Algoritmos e Estruturas de Dados I – Estruturas de Dados Profa. Mercedes Gonzales Márquez Estruturas de Dados •Os tipos primitivos (inteiro, real, literal e lógico) não são suficientes para representar todos os tipos de informação. •Particularmente quando temos mais de uma informação relacionada. Ex: Lista dos nomes dos alunos de uma sala, endereço de alguém etc. •Utilizaremos os tipos primitivos para construir outras estruturas de dados mais complexas. Vetores • • Também denominados Estruturas compostas homogêneas unidimensionais Permitem a manipulação de um conjunto de informações de um mesmo tipo primitivo ◦ Declaração : tipo primitivo : nome_vetor [numero de elementos] ◦ Exemplo : Um vetor com nome “dados” de 40 posições reais terá a seguinte declaração. Real: dados[40] dados 1 2 3 4 5 6 7 8 9 38 39 40 2,4 7,8 3,6 5,3 9,1 9,8 6,5 9,8 4,7 1,5 2,8 4,6 Vetores ◦ Manipulação: Para manipular os elementos de um vetor devemos especificar a sua posição. dados 2,4 7,8 7,8 3,6 5,3 9,1 9,8 6,5 9,8 4,7 1,5 2,8 4,6 1 2 3 4 5 6 7 8 9 38 39 40 -dados[8] • A posição do vetor é determinada por meio de uma constante, de uma expressão aritmética ou de uma variável que estiver dentro dos colchetes. Ela é também chamada de índice. Vetores Exercício – Sendo o vetor v igual a 2 7,8 6 8 3 10 9 1 21 33 14 1 2 3 4 5 6 7 8 9 10 e as variáveis x=2 e y=4 escreva o valor correspondente à solicitação (a) v[x+1] (b) v[x+2] (c) v[x+3] (d) v[x+4] (e) v[x*1] (f) v[x*2] (g) v[x*3] (h) v[v[x+4]] (i) v[x+y] (j) v[8-v[2]] (k) v[v[4]] (l) v[v[v[7]]] (m) v[v[1]*v[4]] (n) v[x+4] Vetores Algoritmo 2 – Leia dois vetores inteiros de 50 posições, some seus correspondentes elementos e imprima o resultado da soma inteiro: va[50],vb[50],vc[50],i inicio para i de 1 até 50 repita leia (va[i],vb[i] ) vc[i] ← va[i] + vb[i] escreva (vc[i]) fimpara fim. Vetores Algoritmo 3 – Preencha um vetor de 100 inteiros, colocando 1 na posição par e 0 na posição impar inteiro: vetor[100],i inicio para i de 1 até 100 repita se (mod(i,2)=0) então vetor[i] ← 1 senão vetor[i] ← 0 fimpara; fim. Vetores Algoritmo 4 – Altere o exemplo da soma de vetores para que esta realize a seguinte operação: produto do primeiro vetor pelo inverso do segundo. Os vetores possuem 20 posições e contém valores reais. Algoritmo <produto> inteiro: i real: V[20],a[20],b[20] inicio para i de 1 até 20 repita V[i] ← a[i]*b[21-i] fim para fim. Vetores Algoritmo 5 – Igual que o algoritmo 4, só que o resultado dos produtos dos valores correspondentes devem ser armazenados a partir do centro para as bordas, de modo alternado. Algoritmo <produto2> real: V[20],a[20],b[20] inteiro: i inicio para i de 1 até 10 repita v[11-i]=a[11-i]*b[10+i] v[10+i]=a[10+i]*b[11-i] fim para fim. Vetores Algoritmo 6 – Escreva uma algoritmo que leia um vetor de 20 elementos e conte quantos valores pares existem no vetor. Algoritmo <contagempares> inteiro: V[20],i,c inicio c ←0 para i de 1 até 20 repita leia (V[i]) Se (mod(V[i],2)=0) então c ← c+1 fim se fim para escreva (c) fim. Vetores Algoritmo 7 – Escreva um algoritmo que leia um vetor de 50 posições de números inteiros e mostre somente os positivos Algoritmo <positivos> inteiro:V[50], i inicio para i de 1 até 50 repita leia (V[i]) se (V[i]>0) então escreva (V[i]) fim se fim para fim. Vetores Algoritmo 8 – Escreva um algoritmo que leia um vetor de 80 elementos inteiros, encontre e mostre o menor elemento e sua posição no vetor. Algoritmo <menorelemento> inteiro:V[80], i, ind,menor inicio leia (V[1]) menorV[1] ind1 para i de 2 até 80 repita leia (V[i]) se (V[i]<menor) então menorV[i] indi fim se fim para Vetores Algoritmo 9 – Faça um algoritmo que leia um conjunto de 10 valores inteiros e os coloque em dois vetores conforme forem pares ou ímpares. Algoritmo <doisvetores> inteiro:V[10], V1[10],V2[10],i,c1,c2 inicio c1 c2 para i de 1 até 10 repita leia (V[i]) se (mod(V[i],2)=0) então V1[c1]V[i] c1c1+1 senão V2[c2]V[i] c2 c2 fim se fim para fim. Vetores Algoritmo 10 – Ler um vetor v de 10 elementos inteiros e obter um vetor fat cujos componentes são os fatoriais dos respectivos componentes de v. Algoritmo <doisvetores> inteiro:v[10], fat[10],i,j inicio para i de 1 até 10 repita leia (v[i]) fat[i] 1 Para j de 1 até v[i] repita fat[i] fat[i]*j Fim Para fim. Vetores Algoritmo 11 – Escreva um algoritmo que leia um vetor G de 20 elementos literais que representa o gabarito de uma prova. A seguir para cada um dos 50 alunos da turma, leia o vetor de respostas R do aluno. Mostre o número de acertos do aluno e uma mensagem APROVADO, se a nota for maior ou igual a 6; e uma mensagem de REPROVADO, caso contrário. Vetores Algoritmo <prova> notaacertos*0.5 literal:G[20], R[20] se (nota>=6) então inteiro:i,j,acertos escreva (“APROVADO”) inicio senão para i de 1 até 20 repita escreva(“REPROVADO”) leia (G[i]) fim para fim se para j de 1 até 50 repita fim para acertos ← 0 fim Para i de 1 até 20 repita leia R[i] se (R[i]=G[i]) então acertos ← acertos+1 fim se fim para Vetores Algoritmo 12 – Faça um algoritmo que leia um código numérico inteiro e um vetor de 50 posições de números reais. Se o código for 0 termine o algoritmo, se for 1, mostre o vetor na ordem direta, e se for 2, mostre o vetor na ordem inversa. Vetores Algoritmo <opcoes> inteiro:i,codigo real: vetor[50] inicio leia (codigo) se (codigo>0 e codigo<=2) então para i de 1 até 50 repita leia (vetor[i]) fim para se (codigo=1) então para i de 1 até 50 repita escreva (vetor[i]) fim para senão para i de 50 até 1 passo -1 repita escreva (vetor [i]) fim para fim se fim se Vetores Algoritmo 13 – Faça um algoritmo que leia dois conjuntos de números inteiros tendo cada um 20 elementos e apresente os elementos comuns (interseção de conjuntos). Vetores Algoritmo <intersecao> real: a[20], b[20], c[20] inteiro: m, n, i, j, k Inicio Para i de 1 até 20 repita Leia( a[i] ,b[i]) Fim_para k←0 Para i de 1 até 20 repita Para j de 1 até 20 repita Se( a[i] = b[j] ) então k ← k+1 c[k] ← a[i] Fim_se Fim_para Fim_para Se ( k=0 ) então Escreva(“Interseção Vazia. “) Senão Escreva(“Conjunto Interseção:”) Para i de 1 até k repita Escreva( c[i] ) Fim_para Fim_se Fim Obs. Com este algoritmo, se houver elementos repetidos, também se repetirão na saída. Como evitar isso? Vetores Algoritmo <intersecao2> real: a[20], b[20], c[20] inteiro: m, n, i, j, k Inicio Para i de 1 até 20 repita Leia( a[i] ,b[i]) Fim_para k ← 0, L←0 Para i de 1 até 20 repita j←1 Enquanto (a[i]<>b[j] e j<=20) faça j ← j+1 Fim enquanto Se( a[i] = b[j] ) então k←0 enquanto (a[i]<>c[k] e k<=L) k ← k+1 fim enquanto Se (k>L) c[k] ← a[i] L← L+1 Fim_se Fim_para Fim_para Se ( k=0 ) então Escreva(“Interseção Vazia. “) Senão Escreva(“Conjunto Interseção:”) Para i de 1 até k repita Escreva( c[i] ) Fim_para Fim_se Fim Vetores Algoritmo 14 – Uma locadora de vídeos tem guardada, em um arquivo manual, a quantidade de filmes retirados por cliente durante o ano de 2007. Faça um algoritmo que (a) leia um vetor de 500 posições para guardar esta informação e (b) crie um outro vetor contendo a quantidade de locações gratuitas a que cada cliente tem direito, considerando que a locadora está fazendo uma promoção e para cada 10 filmes retirados ganha-se uma locação grátis. Vetores Algoritmo <locadora> inteiro:i,locacoes[500],gratuitas[500] inicio para i de 1 até 500 repita leia (locacoes[i]) gratuitas[i] ← DIV(locacoes[i],10) fim para fim Vetores Algoritmo 15 – Dado um polinômio P(x) de grau n, da forma P(x) = a0xn + a1xn-1 + ... + an-1x + an, onde a0, a1, ..., an (reais) são os coeficientes do polinômio. Faça um algoritmo para ler: (a)n (o grau do polinômio), n<=100 (b)os coeficientes a0, a1, ..., an e (c)uma sequência de 5 valores para x. O algoritmo deve calcular o valor de P(x) para cada valor de x. Vetores Algoritmo <polinomio> inteiro:i,n real: a[101],x início leia (n) para i de 1 até n+1 repita leia a[i] fim para para j de 1 até 5 repita leia x Px ← 0 para i de 1 até n+1 repita Px ← Px+ a[i]*x**(n-i+1) fim para escreva (x,Px) fim para fim Vetores Algoritmo 16 – Escrever um algoritmo que faça a reserva de passagens aéreas de uma companhia. Além da leitura do número dos vôos e quantidade de lugares disponíveis, ler vários pedidos de reserva, constituídos do número de carteira de identidade do cliente e do número de vôo desejado. Para cada cliente, verificar se há disponibilidade no vôo desejado. Em caso afirmativo, imprimir o número da identidade do cliente, e o número de vôo, atualizando o número de lugares disponíveis. Caso contrário, avisar ao cliente da inexistência de lugares. Indicando o fim dos pedidos de reserva, existe um passageiro cujo número de carteira de identidade é 9999. Considerar fixo e igual a 37 o número de vôos da companhia. Algoritmo <reservapassagens> inteiro:i,voos[37],disp[37],cliente,nvoo início Para i de 1 até 37 repita leia (voos[i],disp[i]) Fim Para leia cliente enquanto cliente<>9999 faça leia nvoo i←0 repita i ← i+1 até que (i=37 ou voos[i]=nvoo) se (voos[i]=nvoo) então se (disp[i]>0) então escreva (cliente,nvoo) disp[i] ← disp[i]-1 senão escreva (nvoo, “lotado”) fim se senão escreva (“voo inexistente”) fim se leia cliente fim enquanto fim Vetores Algoritmo 17 – Faça um algoritmo que leia um vetor de 20 inteiros e o coloque em ordem crescente, utilizando a seguinte estratégia de ordenação: •Selecione o elemento do vetor de 20 posições que apresente o menor valor. •Troque este elemento pelo primeiro. •Repita estas operações, envolvendo agora apenas os 19 elementos restantes (trocando o de menor valor com a segunda posição), depois os 18 elementos (trocando o de menor valor com a terceira posição), depois os 17,16 e assim por diante, até restar um único elemento, o maior deles. Este algoritmo é conhecido como algoritmo de seleção. Animação em http://www.youtube.com/watch?feature=player_emb edded&v=LuANFAXgQEw Vetores Algoritmo <ordemcrescente> inteiro:i,j,vetor[20] inicio para i de 1 até 19 repita inter ← 0 menor ← vetor[i] indice ← i para j de i+1 até 20 repita se (vetor[j] < menor ) então menor ← vetor[j] indice ← j inter ← 1 fim se fim para se (inter=1) então vetor[indice] ← vetor[i] vetor[i] ← menor fim se fim para Vetores Algoritmo 18 – Algoritmo 17 de forma mais simples e considerando n elementos (n<=20). Algoritmo <ordemcrescente> inteiro:i,j,vetor[20],aux,indice inicio Leia (n) para i de 1 até n-1 repita indice ← i para j de i+1 até n repita se (vetor[j] < v[indice]) então indice ← j fim se fim para aux ← vetor[i] vetor[i] ← v[indice] vetor[indice] ← aux fim para Vetores Algoritmo 19 – Desenvolva um algoritmo que leia um vetor de n posições inteiras (n<=20) e o coloque em ordem crescente, utilizando como estratégia de ordenação a comparação de pares de elementos adjacentes, permutando-os quando estiverem fora de ordem até que todos estejam ordenados (Algoritmo da Bolha). (Animação em http://www.youtube.com/watch?feature=player_emb edded&v=gWkvvsJHbwY) Vetores Algoritmo <ordemcrescente2> inteiro:i,j,aux,vetor[20] inicio Leia (n) para i de 1 até n-1 repita para j de 1 até n-i repita se (vetor[j] > vetor[j+1] ) então aux ← vetor[j] vetor[j+1] ← vetor[j] vetor[j] ← aux fim se fim para fim para fim Vetores Algoritmo 20 – Desenvolva um algoritmo que leia um vetor de n posições inteiras (n<=20) e o coloque em ordem crescente, utilizando como estratégia de ordenação inserir um elemento k num vetor já ordenado de k-1 elementos. Vetores Algoritmo <ordemcrescente3> inteiro:i,j,elemento,vetor[20] inicio Leia (n) para j de 2 até n repita elemento ←vetor[j] i ←j-1 enquanto (i>0 e vetor[i]>elemento) vetor[i+1] ← vetor[i] i ← i-1 fim enquanto vetor[i+1] ← elemento fim para fim Vetores • • • Tarefas: Estude os exercícios resolvidos de estrutura de repetição do livro Introdução à Programação 500 Algoritmos Resolvidos de Anita Lopes. Estude a lista de exercícios resolvidos de estrutura de repetição que se encontra no site da disciplina. Resolva a lista de exercícios propostos de estrutura de repetição que estará disponível no dia 31/05 no site da disciplina.