os valores de x que satisfazem à inequação x2 - 2x + 8) (x2 - 5x + 6) (x2 - 16) < 0 são: a) x < -2 ou x > 4 b) x < -2 ou 4 < x < 5 c) -4 < x < 2 ou x > 4 d) -4 < x < 2 ou 3 < x < 4 e) x < -4 ou 2 < x < 3 ou x > 4 06. (VIÇOSA) Resolvendo a inequação (x2 + 3x - 7) (3x - 5) (x2 - 2x + 3) < 0, um aluno cancela o fator (x2 - 2x + 3), transformando-a em (x2 + 3x - 7) (3x - 5) < 0. Pode-se concluir que tal cancelamento é: a) incorreto porque não houve inversão do sentido da desigualdade; b) incorreto porque nunca podemos cancelar um termo que contenha a incógnita; c) incorreta porque foi cancelado um trinômio do segundo grau; d) correto porque o termo independente do trinômio cancelado é 3; e) correto, pois (x2 - 2x + 3) > 0 , " x Îℝ. 07. (UEL) A função real f, de variável real, dada por f(x) = -x2 + 12x + 20, tem um valor: a) mínimo, igual a -16, para x = 6; b) mínimo, igual a 16, para x = -12; c) máximo, igual a 56, para x = 6; d) máximo, igual a 72, para x = 12; e) máximo, igual a 240, para x = 20. 08. (PUC - MG) O lucro de uma loja, pela venda diária de x peças, é dado por L(x) = 100 (10 - x) (x - 4). O lucro máximo, por dia, é obtido com a venda de: a) 7 peças b) 10 peças c) 14 peças d) 50 peças e) 100 peças 09. (UE - FEIRA DE SANTANA) Considerando-se a função real f(x) = -2x2 + 4x + 12, o valor máximo desta função é: a) 1 b) 3 c) 4 d) 12 e) 14 10. (ACAFE) Seja a função f(x) = -x2 - 2x + 3 de domínio [-2, 2]. O conjunto imagem é: a) [0, 3] b) [-5, 4] c) ]-¥, 4] d) [-3, 1] e) [-5, 3] Resolução: 01. D 05. D 09. E 02. A 06. E 10. B 03. C 07. C 04. A 08. A Logaritmo 4) O número real x, tal que ,é (A) (B) (C) (D) (E) 5) (PUCRS) Escrever (A) (B) (C) (D) (E) , equivale a escrever 6) Se , o valor de é: (A) -2 (B) -1 (C) 0 (D) 1 (E) 2 , com a>0, a≠1 e b>0, é dada 7) (PUCRS) A solução real para a equação por (A) (B) (C) (D) (E) GABARITO 04 - A 05 - A 06 - B 07 - E 01. (U. E. FEIRA DE SANTANA - BA) O produto das soluções da equação (43 - x)2 - x = 1 é: a) 0 b) 1 c) 4 d) 5 e) 6 02. (PUCCAMP) Considere a sentença a2x + 3 > a8, na qual x é uma variável real e a é uma constante real positiva. Essa sentença é verdadeira se, por exemplo: a) x = 3 e a = 1 b) x = -3 e a > 1 c) x = 3 e a < 1 d) x = -2 e a < 1 e) x = 2 e a > 1 03. As funções y = ax e y = bx com a > 0 e b > 0 e a b têm gráficos que se interceptam em: a) nenhum ponto; b) 2 pontos; c) 4 pontos; d) 1 ponto; e) infinitos pontos. 04. (U. E. FEIRA DE SANTANA - BA) O gráfico da função real f(x) = x2 - 2: a) intercepta o eixo dos x no ponto (1, 0); b) intercepta o eixo dos x no ponto (0, 1); c) intercepta o eixo dos x no ponto (2, 0); d) intercepta o eixo dos x no ponto (0, -2); e) não intercepta o eixo dos x. 05. (FIC / FACEM) A produção de uma indústria vem diminuindo ano a ano. Num certo ano, ela produziu mil unidades de seu principal produto. A partir daí, a produção anual passou a seguir a lei y = 1000 . (0,9)x. O número de unidades produzidas no segundo ano desse período recessivo foi de: a) 900 b) 1000 c) 180 d) 810 e) 90 06. (U. E. LONDRINA) Supondo que exista, o logaritmo de a na base b é: a) o número ao qual se eleva a para se obter b. b) o número ao qual se eleva b para se obter a. c) a potência de base b e expoente a. d) a potência de base a e expoente b. e) a potência de base 10 e expoente a. 07. (PUC) Assinale a propriedade válida sempre: a) log (a . b) = log a . log b b) log (a + b) = log a + log b c) log m . a = m . log a d) log am = log m . a e) log am = m . log a (Supor válidas as condições de existências dos logaritmos) 08. (CESGRANRIO) Se log10123 = 2,09, o valor de log101,23 é: a) 0,0209 b) 0,09 c) 0,209 d) 1,09 e) 1,209 09. Os valores de x que satisfazem log x + log (x - 5) = log 36 são: a) 9 e -4 b) 9 e 4 c) -4 d) 9 e) 5 e -4 10. (UERJ) Em uma calculadora científica de 12 dígitos quando se aperta a tecla log, aparece no visor o logaritmo decimal do número que estava no visor. Se a operação não for possível, aparece no visor a palavra ERRO. Depois de digitar 42 bilhões, o número de vezes que se deve apertar a tecla log para que, no visor, apareça ERRO pela primeira vez é: a) 2 b) 3 c) 4 d) 5 e) 6 Resolução: 01. E 05. D 09. D 02. D 06. B 10. D 03. D 07. E 04. A 08. B