Arquivo “Mecanismo envolvido no potencial terapêutico da via óxido nítrico-guanilato ciclase solúvel – GMP cíclico” Dúvidas [email protected] Site www.gdenucci.com NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential NATURE REVIEWS | DRUG DISCOVERY VOLUME 5 | SEPTEMBER 2006 | 755 The NO–sGC–cGMP signal transduction pathway and potential drug targets. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential NATURE REVIEWS | DRUG DISCOVERY VOLUME 5 | SEPTEMBER 2006 | 755 NO–sGC–cGMP signalling in a blood vessel. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential NATURE REVIEWS | DRUG DISCOVERY VOLUME 5 | SEPTEMBER 2006 | 755 Main haem-dependent stimulators of soluble guanylate cyclase NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential NATURE REVIEWS | DRUG DISCOVERY VOLUME 5 | SEPTEMBER 2006 | 755 Main haem-dependent stimulators of soluble guanylate cyclase NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential NATURE REVIEWS | DRUG DISCOVERY VOLUME 5 | SEPTEMBER 2006 | 755 Main haem-independent activators of soluble guanylate cyclase NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential NATURE REVIEWS | DRUG DISCOVERY VOLUME 5 | SEPTEMBER 2006 | 755 Homology model of the haem-binding domain of the human soluble guanylate cyclase (sGC) β-subunit. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential NATURE REVIEWS | DRUG DISCOVERY VOLUME 5 | SEPTEMBER 2006 | 755 Soluble guanylate cyclase (sGC) redox equilibrium. Introduction Bladder Function Filling phase – the storage of urine occurs with a low pressure which implies that detrusor relaxes during this phase. Disturbances of the storage function may result symptoms, such as urgency, frequency, and urge incontinence, components of overactive bladder syndrome. Abrams P. et al. 2002. Emptying phase – Detrusor contraction and urethral relaxation provoke the elimination of urine. Chu F., Dmochowski R. 2006. Nitric oxide and overactive bladder Overactive bladder (OAB) is a complex of symptoms defined by the International Continence Society (ICS) as urinary urgency, with or without urge incontinence, usually with frequency and nocturia. It reflects involuntary detrusor smooth muscle (DSM) contractions as a consequence of enhanced cholinergic stimulation. The nitric oxide (NO)-cyclic GMP signaling pathway has been described to modulate the muscular tone, neurotransmission and blood flow in DSM, but the exact role of NO in the bladder is not completely understood. Some evidencies suggest that NO deficiency contributes to triggering OAB. • Intravesical and intra-arterial administration of NOS inhibitor L-NMMA in anesthetized cats decreased the micturition volume threshold. •Theoblad RJ. 1996. • L-NAME (NOS inhibitor) intra-arterially administered increased the spontaneous bladder contractions in concious rats. Persson K., et al. 1992. • In hypertrophied rat bladder a decrease of calcium-dependent nNOS activity has been demonstrated Johansson R., et al. 2002. • Intravesical administration of an NO scavenger oxyhaemoglobin produces bladder hyperactivity in normal rats. Pandita R.K., et al. 2002. BAY 41-2272 BAY 41-2272 potently stimulates soluble guanylate cyclase (sGC) through cysteine 238 and cysteine 243 region in the α1-subunit of by a mechanism independent of NO. Stasch J.P. et al. 2001. BAY 41-2272 produces relaxation of ovine pulmonary artery through the activation of sGC as well as cGMP-independent stimulation of sarcolemmal sodium pump. Bawankadule D.U. et al. 2005. BAY 41-2272 causes basilar artery relaxation through the stimulation of sGC, as well as via inhibition of Ca2+ entry in the rat basilar artery. Teixiera C.E. et al. 2006. BAY 41-2272 produces a potent relaxation in rabbit and human corpus cavernosum that is partially inhibited by ODQ. Baracat J.S. et al. 2003. Objectives The aim of this study was to evaluate the relaxant effect of BAY 41-2272 in the rabbit isolated bladder and the mechanisms underlying these responses. • To compare the relaxant effects evoked by BAY 41-2272, sodium nitroprusside (SNP), glyceryl trinitrate (GTN) and acidified NaNO2. • To evaluate the effect of L-NAME (non-selective NO synthase inhibitor), ODQ (soluble guanylate cyclase inhibitor) and sildenafil (phosphodiesterase type-5 inhibitor) in the BAY 41-2272-induced responses. Methods • New Zealand male rabbits 2-3 kg were killed by overdose of urethane (1.2 g/kg i.v.). • The abdomen was opened in the midline, and the bladder body was carefully removed. • The muscle strips (2 x 4 x 10 mm) were placed in Krebs solution of the following composition (mM): NaCl, 118; NaHCO3, 5.6; KCl, 4.7; KH2PO4, 1.2; MgSO4.7 H2O, 1.17 and CaCl2.2 H2O, 2.5. • Each muscle was mounted in 10-ml organ baths containing Krebs solution at 37ºC continuosly gassed with a mixture of 95% O2 + 5% CO2 (pH 7.4) under tension 20 mN. • Isometric tension was recorded by force tranducers connected to a PowerLab 400 TM data acquisition system (Software Chart 5.0, AD Intruments, MA, USA). • After 1 hour stabilization, viability of the bladder smooth muscle was confirmed following addition of high KCl solution (80 mM). • Concentration-response curves were constructed by adding BAY 41-2272 (0.001-10 µM), SNP (0.01-10 µM) GTN (0.01-10 µM) and acidified NaNO2 (0.01-100 µM). • BAY 41-2272-induced relaxations were evaluated in the absence and in the presence of ODQ (10 µM), LNAME (100 µM) or sildenafil (100 nM). BAY 41-2272, but not SNP, GTN or acidified NaNO2, potently relaxes the rabbit bladder 7.5 6.62 ± 0.14 6.38 ± 0.18 5.94 ± 0.16 pEC50 50 5.51 ± 0.51 5.0 2.5 0.0 BAY 41-2272 SNP GTN ac. NaNO2 100 150 -9 -8 -7 -6 log [drug]: M -5 -4 Emax (% Relaxation) Relaxation (%) 0 150 BAY 41-2272 SNP GTN NANO2 131.61 ± 4.52 100 * 47.41 ± 3.39 * 41.07 ± 3.57 50 0 BAY 41-2272 SNP GTN * 49.80 ± 4.54 NaNO2 Figure 1. Relaxant effects of BAY 41-2272, sodium nitroprusside (SNP), glyceryl trinitrate (GTN) and acidified NaNO2 in the rabbit isolated detrusor smooth muscle (n=5). Data are the mean ± S.E.M. * p<0,001. BAY 41-2272-induced responses are not affected by L-NAME, ODQ and sildenafil pEC 50 7.5 50 6.69 ± 0.14 6.53 ± 0.10 5.99 ± 0.48 6,75 ± 0,08 Control ODQ L-NAME Sildenafil 5.0 2.5 Control ODQ L-NAME 100 0.0 Sildenafil 150 -9 -8 -7 -6 log [BAY 41-2272]: M -5 Emax (% Relaxation) Relaxation (%) 0 150 131,63 ± 4,52 127,33 ± 6,90 121,80 ± 6,78 122,54 ± 3,89 100 50 0 Control ODQ L-NAME Sildenafil Figure 2. Lack of effect of L-NAME, ODQ or sildenafil on BAY 41-2272-induced responses in the rabbit isolated detrusor smooth muscle (n=5). Data are the Mean ± S.E.M. Conclusion In contrast to NO and NO donors, BAY 41-2272 causes a complete relaxation of rabbit DSM. Our findings that the relaxant responses to BAY 41-2272 were not altered by L-NAME, ODQ or sildenafil indicate that BAY 41-2272 acts through a cGMP-independent mechanism to produce DSM relaxations. Therefore, the present findings suggest that BAY 41-2272 represents a drug with therapeutic potential to treat overactive bladder. Effects of BAY 41-2272 on smooth muscle tone, soluble guanylyl cyclase activity and NADPH oxidase activity/expression in corpus cavernosum from wild-type, neuronal and endothelial NOS null mice. Cleber E. Teixeira, Fernanda B. M. Priviero & R. Clinton Webb Department of Pharmacology, Faculty of Medical Sciences, UNICAMP, Campinas, SP, Brazil, 13087-971 (CET) Department of Physiology, Medical College of Georgia Augusta, GA, 30912-3000, U.S.A. (FBMP, RCW) e-mail: [email protected] Introduction The discovery that the NO-sGC-cGMP system is one of the major effectors of cavernosal smooth muscle relaxation and penile erection has led to the development of two classes of agents: (a) compounds that inhibit cGMP degradation like the PDE inhibitors, and (b) compounds that elevate cGMP levels through potentiation of cGMP synthesis. In the latter context, the main rationale for these new therapeutic principles is based on both insufficient NO-sGC-cGMP signaling, often associated with the use of conventional NO donors and the medical need to treat conditions associated with oxidative stress. The bensylindazol derivate YC-1 (3(5’-hydroxymethyl-2’-furyl-1benzyl indazole) was first reported to increase intracellular cGMP content in platelets (Ko et al., 1994) and was later shown to stimulate soluble guanylate cyclase independent of nitric oxide to cause erectile responses (Mizusawa et al., 2002; Brioni et al., 2002). In animal models, the sGC stimulator BAY 41-2272 (5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3yl]pyrimidin-4ylamine) (Stasch et al., 2001) has been confirmed to be more potent than YC-1 and to elicit erectile responses in a conscious rabbit model of penile erection (Bischoff et al., 2003) as well as to cause human and rabbit corpus cavernosum relaxation (Baracat et al., 2003). Objectives In this investigation, we examined the in vitro effects of BAY 41-2272 in corpus cavernosum from mice with targeted deletions of NOS isoforms (nNOS-/- or eNOS-/-), in order to understand the contribution of each isoform to the proerectile action of BAY 41-2272. Firstly, we studied the effects resulting from modulation of the NO-signaling cascade on responses evoked by BAY 41-2272 as well as the sensitizing effects of this compound on both endogenous and exogenous NO-mediated cavernosal relaxation. Secondly, we investigated sGC expression and BAY 41-2272-induced enzyme activity in cavernosal tissue from these animals. Thirdly, we studied the effects of BAY 41-2272 on both O2- formation and NADPH oxidase expression in cavernosal tissue treated with the thromboxane A2 analogue, U44619. N H 2N N F N N Structure of BAY 41-2272 N Methods Corpus cavernosum preparation. The penises were surgically removed and placed in chilled Krebs-Henseleit buffer of the following composition (mM): NaCl, 130; NaHCO3, 14.9; dextrose, 5.5; KCl, 4.7; KH2PO4, 1.18; MgSO47H2O, 1.17 and CaCl22H2O, 1.6. Following removal of the glans penis and urethra, the corpora cavernosa was opened from its proximal extremity towards the penile shaft to obtain two strips (11 x 1 x 1 mm) of corpus cavernosum (CC) from each animal. Each strip was mounted in a myograph for isometric force recording (Danish Myograph Technology, Aarhus, Denmark) coupled to a PowerLab 8/SP™ data acquisition system (software Chart 5.0, ADInstruments, Colorado Springs, U.S.A.). The bathing solution was maintained at 37oC and continuously aerated with 95% O2 and 5% CO2. Tissues were allowed to equilibrate for 45 min under a resting tension of 2 mN. Determination of cavernosal cGMP levels. Cavernosal strips were equilibrated for 20 min in warmed and oxygenated Krebs solution and then stimulated for 10 min with BAY 41-2272 (0.01-1 M), SNP (1 M), or their combination. Preparations were collected immediately by freezing the segments in liquid nitrogen. Cyclic GMP was extracted and quantified using commercially available kits (Cayman Chemical Cyclic GMP EIA kit, Ann Arbor, MI, U.S.A.) as previously described (Teixeira et al., 2005). Methods Soluble guanylyl cyclase activity. Determined in the supernatant fractions of the tissue samples by the conversion of GTP to cGMP. Briefly, 30 µg each protein sample were incubated for 10 min at 37°C in a total volume of 100 µl containing the following: 50 mM Tris-HCl (pH 7.4), 1 mM 3isobutyl-1-methylxantine, 3 mM MgCl2, 0.5 mM GTP, 3 mM DTT, 5 mM phosphocreatine and 0.25 mg/ml creatine kinase. The stimulation of enzyme activity was measured in the presence of BAY 41-2272 (0.001-1 M). The reaction was terminated by inactivation of sGC at 95°C for 10 min. Effects of BAY 41-2272 on superoxide (O2-) formation. To assess the effect of U46619 in the absence or in the presence of BAY 41-2272 on O2- formation, cavernosal segments were incubated with U46619 for 1 or 8 h at 37oC in a 95% air-5% CO2 incubator. Tissues were then equilibrated in DMEM with no phenol red for 10 min at 37oC in the incubator. Next, 20 M horseradish cytochrome c, with or without 500 U/ml copper-zinc superoxide dismutase (SOD), was added and incubated at 37oC in the incubator for 1 h. The reaction medium was removed and reduction of cytochrome c determined at 550 nm and converted to mol O2-, using a DE550nm of 21.1 mmol-1cm-1 as the extinction coefficient. The reduction of cytochrome c that was inhibitable with SOD reflected actual O2- release. Methods Semi-quantitative RT-PCR. An amount of 0.5 µg of total RNA was reverse-transcribed and cDNAs were subsequently amplified in Ready-to-Go RT-PCR beads in a two-step procedure. Primer sequences for the sGC1 gene (Genbank accession nr. AF297082) were: forward, 5’GGTCACCATGTGTGGACAGG-3’; reverse, 5’-CCAGCTCTCCACACTGCTGG-3’. Primer sequences for the sGC1 gene (Genbank accession nr. AF020339) were: forward, 5’GCATGCATCTGGAGAAGGG-3’; reverse, 5’-CCGAGGCATCCGCTGTCC-3’. The primers for glyceraldehyde-3-phosphate dehydrogenase, used as an internal control, (GAPDH; Genbank accession nr. AF106860) were: forward, 5’-GGCTGCCTTCTCTTGTGACAA-3’; reverse, 5’CGCTCCTGGAGGATGGTGAT-3’. Western blot analysis. An aliquot of 40 g protein from each sample was loaded per lane and resolved by SDS-PAGE. Membranes were probed with antibodies against sGC1 (1:100), sGC1 (1:200), gp91phox (1:500), p47phox (1:500), p22phox (1:500) or p67phox (1:500) and incubated with a horseradish peroxidase-conjugated second antibody. Immunoreactivity was detected by enhanced chemiluminescence autoradiography. Results were then expressed as the densitometric ratio of protein of interest/-actin (1:2000). Cyclic GMP content of mouse corpus cavernosum from wild-type (WT), nNOS-/- and eNOS-/- cGMP levels (pmol/mg protein) WT nNOS-/- eNOS-/- vehicle 0.14 ± 0.04 0.17 ± 0.03 0.04 ± 0.03 BAY 0.01 M 0.96 ± 0.15** 1.19 ± 0.19** 0.24 ± 0.10* BAY 0.1 M 1.22 ± 0.45** 1.44 ± 0.56** 0.49 ± 0.13** BAY 1 M 3.87 ± 0.53** 4.28 ± 0.77** 0.96 ± 0.31** SNP 1 M 0.95 ± 0.28** 0.88 ± 0.23** 0.30 ± 0.09** BAY 1 M + SNP 10.52 ± 1.61**,# 8.50 ± 1.18**,# 4.53 ± 0.78**,# BAY 1 M + ODQ 0.44 ± 0.09* 0.67 ± 0.11* 0.13 ± 0.05 *p<0.05 and **p<0.01 compared to respective vehicles; #p<0.05 compared to the sum of BAY 41-2272 plus SNP values alone. Relaxing activity of BAY 41-2272 in corpus cavernosum from WT, nNOS-/- and eNOS-/- mice a b Relaxation (%) 0 30 ** 60 WT (6.36+0.07) 90 nNOS-/- (6.27+0.06) eNOS-/- (5.88+0.07) -8 -7 -6 -5 Log [BAY 41-2272] (M) Concentration-response curves to BAY 41-2272 (n=16) in corpus cavernosum strips from WT (closed circles), nNOS-/- (open circles) and eNOS-/- (closed squares) mice contracted by PE. Experimental values were calculated relative to the maximal changes from the contraction produced by PE in each tissue, which was taken as 100%. The corresponding pEC50 values are represented in the panel. Data represent the mean ± S.E.M. of n experiments. **p<0.01 compared to curves elicited in WT and nNOS-/- strips. Effects of ODQ and L-NAME on BAY 41-2272-induced relaxations 30 ** 60 ** 60 90 WT (6.34+0.09) ODQ (5.61+0.11) -8 30 -7 -6 -5 nNOS-/- (6.43+0.07) ODQ (5.81+0.08) -8 Log [BAY 41-2272] (M) e 0 30 ** 60 90 -7 -6 Log [BAY 41-2272] (M) -6 * 60 -5 eNOS-/- (5.98+0.06) ODQ (5.58+0.09) -8 -5 f 30 ** 60 nNOS-/- (6.43+0.05) L-NAME (5.95+0.07) -8 -7 -6 Log [BAY 41-2272] (M) -7 -6 -5 Log [BAY 41-2272] (M) 0 90 WT (6.43+0.05) L-NAME (5.99+0.06) -8 30 Log [BAY 41-2272] (M) Relaxation (%) Relaxation (%) d -7 0 90 Relaxation (%) 90 c 0 Relaxation (%) b 0 Relaxation (%) Relaxation (%) a 0 30 60 90 -5 eNOS-/- (5.88+0.08) L-NAME (5.87+0.08) -8 -7 -6 -5 Log [BAY 41-2272] (M) Experimental values were obtained in the absence (closed circles) and in the presence (open circles) of ODQ (10 µM) or L-NAME (100 µM). *p<0.05 and **p<0.01 compared to values in the absence of inhibitor. BAY 41-2272 enhances magnitude and duration of nitrergic responses a b 60 CTL (WT) BAY 0.01 µM BAY400.03 µM BAY 0.1 µM Duration (s) Relaxation (%) 0 30 60 20 ** ** ** ** ** ** 1 2 ** ** 0 90 1 2 4 8 16 4 8 16 EFS (Hz) EFS (Hz) d DuratiDuration (s) on (s) c 0 Relaxation (%) ** CTL (WT) BAY 0.01 µM BAY 0.03 µM BAY 0.1 µM 60 CTL (eNOS -/-) BAY 0.01 µM BAY400.03 µM BAY 0.1 µM 30 60 90 20 ** ** ** ** * ** ** ** 0 1 2 4 EFS (Hz) 8 16 1 2 4 EFS (Hz) 8 16 CTL (eNOS -/-) BAY 0.01 µM BAY 0.03 µM BAY 0.1 µM Effects of increasing concentrations (0.01-0.1 M; n=6) of BAY 41-2272 on the magnitude and duration of nitrergic relaxations evoked by electrical field stimulation (EFS, 1-16 Hz) in mouse cavernosal strips from WT (panels a and b) and eNOS-/- (panels c and d) mice contracted with phenylephrine (PE, 10 M). Nitrergic duration was determined as the time elapsed from 50% relaxation to 50% recovery. Data represent the mean ± S.E.M. of n experiments. *p<0.05 and **p<0.01 compared to the respective control (CTL) values. BAY 41-2272 enhances magnitude and duration of nitrergic responses Representative tracing of the effects of BAY 41-2272 (0.1 M) on nitrergic relaxations of a cavernosal strip from WT animals (4 Hz, 30-s trains). The preparation was stimulated at 30 s intervals for 30 s. Muscle tone was raised with PE (10 M in the absence and 50 M in the presence of BAY 41-2272). Stimulation of cavernosal sGC activity by BAY 41-2272 sGC activity (pmol/mg/min) 50 40 30 WT nNOS-/eNOS-/eNOS-/nNOS-/- 20 10 0 -10 Baseline -9 -8 -7 -6 Log [BAY 41-2272] (M) Formation of cyclic GMP in the presence of cytosolic protein extracts of corpus cavernosum obtained from WT (closed circles), nNOS-/- (open circles) and eNOS-/- (closed squares) mice in the absence or presence of increasing concentrations (0.001-1 M; n=3) of BAY 41-2272. GTP (0.5 mM) was incubated in the presence of cytosolic extract (30 g protein) at 37oC (see Methods), and cyclic nucleotide content (expressed in M) was determined thereafter. Data represent the mean ± S.E.M. of n experiments. sGC expression in corpus cavernosum from WT, nNOS-/- and eNOS-/- mice b Densitometric ratio of sGC/GAPDH a 1.6 WT eNOS-/eNOS-/nNOS-/nNOS-/- 1.2 0.8 0.4 0.0 a1 1 c b1 1 d Densitometric ratio of sGC/ -actin 0.6 WT eNOS-/eNOS-/nNOS-/nNOS-/- 0.4 0.2 0.0 a1 1 b1 1 Messenger RNA (panels a and b; n=6) and Western blot (panels c and d; n=6) analyses of sGC 1 and 1 subunits in corpus cavernosum from WT, nNOS-/- and eNOS-/- mice. Expression of mRNA was analyzed by semi-quantitative RT-PCR and the products were normalized to the GAPDH content of the samples. The immunoblots were detected with an Advance Chemiluminescence Detection Kit and the sGC proteins normalized to the -actin content of the samples. Inhibition of superoxide production by BAY 41-2272 10 µmol O 2 -/mg protein/h a #† WT nNOS -/-/eNOS -/eNOS-/- †# † # ** * ** 5 *# *# *# 0 CTL CTL BAY BAY BAY db/db -/CTL CTL BAY BAY BAY 0.1 1 +ODQ 0.1 1 +ODQ U46619 (10 nM) 21 µmol O 2 -/mg protein/h b 14 CTL CTL BAY BAY BAY 0.1 1 +ODQ U46619 (10 nM) U46619 (10 nM) †† ## ** nNOS-/eNOS-/- †† ## †† ## ** ** # ## # ## 7 ## 0 CTL CTL BAY BAY BAY db/db -/CTL CTL BAY BAY BAY 0.1 1 +ODQ 0.1 1 +ODQ U46619 (10 nM) U46619 (10 nM) CTL CTL BAY BAY BAY 0.1 1 +ODQ U46619 (10 nM) Inhibitory effect of BAY 41-2272 (0.1-1 M; n=4) on superoxide formation elicited by incubation of cavernosal strips of WT (closed bars), nNOS-/- (hatched bars) and eNOS-/- (open bars) with U46619 (10 nM) over 1 h (panel a) and 8 h (panel b). Data represent the mean S.E.M. of n experiments. *p<0.05 and **p<0.01 compared to CTL values in the absence of U46619; #p<0.05 and ##p<0.01 compared to CTL values in the presence of U46619; †p<0.05 and ††p<0.01 compared to BAY 1 M. BAY 41-2272 inhibits NADPH oxidase expression in the corpus cavernosum b Densitometric ratio of p22phox/ -actin a 1.00 ## 0.75 0.50 ** 0.25 ** 0.00 CTL d 1 µM 1 µM +ODQ BAY 41-2272 Densitometric ratio of phox gp91 / -actin c 0.1 µM # ## 1.00 0.75 * 0.50 0.25 ** 0.00 CTL 0.1 µM 1 µM 1 µM +ODQ BAY 41-2272 Inhibitory effect of BAY 41-2272 (0.1-1 M; n=4) on the expression of p22phox and gp91phox in corpus cavernosum from WT mice incubated with U46619 (10 nM) for 8 h. Lanes represent U46619 alone (lane 1; open bars) and in combination with BAY 41-2272 0.1 M (lane 2; grey bars), 1 M (lane 3; closed bars) and 1 M plus ODQ (10 M; lane 4; hatched bars). *p<0.05 and **p<0.01 compared to CTL # values; p<0.05 and ##p<0.01 compared to BAY values alone. Conclusions The present study demonstrated that both expression and activity of sGC are not altered in corpus cavernosum from mice with targeted deletions of either nNOS or eNOS. BAY 41-2272 causes corpus cavernosum relaxation in a synergistic fashion with endogenous or exogenous NO, with concomitant increases in intracellular cGMP levels. Our results also demonstrate that in the course of stimulation of sGC, BAY 41-2272 has a potent inhibitory effect on O2- formation through a reduction of both NADPH oxidase expression and activity. Taken together, such properties render BAY 41-2272 as a promising therapeutic drug to treat erectile dysfunction, particularly in the event of an increased intra-penile oxidative stress. References Brioni et al. (2002) Int J Impot Res 14: 8-14. Baracat et al. (2003) Eur J Pharmacol 477: 163-169. Bischoff et al. (2003) Urology 61: 464-467. Ko et al. (1994) Blood 84: 4226-4233. Mizusawa et al. (2002) J Urol 167: 2276-2281. Stasch et al. (2001) Nature 410: 212-215. Financial Support: National Institutes of Health (HL-71138, HL-74167) Introdução Introdução Disfunção Erétil (DE) incapacidade persistente de alcançar e manter a ereção peniana adequada para uma atividade sexual normal. Aumenta significativamente com a idade Prevalência da DE (Feldman, 1994) Atinge 39% dos homens a partir de 40 anos Atinge 67% dos homens a partir de 70 anos Ganz , 2005 Introdução Classificação da DE masculina (Comitê da Sociedade Internacional de Pesquisa em Impotência) Orgânica 1. Vasculogênica A. Arteriogênica B. Cavernosa C. Associada 2. Neurogênica 3. Anatômica Psicogênica 1. Generalizada A. dessensibilização B. Inibição 2. Situacional A. Relacionada ao parceiro B. Relacionada à performance C. Desajuste psicológico (p.e. depressão) 4. Endocrinológica Lisa & Rosen, 1999 Dean & Lue, 2006 Introdução Fatores de risco envolvidos na disfunção erétil orgânica ENVELHECIMENTO HIPERTENSÃO TABAGISMO HIPERCOLESTEROLEMIA DIABETES Aterosclerose Estenose arterial Fibrose Função endotelial e nervosa reduzidas INSUFICIÊNCIA ARTERIAL E ALTERAÇÕES NOS MECANISMOS DE RELAXAMENTO DO MÚSCULO LISO Andersson, 2003 Introdução CONTROLE PERIFÉRICO Grau de contração do músculo liso cavernoso FLACIDEZ EREÇÃO Equilíbrio Fatores Contráteis Fatores Relaxantes Plexo Pélvico Controle Central e Períférico Burnett, 1992 Andersson, 2001 Rampin, 2004 Dean & Lue, 2006 Introdução Plexo venoso subtunical HEMODINÂMICA E MECANISMO DA EREÇÃO PENIANA Ereto Veias emissárias Espaços sinusoidais Flácido Veia dorsal Túnica albugínea Artérias helicinais Músculo liso trabecular Espaços sinusoidais Plexo venoso subtunical Corpos cavernosos Artéria cavernosa Corpo cavernoso humano Saenz de Tejada et al., 1985; Lue & Tanagho, 1987; Introdução Moduladores e transmissores do relaxamento da célula do músculo liso Óxido nítrico (NO) Acetilcolina (ACh) Neuropeptídeos (VIP, CGRP) Prostanóides (PGE1, PGI2) ATP e adenosina Dean & Lue, 2006 Lue et al., 1983; Saenz de Tejada et al., 1988; Hedlund et al.,1999; 2000a,b; Andersson, 2003. Introdução PRINCIPAL VIA PARA A EREÇÃO ESTÍMULO SEXUAL Fibras NANC Endotélio cavernoso nNOS eNOS sildenafil tadalafil vardenafil NO GCs Músculo liso vascular/ cavernoso GTP GMPc PDE5 5’GMP relaxamento Rapoport & Murad, 1983; Lucas et al., 2000 Introdução Biossíntese do NO nNOS eNOS NOS HN O HO N NH2 HN NH2 NADPH NH2 1/2 NADPH HN HN O2 H2N O2 H2O L-Arg NO . H2O H2N H2N COOH + COOH Nw-hydroxy-L-Arg COOH L-Cit Marletta, 1988, 1993; Feldman et al., 1993; Fukuto & Chaudhuri, 1995; Ignarro & Murad, 1995; Kerwin et al., 1995; Korth et al., 1995. Introdução Guanilil Ciclase Solúvel Guanilil Ciclase Solúvel (GCs) • receptor mais molécula de NO • presente mamíferos no importante citoplasma da dos • inibição da agregação plaquetária • relaxamento de músculo liso • vasodilatação • transdução de sinal neuronal • imunomodulação Collier and Vallance, 1989 Lucas et al., 2000 Introdução Fe2+ : reduzida Fe3+: oxidada HIS105: mutação produz enzima não responsiva ao NO Guanilil Ciclase Solúvel Necessário para a ativação da enzima pelo NO Craven & DeRubertis, 1978 α Subunidades necessárias para atividade catalítica Kamisaki et al., 1986 Complexo HEME FERROSO-NITROSIL forma plana forma piramidal Hille et al., 1979 Stone et al., 1995 Introdução BAY 41-2272 • Molécula introduzida na literatura em 2001, ativador específico de GCs, mais potente que seu precursor YC-1 e desprovida de atividade inibitória sobre a fosfodiesterase; (Stasch et al., 2001; 2002a) • Composto que se liga a GCs em um sítio alostérico da enzima, na região das cisteínas Cys238 e Cys243 na subunidade 1; (Martin et al., 2001; Becker et al., 2001; Stasch et al., 2001) • Tem ação potente sobre a GCs in vitro, potencializada na presença de doador de NO; (Stasch et al., 2001) • Possui propriedade heme-dependente por não ativar enzima desprovida deste grupamento; (Stasch et al., 2001) Introdução BAY 41-2272 • BAY 41-2272 induz vasodilatação em anéis aórticos in vitro e reduz a pressão arterial in ratos normotensos e hipertensos; (Straub et al., 2002) • Vasodilatação induzida por este composto não causa tolerância como os orgânicos. (Stasch et al., 2002) nitratos • BAY 41-2272 aumenta o débito cardíaco e preserva a função renal em cardíaca congestiva experimental; insuficiência (Boerrigter et al., 2003) • BAY 41-2272 relaxa anéis aórticos de coelho tanto na presença quanto na endotélio; ausência de (Priviero et al., 2005) • BAY 41-2272 interage com NO endógeno e exógeno causando um potente do músculo anococcígeo de rato; (Teixeira et al., 2006) relaxamento Objetivo Geral Objetivo Geral Avaliar a capacidade do BAY 41-2272 de induzir o relaxamento de corpo cavernoso e investigar os mecanismos envolvidos neste fenômeno, em coelho, rato e humano. Objetivos Específicos Objetivos específicos • Investigar a participação das vias guanilil ciclase-GMPc e adenilil ciclase-AMPc, bem como dos canais de potássio, nas respostas relaxantes de corpo cavernoso induzidas pelo BAY 41-2272; • Investigar a capacidade do BAY 41-2272 em produzir ereção peniana em modelo experimental in vivo Materiais e Métodos Experimentos in vitro Materiais e Métodos Preparação de corpo cavernoso • humano: segmentos proximais de corpo cavernoso de 11 pacientes entre 16 e 55 anos submetidos a doação múltipla de órgãos após consentimento apropriado. (protocolo CEP - HC UNICAMP 281/2001) • coelho: New Zealand ( 2 -3 kg) anestesiados com pentobarbital sódico (Hypnol®, 40 mg/kg, i.v) submetidos à penectomia. (protocolo CEEA_IB UNICAMP 547-1) • rato: Wistar (250-350 g) anestesiados com halotano exsangüinados pela carótida e submetidos à penectomia. (protocolo CEEA_IB UNICAMP 547-1) • tecidos colocados em solução de Krebs seguido da remoção da túnica albugínea e tecidos conectivos Materiais e Métodos Registro da tensão isométrica • Strips submetidos a tensão de 5, 10 e 20 mN para rato, coelho e humano respectivamente, em banho para órgão isolado • Tensão isométrica (Sistema de Aquisição de Dados PowerLab 400 ™; software Chart, version 4.0, AD Instruments, MA, USA); • Tempo de estabilização: 60 minutos; O2`- CO2 Materiais e Métodos Protocolos Experimentais • Adição de fenilefrina (10 µM) : viabilidade tecidual • Curvas concentração-efeito cumulativa ao BAY 41-2272 ( 0.01 – 10 µM) na ausência e na presença das seguintes drogas: ODQ (10 µM) – inibidor da GCs L-NAME (100 µM) – inibidor da NOS rolipram (10 µM) – inibidor da PDE4 Materiais e Métodos • Inibidores de canais de potássio : glibenclamida ( 10 µ M, ATP-dependentes) apamina (100 nM, Ca2+-dependentes) charibdotoxina (100 nM, Ca2+-dependentes) 4-aminopiridina (1mM, voltagem-dependentes) tetraetilamônio (3 mM, voltagem-dependentes e ativados por Ca2+); • Curva ao estímulo elétrico (EFS) e ao NO exógeno na presença e na ausência do BAY 41-2272 (100 nM); - EFS ( 2- 32 Hz, 1ms, 50V) - Estimulador Grass S8 - NO ( 1, 3, 10 uM) – solução de NaNO3 Materiais e Métodos Determinação do conteúdo de GMPc tecidual • Corpo cavernoso de rato dissecado e posto em período de estabilização de 30 minutos em solução de Krebs aquecida e oxigenada; • Estimulação durante 5 minutos; • BAY 41-2272 (1 µM) , • SNP (1µM) • na ausência e na presença de ODQ (10 µM); • Dosagem do nucleotídeo cíclico de acordo com a técnica de imunoensaio enzimático através de kit comercial (Cayman Chemical Cyclic GMP EIA kit, Ann Arbor, MI, U.S.A.); Análise Estatística ANOVA duas vias e Student’s T-teste pareado bi caudal com P < 0,05 considerado estatisticamente significativo. Resultados : corpo cavernoso de coelho – in vitro Resultados - Coelho Curva concentração- efeito em resposta ao BAY 41-2272 Relaxamento (%) 0 Coelho pEC50: 40 E max (%): 80 120 -8 -7 -6 log [BAY 41-2272] (M) -5 6,82 + 0,06 116 + 2 Resultados - Coelho Efeito do ODQ e do L-NAME BAY 41-2272 BAY 41-2272 + ODQ GTN GTN + ODQ 40 (10 M) 80 120 -8 -7 -6 -5 log [Droga] (M) BAY 41-2272 BAY + L-NAME (100 M) BAY + L-NAME + ODQ ACh ACh + L-NAME 0 Relaxamento (%) Relaxamento (%) 0 40 80 120 -8 -7 -6 log [BAY 41-2272] (M) -5 Resultados - Coelho Duração do relaxamento (s) Efeito do BAY 41-2272 na resposta ao estímulo elétrico ** Controle BAY 41-2272 (100 nM) 90 * 50 * * 2.0 4.0 10 8.0 16.0 EFS (Hz) * P < 0,05; ** P < 0,01 comparado ao controle 32.0 Resultados - Coelho Duração do relaxamento (s) Efeito do BAY 41-2272 na resposta ao NO exógeno 250 200 ** ** ** ** 30.0 100.0 ** 150 100 50 1.0 3.0 10.0 NO (M) ** P < 0,01 comparado ao controle Controle BAY 41-2272 (100 nM) Resultados - Coelho Efeito do rolipram Relaxamento (%) 0 40 80 controle rolipram (10 M) 120 -8 -7 -6 -5 log [BAY 41-2272] (M) Potência (pEC50) forskolin Controle rolipram a 7,12 0,02 7,58 0,05a P < 0,01 comparado ao controle Resultados - Coelho Efeito dos inibidores dos canais de potássio Em áx relaxamento (%) 150 controle glibenclamida apamina ChTx TEA 4-AP 100 50 0 pEC50 7.5 5.0 2.5 0.0 controle glibenclamida (10 M) apamina (100 nM) ChTx (100 nM) TEA (1 mM) 4-AP 3 mM) Resultados : corpo cavernoso humano – in vitro Resultados - Humano Curva concentração- efeito em resposta ao BAY 41-2272 % Relaxamento 0 Humano pEC50: E max (%): 50 100 -8 -7 -6 log [BAY 41-2272] (M) -5 6,12 + 0,12 100 + 3 Resultados - Humano Efeito da ODQ e do L-NAME BAY 41-2272 BAY 412271 + ODQ GTN GTN + ODQ 40 (10 M) 80 120 -8 -7 -6 -5 log [Droga] (M) 0 Relaxamento(%) Relaxamento (%) 0 BAY 41-2272 + L-NAME (100 M) + L-NAME + ODQ ACh ACh + L-NAME 50 100 -8 -7 -6 log [BAY 41-2272] (M) -5 Resultados - Humano Efeito do rolipram Relaxamento(%) 0 40 80 controle rolipram (10 M) 120 -8 -7 -6 -5 log [BAY 41-2272] (M) Potência (pEC50) forskolin Controle rolipram a 6,17 0,05 6,51 0,02a P < 0,01 comparado ao controle Resultados - Humano Efeito dos inibidores dos canais de potássio Em áx relaxamento (%) 150 controle glibenclamida apamina ChTx TEA 4-AP 100 50 0 pEC50 7.5 5.0 2.5 0.0 controle glibenclamida (10 M) apamina (100 nM) ChTx (100 nM) TEA (1 mM) 4-AP (3 mM) Resultados : corpo cavernoso de rato – in vitro Resultados –Rato – in vitro Curva concentração efeito em resposta ao BAY 41-2272 Rato % Relaxamento 0 pEC50: 50 E max (%): 100 150 -9 -8 -7 -6 log [BAY 41-2272] (M) -5 6,44 + 0,10 124 + 6 Resultados –Rato – in vitro Efeito do ODQ 50 100 controle ODQ (10 M) 150 -9 -8 -7 -6 -5 Efeito do L-NAME -4 log [BAY 41-2272] (M) 0 % Relaxamento % Relaxamento 0 50 100 controle L-NAME (100 M) 150 -9 -8 -7 -6 -5 log [BAY 41-2272] (M) -4 Resultados –Rato – in vitro ** Níveis de nucleotídeo cíclico em corpo cavernoso isolado de rato (pmol GMPc/mg de proteína) AMPc (pmol/mg protein) 40 30 20 10 0 # ** 20 GMPc (pmol/mg protein) CTL BAY (1 µM) SNP (1 µM) BAY + SNP ODQ (10 µM) BAY + ODQ 18 16 ** 4 3 ** 2 1 0 CTL BAY (1 µM) SNP (1 µM) ** P < 0,01 comparado ao controle BAY + SNP ODQ (10 µM) BAY + ODQ SNP + ODQ FK (1 µM) # P< 0,01 comparado aos grupos BAY e SNP sozinhos SNP + ODQ FK (1 µM) Resultados : corpo cavernoso de rato – in vivo Materiais e Métodos Técnica de medida de pressão intracavernosa (ICP) Ratos Wistar machos (250 -350g); Anestesia: uretana (1,2g / kg) intraperitonial; Artéria carótida direita (MAP; transdutores Grass, Astro-Med Industrial Park, U.S.A.). corpo cavernoso esquerdo (ICP; transdutores Grass, Astro-Med Industrial Park, U.S.A.). corpo cavernoso direito para administração de drogas. Abertura da cavidade abdominal Resultados –Rato – in vivo Efeito do BAY 41-2272 no relaxamento induzido pelo EFS controle BAY 41-2272 ( 0,6 mol/kg) Resultados –Rato – in vivo Efeito do BAY 41-2272 no relaxamento induzido pelo EFS do nervo cavernoso A Controle BAY 41-2272 (0,6 mol/Kg) ICP/MAP 0.6 * ** 0.4 0.2 0.0 1.0 3.0 5.0 2000 Freqüência (Hz) Controle BAY 41-2272 AUC * 1000 0 1.0 3.0 Freqüência (Hz) * P < 0,05; ** P < 0,01 comparado ao controle 5.0 Sumário Sumário • BAY 41-2272 promoveu um relaxamento duradouro e concentraçãodependente do músculo liso de corpo cavernoso em coelho, rato e humano in vitro; • O BAY 41-2272 potencializou a resposta erétil de rato induzida pelo elétrico in vivo; estímulo • O relaxamento promovido pelo BAY 41-2272 em coelho, rato e humano in foi dependente da via GCs - GMPc, mas não da via ACs – AMPc; vitro • O NO endógeno liberado tanto de fibras nitrérgicas quanto de endotélio sinusoidal participa do relaxamento induzido pelo BAY 41-2272 aumentando sua resposta relaxante; • Os canais de potássio não interferiram no relaxamento de corpo cavernoso coelho e humano promovido pelo BAY 41-2272, in vitro . de Conclusão Final Conclusões finais TABAGISMO DIABETES ENVELHECIMENTO HIPERTENSÃO DISLIPIDEMIAS Fibras NANC Endotélio cavernoso nNOS eNOS GCs GMPc GTP BAY 41-2272 Músculo liso relaxamento