Universidade Federal de Minas Gerais
Instituto de Ciências Exatas
Departamento de Matemática
Números Primos
Ary Camargo Rizel
Belo Horizonte
2014
2
Ary Camargo Rizel
NÚMEROS PRIMOS
Monografia
apresentada
ao
Departamento
de
Matemática do Instituto de Ciências Exatas (ICEX) da
Universidade Federal de Minas Gerais. Requisito parcial
à obtenção do título de especialização Latu Senso para
professores com ênfase em cálculo.
Orientação: Prof. Dr. André Gimenez Bueno.
Belo Horizonte
Novembro - 2014
3
FOLHA DE APROVAÇÃO
Data de apresentação: 28/11/2014.
Banca examinadora:
_________________________
Prof. Dr. André Gimenez Bueno
__________________________________
Prof. Dr. Paulo Antônio Fonseca Machado
___________________
Prof. Dr. Vitor Bekkert
4
AGRADECIMENTOS
À Deus, por me conceder força para vencer mais uma etapa em minha vida.
À minha esposa Lucinha, pelo apoio, carinho, compreensão e principalmente por me aceitar como eu
sou.
Ao professor André Gimenez Bueno meu orientador pelo incentivo, disponibilidade, atenção e apoio
durante todo o percurso.
Em especial a professora Maria Imaculada Marcenes minha primeira orientadora em trabalhos de
monografia pelo grande aprendizado durante sua orientação que guardo comigo até hoje e me
auxiliaram na elaboração deste.
Enfim, a todos aqueles que contribuíram para a realização deste trabalho.
Muito Obrigado.
5
RESUMO
Este trabalho tem como objetivo apresentar um pequeno resumo sobre os números primos. Assunto
que vem atraindo muitos matemáticos eminentes desde o princípio, e ainda hoje nos apresenta muitos
desafios. Iniciaremos com os conceitos mais fundamentais sobre o tema. Em seguida, apresentaremos
algumas demonstrações clássicas da infinidade de números primos. Abordaremos os principais
teoremas que nos permitem reconhecer um número primo e faremos um pequeno relato histórico dos
estudos sobre a distribuição de números primos. Citaremos algumas funções que geram números
primos. E por fim, teceremos alguns comentários a respeito de casos particulares de primos que foram
estudados.
Palavras Chaves: Teoria dos números, Números naturais, Números primos.
ABSTRACT
This work aims to present a short summary about prime numbers. This subject has attracted many
outstanding mathematicians from the early days on, and still presents many challenges. We begin with
the most fundamental concepts of the subject. Next, we present some classical proofs of the infinity of
primes. Some primality tests will be discussed, and also the distribution of prime numbers. Finally, we
will quote some functions that generate prime numbers.
Key Words: Theory of numbers, Natural numbers, Prime numbers.
6
SUMÁRIO
1. INTRODUÇÃO AOS NÚMEROS PRIMOS ....................................................... 7
1.1.
IMPORTÂNCIA DOS NÚMEROS PRIMOS ............................................................. 7
1.2.
DEFINIÇÃO DE NÚMEROS PRIMOS .................................................................... 8
2. A INFINITUDE DOS NÚMEROS PRIMOS ..................................................... 11
2.1.
DEMONSTRAÇÃO DE EUCLIDES ...................................................................... 12
2.2.
DEMONSTRAÇÃO DE GOLDBACH .................................................................... 13
2.3.
DEMONSTRAÇÃO DE EULER............................................................................ 13
3. COMO RECONHECER UM NÚMERO PRIMO .............................................. 15
3.1.
O CRIVO DE ERATÓSTENES ............................................................................. 15
3.2.
TEOREMAS FUNDAMENTAIS SOBRE CONGRUÊNCIAS ................................... 16
3.3.
TESTES DE PRIMALIDADE................................................................................ 19
4. DISTRIBUIÇÃO DOS NÚMEROS PRIMOS ................................................... 23
4.1.
EULER .............................................................................................................. 25
4.2.
LEGENDRE ....................................................................................................... 31
4.3.
GAUSS .............................................................................................................. 31
4.4.
TSCHEBYCHEFF ............................................................................................... 32
4.5.
RIEMANN .......................................................................................................... 33
4.6.
DE LA VALLÉE POUSSIN E HADAMARD ........................................................... 37
4.7.
ERDÖS E SELBERG .......................................................................................... 39
4.8.
PRIMOS EM PROGRESSÃO ARITMÉTICA ......................................................... 40
5. FUNÇÕES QUE DEFINEM OS NÚMEROS PRIMOS .................................... 42
5.1.
FÓRMULA DE GANDHI ...................................................................................... 43
5.2.
PRIMOS DE MILLS ............................................................................................ 44
6. CASOS PARTICULARES DE PRIMOS ......................................................... 45
6.1.
NÚMEROS DE FERMAT GENERALIZADOS ....................................................... 46
6.2.
PRIMOS DE MERSENNE.................................................................................... 48
6.3.
PRIMOS GÊMEOS ............................................................................................. 53
6.4.
PRIMOS DE SOPHIE GERMAIN ......................................................................... 56
7.
CONCLUSÃO .................................................................................................... 59
8. REFERÊNCIAS .............................................................................................. 60
7
1.
INTRODUÇÃO AOS NÚMEROS PRIMOS
1.1.
IMPORTÂNCIA DOS NÚMEROS PRIMOS
Os números primos são a matéria prima na formação de todos os demais números. Sendo
assim, são eles objetos de estudos ininterruptos desde os primórdios.
Entretanto, os números primos guardam segredos que por vezes nos parecem intransponíveis,
sendo considerados por alguns como o assunto mais misterioso já estudado pelos matemáticos. No
início do Século XX, David Hilbert, professor da Universidade de Göttingen e um dos maiores
matemáticos da época, proferiu uma palestra no Congresso Internacional de Matemáticos, realizado
em agosto de 1900, na Sorbone. Em sua palestra, Hilbert falou sobre o desconhecido, sobre os
desafios da matemática no século que se iniciava. Ele desafiou a plateia de ilustres matemáticos com
uma lista de 23 problemas, que segundo ele, ditariam o futuro das pesquisas matemáticas. Muitos
desses problemas encontraram resposta ao longo das décadas seguintes, porém, o oitavo problema,
até hoje não foi solucionado. Trata-se de provar a Hipótese de Riemann, assunto que trataremos mais
adiante.
Embora complexos e misteriosos, os números primos têm um caráter atemporal e universal,
eles não foram inventados pelo homem, nós apenas atribuímos nomenclaturas e buscamos
continuamente aprofundar no conhecimento dos seus mistérios.
Por seu caráter atemporal e universal, os números primos são considerados o código que
poderia ser compreendido por seres inteligentes extraterrenos. Por isso, a sequência dos primeiros
números primos foi gravada em um disco de ouro e cobre enviado na primeira nave espacial a sair do
sistema solar. O disco continha também diversas imagens do nosso planeta, imagens indicando a
8
nossa localização no sistema solar, além de sons, músicas e frases em diversos idiomas. Mas de tudo
isso, a sequência de números primos foi considerado o código com maior possibilidade de ser
reconhecido. No clássico romance Contato de Carl Sagan os alienígenas usam os números primos
para fazer contato com a Terra. A heroína, Ellie Arroway, reconhece imediatamente o pulsar do sinal de
rádio receptado.
Estes e outros números são estudados na disciplina Teoria dos Números, que é considerada
uma das mais difíceis de toda a Matemática, por utilizar técnicas sofisticadas e Matemática avançada.
Até os anos 1970, a Teoria dos Números foi considerada uma disciplina com pouca aplicação prática.
Nesta década porém, os cientistas Ron Rivest, Adi Shamir e Leonard Adleman desenvolveram uma
forma de utilizar os números primos na construção de métodos de codificação em Criptografia.
Voltaremos a este assunto mais tarde.
1.2.
DEFINIÇÃO DE NÚMEROS PRIMOS
Definição: Um número inteiro ๐‘› ( ๐‘› > 1) é dito um número primo, se possuir exatamente dois
divisores positivos, a saber, 1 e ๐‘›.
O número 1, só possui um divisor, ele mesmo. Não sendo, portanto, um número primo.
Todos os demais números inteiros maiores que 1 e não primos, possuem mais de dois
divisores. Eles são chamados de números compostos, logo, poderão ser fatorados em seus elementos
constituintes. Estes elementos serão necessariamente números primos conforme enuncia o Teorema
Fundamental da Aritmética.
Teorema (Teorema Fundamental da Aritmética): Seja ๐‘› โ‰ฅ 2 um número natural. Podemos
escrever ๐‘› de uma única forma como um produto
9
๐‘› = ๐‘1 โ€ฆ ๐‘๐‘š
O ๐‘š โ‰ฅ 1 é um natural e ๐‘1 โ‰ค โ‹ฏ โ‰ค ๐‘๐‘š são primos.
Podemos então dizer que os números primos são os elementos de formação de todos os
demais números, podendo ser considerados os próprios átomos da aritmética, ou ainda os tijolos na
construção numérica, construção essa feita por meio da operação de multiplicação.
O Teorema Fundamental da Aritmética faz duas afirmações que demostraremos a seguir:
1ª Todo número ๐‘› > 1 pode ser representado como um produto de primos
๐‘› = โˆ๐‘Ÿ๐‘›=1 ๐‘๐‘› , ๐‘Ÿ โ‰ฅ 1,
ou seja, existe uma fatoração de ๐‘› em números primos.
2ª Esta representação é única a não ser pela ordem dos fatores. Ou seja, todo primo que
aparece em uma decomposição em โ€œfatores primosโ€ de um dado número aparece com frequência igual
em qualquer decomposição dessas.
Todo ๐‘› > 1 pode ser escrito:
๐‘› = โˆ ๐‘๐‘™ ,
๐‘|๐‘›
onde ๐‘ percorre os vários primos que dividem ๐‘›; e onde ๐‘™ = ๐‘™๐‘Ž,๐‘ > 0, é unicamente
determinado por ๐‘› e por ๐‘. (Esta é a chamada Decomposição Canônica).
Demostramos a existência da fatoração de ๐‘› em primos por indução matemática.
i)
Se ๐‘› é primo não há o que provar (escrevemos ๐‘š = 1, ๐‘ 1 = ๐‘› ).
ii)
Se ๐‘› é composto podemos escrever:
๐‘› = ๐‘Ž๐‘, ๐‘ ๐‘’๐‘›๐‘‘๐‘œ: ๐‘Ž, ๐‘ โˆˆ โ„•, 1 < ๐‘Ž < ๐‘›, 1 < ๐‘ < ๐‘›.
Por hipótese de indução, ๐‘Ž e ๐‘ se decompõem como produto de primos. Juntando as
fatorações de ๐‘Ž e ๐‘ (e reordenando os fatores) obtemos uma fatoração de ๐‘›.
๏€ 
Antes de demonstrar a unicidade da representação, precisamos introduzir um novo teorema.
10
Teorema: Se:
๐œ
๐‘ | โˆ ๐‘›๐‘– ,
๐‘–=1
Então para ao menos um valor de ๐‘– temos:
๐‘|๐‘›๐‘– .
Para demonstrarmos a unicidade da representação, basta provar que, se:
๐œ
๐œโ€ฒ
๐‘› = โˆ ๐‘๐‘– = โˆ ๐‘โ€ฒ๐‘– ,
๐‘–=1
๐‘–=1
๐‘โ€ฒ1 โ‰ค ๐‘โ€ฒ 2 โ‰ค โ‹ฏ โ‰ค ๐‘โ€ฒ๐œโ€ฒ
๐‘1 โ‰ค ๐‘2 โ‰ค โ‹ฏ โ‰ค ๐‘๐œ ,
Então:
๐œ = ๐Šโ€ฒ ,
๐’‘๐’Š = ๐’‘โ€ฒ๐’Š para 1 โ‰ค ๐‘– โ‰ค ๐Š.
Para ๐‘› = 2 a afirmação é verdadeira, uma vez que temos:
๐œ = ๐Šโ€ฒ = ๐Ÿ e ๐’‘๐Ÿ = ๐’‘โ€ฒ๐Ÿ = ๐Ÿ
Seja ๐‘› > 2 e suponha que a afirmação foi provada para 2, 3, 4, ..., ๐‘› โˆ’ 1.
Se ๐‘› for primo então:
๐œ = ๐Šโ€ฒ = ๐Ÿ,
๐’‘๐Ÿ = ๐‘2 = ๐‘›
Caso contrário, temos ๐Š > 1 e ๐Šโ€ฒ > 1. Como
๐œ
๐‘โ€ฒ1 | โˆ ๐‘๐‘– ,
๐‘–=1
e
๐œโ€ฒ
๐‘1 | โˆ ๐‘โ€ฒ๐‘–
๐‘–=1
Segue do teorema apresentado que:
๐‘โ€ฒ1 = ๐‘๐‘– e ๐‘1 = ๐‘โ€ฒ๐‘š
Para pelo menos um ๐‘– e pelo menos ๐‘š. Como:
11
๐‘1 โ‰ค ๐‘๐‘– = ๐‘โ€ฒ1 โ‰ค ๐‘โ€ฒ ๐‘š = ๐‘1
Temos:
๐‘1 = ๐‘โ€ฒ1
Agora, como 1 < ๐‘1 < ๐‘›, ๐‘1 | ๐‘›, temos:
๐œ
๐œโ€ฒ
๐‘–=2
๐‘–=2
๐‘›
1<
= โˆ ๐‘๐‘– = โˆ ๐‘โ€ฒ๐‘– < ๐‘›,
๐‘1
e logo, pela hipótese de indução,
๐Š โˆ’ ๐Ÿ = ๐Šโ€ฒ โˆ’ ๐Ÿ,
๐Š= ๐Š
e
๐‘๐‘– = ๐‘โ€ฒ๐‘– ๐‘๐‘Ž๐‘Ÿ๐‘Ž 2 โ‰ค ๐‘– โ‰ค ๐Š
๏€ 
2.
A INFINITUDE DOS NÚMEROS PRIMOS
Os números primos suscitam muitas questões. Uma delas é: โ€œQuantos números primos
existem? Eles formam um conjunto finito ou existe uma infinidade de números primos?โ€
Notícias sobre a última descoberta do maior número primo conhecido são recorrentes. Marcus
du SAUTOY, em A Música dos Números Primos โ€“ A História de Um Problema não Resolvido na
Matemática (DU SAUTOY, 2007), se refere a um recorte de jornal guardado com muito cuidado pela
matemática Julia Robinson e intitulado ENCONTRADO O MAIOR NÚMERO, que nos mostra que,
โ€œmesmo na década de 1930, até as descobertas incorretas chegavam às notíciasโ€.
Entretanto, diversas provas de que existe uma infinidade de números primos já foram
formuladas. A mais ilustre é a demonstração de Euclides, que a mais de 2.300 anos demonstrou que
12
os números primos são infinitos, em uma demonstração considerada uma das mais belas e elegantes
em toda a matemática. Esta demonstração consta dos Elementos de Euclides que foram escritos por
volta de 300 a.C.
Apresentaremos a seguir três dessas demonstrações, outras tantas estão disponíveis na
literatura sobre o tema, algumas de matemáticos famosos, outras de matemáticos que caíram no
esquecimento.
2.1.
DEMONSTRAÇÃO DE EUCLIDES
Os gregos evitavam lidar com o conceito de infinito, pelas dificuldades que esse conceito
sempre causava, assim na Proposição 20 do Livro 9 dos Elementos de Euclides demonstrou que dado
qualquer conjunto de primos, sempre existe um número primo fora deste conjunto, o que significa dizer
que o conjunto de números primos é infinito (ÁVILA, 2010).
Suponhamos que o conjunto de primos seja finito. Sendo a sequência ๐‘ƒ = ๐‘1 , ๐‘2 , โ€ฆ , ๐‘๐‘Ÿ a
lista de todos os primos.
Consideremos o número ๐‘ = ๐‘1 . ๐‘2 . โ€ฆ . ๐‘๐‘Ÿ + 1. Nenhum dos primos da sequência finita P
pode dividi-lo exatamente, sempre sobrará um resto 1.
Dado que todos os números compostos podem ser construídos pela multiplicação de primos, o
número formado ๐‘ ou é um novo primo ou é gerado por um primo não pertencente ao conjunto finito
denominado por ๐‘ƒ.
Portanto, a sequência de primos não pode ser finita.
13
2.2.
DEMONSTRAÇÃO DE GOLDBACH
A demonstração de Goldbach se tornou conhecida após sua publicação em Berlim em 1924,
entretanto ela se encontra em uma carta de C. Goldbach a Euler datada de 21/31 julho 1730. Em 1891,
A. Hurwitz descobriu independentemente a mesma demonstração em um exercício (RIBENBOIM,
2012).
Ela utiliza a seguinte ideia: basta achar uma sucessão infinita ๐‘Ž1 < ๐‘Ž2 < ๐‘Ž3 < โ‹ฏ de
números naturais, primos entre si, dois a dois, isto é sem fator primo comum. Se ๐‘1 é um fator primo de
๐‘Ž1 , ๐‘2 um fator primo de ๐‘Ž2 , ... , ๐‘๐‘› um fator primo de ๐‘Ž๐‘› , então ๐‘1 , ๐‘2, โ€ฆ , ๐‘๐‘› , โ€ฆ são todos distintos.
๐‘›
Os números de Fermat ๐น๐‘› = 22 + 1 (para ๐‘› โ‰ฅ 0) são uma sucessão infinita e primos
entre si, dois a dois.
Demonstração: Por recorrência sobre ๐‘š, é fácil ver que, ๐น๐‘š โˆ’ 2 = ๐น0 ๐น1 โ€ฆ ๐น๐‘šโˆ’1; então se
๐‘› < ๐‘š, ๐น๐‘› divide ๐น๐‘š โˆ’ 2. Se um número primo ๐‘ dividisse simultaneamente ๐น๐‘› e ๐น๐‘š , dividiria
igualmente ๐น๐‘š โˆ’ 2 e portanto 2 e então ๐‘ = 2, o que é impossível porque ๐น๐‘š é impar. Os números e
o Teorema de Fermat serão tratados mais adiante.
๏€ 
2.3.
DEMONSTRAÇÃO DE EULER
Euler mostrou que existe uma infinidade de números primos, estabelecendo que uma
determinada expressão formada com números primos era infinita. Se ๐‘ é um número primo qualquer,
então 1โ„๐‘ < 1. Então a soma da série geométrica de razão 1โ„๐‘ e primeiro termo 1 é dada por:
14
โˆž
โˆ‘
๐‘˜=0
1
1
=
.
๐‘๐‘˜
1 โˆ’ ๐‘โˆ’1
Igualmente, se ๐‘ž é outro número primo, então:
โˆž
โˆ‘
๐‘˜=0
1
1
=
.
๐‘˜
๐‘ž
1 โˆ’ ๐‘โˆ’1
Multiplicando membro a membro, essas duas igualdades, obtemos:
1+
1
1
1
1
1
1
1
+ + 2+
+ 2+โ‹ฏ =
×
.
โˆ’1
๐‘
๐‘ž ๐‘
๐‘๐‘ž ๐‘ž
1โˆ’๐‘
1 โˆ’ ๐‘โˆ’1
O primeiro membro é a soma dos inversos de todos os inteiros naturais da forma ๐‘โ„Ž ๐‘ž ๐‘˜ (com
โ„Ž โ‰ฅ 0, ๐‘˜ โ‰ฅ 0), cada um sendo contado uma única vez, porque a expressão de cada número natural,
como produtos de primos é única.
A demonstração de Euler diz o seguinte:
Supõe-se que ๐‘1 , ๐‘2 , โ€ฆ , ๐‘๐‘Ÿ formam a totalidade dos números primos. Para cada ๐‘– =
1, 2, โ‹ฏ , ๐‘Ÿ , tem-se:
โˆž
โˆ‘
๐‘˜=0
1
1
๐‘˜ = 1 โˆ’ ๐‘ โˆ’1 .
๐‘๐‘–
๐‘–
Multiplicando, membro a membro, essas ๐‘Ÿ igualdades, obtém-se:
๐‘Ÿ
โˆž
๐‘Ÿ
๐‘–=1
๐‘˜=0
๐‘–=1
1
1
โˆ( โˆ‘ ๐‘˜ ) = โˆ
.
1 โˆ’ ๐‘๐‘–โˆ’1
๐‘๐‘–
E o primeiro membro, uma vez efetuadas as operações, é a soma dos inversos de todos os
números naturais, cada um contado uma única vez, como resulta do teorema fundamental que
estabelece que cada número composto se escreve de maneira única (a menos de permutações) como
produto de fatores primos.
15
1
É sabido que a série โˆ‘โˆž
๐‘›=1( โ„๐‘› ) é divergente e, como seus termos são positivos, a ordem
da soma desses termos é irrelevante; o primeiro membro da igualdade será então infinito, enquanto
seu segundo membro será finito. Isso é absurdo!
๏€ 
3.
COMO RECONHECER UM NÚMERO PRIMO
As questões sobre como reconhecer um número primo e, em sendo um número composto,
como decompô-lo em seus fatores primos foram formuladas em tempos remotos. Karl Friedrich Gauss
escreveu no artigo 329 das Disquisitiones Arithmeticae (1801): โ€œO problema de distinguir números
primos de compostos e de decompor esses últimos em seus fatores primos é conhecido como sendo
um dos mais importantes e úteis na aritmética... A dignidade da própria ciência parece requerer que
todos os meios possíveis sejam explorados para a solução de um problema tão elegante e tão
celebradoโ€ (MARTINEZ; MOREIRA; SALDANHA; TENGAN, 2011).
3.1.
O CRIVO DE ERATÓSTENES
A maneira aparentemente mais simples e intuitiva de verificar se um determinado número
natural é primo é conhecida como o Crivo de Eratóstenes. Erastóstenes, diretor da biblioteca do grande
instituto de pesquisa da Grécia Antiga em Alexandria, no século III a.C., foi a primeira pessoa a
produzir tabelas de números primos (DU SAUTOY, 2007). A técnica por ele utilizada foi bastante
16
simples e intuitiva. Ele escrevia inicialmente os números de 1 a ๐‘. Em seguida, escolhia o primeiro
primo (2) e eliminava da lista todos os seus múltiplos. Passava, então ao próximo número não
eliminado, 3, e eliminava também todos os seus múltiplos. Repetia sucessivamente este método até o
maior inteiro inferior a โˆš๐‘ e cada novo primo que encontrava gerava um crivo que era utilizado para
eliminar os números compostos múltiplos desse crivo (RIBENBOIM, 2011).
Os números não primos da relação eram então decompostos da seguinte forma. Seja ๐‘ um
número composto identificado divisível por ๐‘0 , ele pode ser escrito como ๐‘ = ๐‘0 โˆ— ๐‘1 , onde ๐‘1 <
๐‘, e repete-se o mesmo processo para ๐‘0 e para ๐‘1 . Esse algoritmo fornece a decomposição de ๐‘
em fatores primos.
Esse método pode ser utilizado para gerar tabelas de primos relativamente grandes, porém
para valores muito grandes de ๐‘, o algoritmo exige muito tempo e cálculos para verificar se é um
número primo ou composto. Surge então a necessidade de encontrar um algoritmo eficaz, ou seja, que
exija menos tempo e menor custo, para execução.
3.2.
TEOREMAS FUNDAMENTAIS SOBRE CONGRUÊNCIAS
Os métodos para testar a primariedade de um número e para determinar seus fatores primos,
caso não seja primo, se apoiam em teoremas sobre congruências, em particular sobre o Pequeno
Teorema de Fermat, Teorema de Wilson e o Teorema de Euler (generalização do Pequeno Teorema
de Fermat).
Pequeno teorema de Fermat: Se ๐‘ é um número primo e se ๐‘Ž é um número natural, então
๐‘Ž๐‘ โ‰ก ๐‘Ž (๐‘š๐‘œ๐‘‘ ๐‘). Em particular, se ๐‘ não divide ๐‘Ž, então ๐‘Ž๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘).
17
A demonstração deste teorema pode ser encontrada em Teoria dos Números (SANTOS,
2011).
Teorema de Wilson: Seja ๐‘ > 1, então ๐‘ | (๐‘ โˆ’ 1)! + 1 se, e somente se, ๐‘ for primo. O
que é o mesmo que dizer: se ๐‘ é primo, então (๐‘ โˆ’ 1)! โ‰ก โˆ’1 (๐‘š๐‘œ๐‘‘ ๐‘).
Demonstração:
Para ๐‘ = 2 é óbvio: 1 โ‰ก โˆ’1(2)
Pelo Teorema de Fermat:
Para ๐‘ โ‰  2
ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘ฅ ๐‘โˆ’1 โˆ’ 1ฬ… = (๐‘ฅ โˆ’ 1ฬ…)(๐‘ฅ โˆ’ 2ฬ…) โˆ’ โ‹ฏ โˆ’ (๐‘ฅ โˆ’ (๐‘
โˆ’ 1))
Comparando os coeficientes constantes temos:
(๐‘ โˆ’ 1) !
โˆ’1ฬ… = (โˆ’1)๐‘โˆ’1 ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
O Teorema de Wilson fornece uma caracterização dos números primos, entretanto, a
identificação dos primos com base neste teorema não é prática, pois não se conhece um algoritmo
para calcular rapidamente o fatorial de um número. O único algoritmo conhecido é o da definição de
fatorial que gera cálculos extensos, quando se trabalha com números muito grandes.
O Teorema de Euler é uma generalização do Pequeno Teorema de Fermat, através da
introdução da função tociente (๐œ‘) ou função de Euler.
A função ๐œ‘ de Euler pode ser definida por: seja ๐‘› é um inteiro positivo, ๐œ‘(๐‘›) será o número
de inteiros positivos menores ou iguais a ๐‘› que são relativamente primos com ๐‘›.
O Teorema de Euler diz que: Se ๐‘š é um inteiro positivo e ๐‘Ž um inteiro com ๐‘š๐‘‘๐‘ (๐‘Ž, ๐‘š) =
1, ou seja, ๐‘Ž e ๐‘š são primos entre si, então
๐‘Ž๐œ‘(๐‘š) โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘š)
A demonstração do teorema de Euler também pode ser encontrada na obra citada
anteriormente (SANTOS, 2011).
18
Como para ๐‘ primo, ๐œ‘(๐‘) = ๐‘ โˆ’ 1, o Teorema de Euler é uma generalização do Pequeno
Teorema de Fermat, como dito anteriormente.
Como mencionado na introdução, os números primos são utilizados no método de Criptografia
RSA. Esse método é um caso prático de aplicação do Teorema de Euler.
Segue uma descrição resumida do método:
๏‚ท
Receptor publica um inteiro ๐‘ , onde ๐‘ = ๐‘๐‘ž, sendo ๐‘ e ๐‘ž primos grandes.
๏‚ท
๐‘ é público, mas sua fatoração ๐‘๐‘ž só é conhecida pelo receptor.
๏‚ท
Receptor publica um expoente ๐‘  (não muito grande) sendo:
๐‘š๐‘‘๐‘ (๐‘ , (๐‘ โˆ’ 1)(๐‘ž โˆ’ 1)) = 1
๏‚ท
Receptor (usando o algoritmo de Euclides) calcula:
Inverso de ๐‘  ๐‘š๐‘œ๐‘‘ (๐‘ โˆ’ 1)(๐‘ž โˆ’ 1) = ๐œ‘(๐‘)
Isto é, um número natural ๐‘Ÿ < (p-1)(q-1) com ๐‘Ÿ๐‘  โ‰ก 1(๐‘š๐‘œ๐‘‘ (๐‘ โˆ’ 1)(๐‘ž โˆ’ 1))
(Donde ๐‘Ÿ๐‘  = 1 + ๐‘˜๐œ‘(๐‘), para algum natural ๐‘˜)
Note que apesar de ๐‘ e ๐‘  serem públicos, não parece ser fácil calcular ๐œ‘(๐‘) ou ๐‘Ÿ (neste
contexto, calcular ๐œ‘(๐‘) = (๐‘ โˆ’ 1)(๐‘ž โˆ’ 1) dado ๐‘ = ๐‘๐‘ž é equivalente a fatorar ๐‘, isto é, a
encontrar os fatores primos ๐‘ e ๐‘ž).
๏‚ท
Uma mensagem é um número natural ๐‘› < ๐‘.
๏‚ท
O emissor envia ñ โˆถ= ๐‘š ๐‘  (๐‘š๐‘œ๐‘‘ ๐‘), com 0 < ñ < ๐‘.
๏‚ท
O receptor recupera ๐‘› via: ๐‘› โ‰ก ñ๐‘Ÿ (๐‘š๐‘œ๐‘‘ ๐‘)
Para verificar essa equivalência, podemos observar que:
ñ๐‘Ÿ โ‰ก (๐‘› ๐‘  )๐‘Ÿ = ๐‘›๐‘Ÿ๐‘  = ๐‘›1+๐‘˜(๐‘โˆ’1)(๐‘žโˆ’1) = ๐‘š โˆ™ (๐‘›๐‘โˆ’1 )๐‘˜(๐‘žโˆ’1) โ‰ก ๐‘› (๐‘š๐‘œ๐‘‘ ๐‘)
Note que, se ๐‘|๐‘›, os dois lados são 0 ๐‘š๐‘œ๐‘‘ ๐‘, e, caso contrário, ๐‘›๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘);
analogamente ñ๐‘Ÿ โ‰ก ๐‘š (๐‘š๐‘œ๐‘‘ ๐‘ž), donde ñ๐‘Ÿ โ‰ก ๐‘› (๐‘š๐‘œ๐‘‘ ๐‘).
19
Mais detalhes sobre Criptografia RSA podem ser encontrados em Teoria dos Números โ€“ Um
passeio com primos e outros números familiares pelo mundo inteiro (MARTINEZ; MOREIRA;
SALDANHA; TENGAN, 2011).
3.3.
TESTES DE PRIMALIDADE
Uma questão de muita importância em Teoria dos Números é identificar se um determinado
número é primo ou composto. Para números pequenos é bastante simples, bastando aplicar o
algoritmo do Crivo de Eratóstenes. Entretanto, para números grandes, este método é muito lento e se
torna praticamente inviável com a tecnologia de computação hoje disponível.
O Teorema de Wilson, como dito anteriormente, seria uma boa opção, porém calcular o fatorial
de números grandes é igualmente trabalhoso.
Outra ideia é utilizar o Pequeno Teorema de Fermat que nos diz que, se ๐‘ é primo e ๐‘Ž um
número natural, não múltiplo de ๐‘, então ๐‘Ž๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘). Entretanto, a recíproca não é
verdadeira. Existem números compostos ๐‘ e ๐‘Ž โ‰ฅ 2, tais que ๐‘Ž๐‘โˆ’1 โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘). Estes números
são chamados pseudoprimos na base ๐‘Ž.
Pseudoprimos existem, mas são raros. Por exemplo o menor pseudoprimo na base 2 é 341 =
11 ๐‘ฅ 31 e existem apenas 21.853 pseudoprimos na base 2 menores que 2,5 ๐‘ฅ 1010 , contra
1.091.987,405 primos (MARTINEZ et. Al., 2011).
Uma recíproca do Pequeno Teorema de Fermat foi descoberta por Lucas em 1876, e será o
primeiro teste apresentado (RIBENBOIM, 2012).
20
Teste 1: Seja ๐‘ > 1. Supõe-se que exista um inteiro ๐‘Ž > 1 tal que:
(i) ๐‘Ž๐‘โˆ’1 โ‰ก 1 ๐‘š๐‘œ๐‘‘ (๐‘),
(ii) ๐‘Ž๐‘š โ‰ข 1 (๐‘š๐‘œ๐‘‘ ๐‘ ) ๐‘๐‘Ž๐‘Ÿ๐‘Ž ๐‘š = 1, 2, โ‹ฏ , ๐‘ โˆ’ 2
Então ๐‘ é primo!
Defeito do Teste: Também exige muitas operações. ๐‘ โˆ’ 2 multiplicações sucessivas por ๐‘Ž e
a verificação que 1 não é resíduo módulo ๐‘ de uma potência de ๐‘Ž inferior a ๐‘ โˆ’ 1.
Demonstração: Basta mostrar que todo inteiro ๐‘š, 1 โ‰ค ๐‘š < ๐‘ é primo com ๐‘, isto é,
๐œ‘(๐‘) = ๐‘ โˆ’ 1. Com esse objetivo, basta mostrar que existe ๐‘Ž, 1 โ‰ค ๐‘Ž < ๐‘, ๐‘š๐‘‘๐‘ (๐‘Ž, ๐‘) = 1, tal
que a ordem de ๐‘Ž módulo ๐‘ seja ๐‘ โˆ’ 1. Isto é exatamente o que exprime a hipótese.
๏€ 
Em 1891, Lucas formulou um outro teste (RIBENBOIM, 2012):
Teste 2: Seja ๐‘ > 1. Supõe-se que exista um inteiro ๐‘Ž > 1, tal que:
(i) ๐‘Ž๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘),
(ii) ๐‘Ž๐‘š โ‰ข 1(๐‘š๐‘œ๐‘‘ ๐‘) ๐‘๐‘Ž๐‘Ÿ๐‘Ž ๐‘ก๐‘œ๐‘‘๐‘œ ๐‘‘๐‘–๐‘ฃ๐‘–๐‘ ๐‘œ๐‘Ÿ ๐‘š ๐‘‘๐‘’ ๐‘ โˆ’ 1.
Então ๐‘ é primo!
Defeito do Teste: O teste exige o conhecimento de todos os fatores de ๐‘ โˆ’ 1; não se pode
aplicá-lo facilmente, exceto quando ๐‘ tem uma forma particular, como por exemplo ๐‘ = 2๐‘› + 1 ou
๐‘ = 3 ๐‘ฅ 2๐‘› + 1.
Demonstração: Mesma do teste 1.
Em 1967, Brillhart e Selfridge tornaram o teste de Lucas mais flexível (RIBENBOIM, 2012):
Teste 3: Seja ๐‘ > 1. Supõe-se que, para todo fator primo ๐‘ž de ๐‘ โˆ’ 1, exista um inteiro ๐‘Ž =
๐‘Ž(๐‘ž) > 1, tal que:
(i) ๐‘Ž๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘),
(ii) ๐‘Ž(๐‘โˆ’1)/๐‘ž โ‰ข 1 (๐‘š๐‘œ๐‘‘ ๐‘).
Então, ๐‘ é primo.
21
Defeito do Teste: Ainda é necessário conhecer os fatores primos de ๐‘ โˆ’ 1, mas o número de
congruências para examinar é menor.
Demonstração: Basta demonstrar que ๐œ‘ (๐‘) = ๐‘ โˆ’ 1, e , como ๐œ‘ (๐‘) โ‰ค ๐‘ โˆ’ 1, é
suficiente mostrar que ๐‘ โˆ’ 1 divide ๐œ‘ (๐‘). Se fosse falso, existiria um número primo ๐‘ž e um inteiro
๐‘Ÿ โ‰ฅ 1 tais que ๐‘ž ๐‘Ÿ divide ๐‘ โˆ’ 1, enquanto ๐‘ž ๐‘Ÿ não dividiria ๐œ‘ (๐‘).
Seja ๐‘Ž = ๐‘Ž(๐‘ž) e seja ๐‘’ a ordem de ๐‘Ž módulo ๐‘. Então ๐‘’ divide ๐‘ โˆ’ 1 e ๐‘’ não divide (๐‘ โˆ’
1)/๐‘ž, e, consequentemente, ๐‘ž ๐‘Ÿ divide ๐‘’. Como ๐‘Ž๐œ‘(๐‘) โ‰ก 1 ๐‘š๐‘œ๐‘‘ (๐‘), então ๐‘’ divide ๐œ‘(๐‘), então
๐‘ž ๐‘Ÿ | ๐œ‘(๐‘), o que é uma contradição e assim termina a demonstração!
๏€ 
Os três testes apresentados até agora apresentam como limitação a necessidade de se
determinar os fatores primos de ๐‘ โˆ’ 1, operação que pode não ser tão fácil de se realizar.
Apresentaremos então mais dois testes que requerem apenas a fatoração parcial de ๐‘ โˆ’ 1. Esses
testes se baseiam nas seguintes proposições feitas por Pocklington em 1914 sobre fatores primos.
1ª Proposição โ€“ Seja ๐‘ โˆ’ 1 = ๐‘ž ๐‘› ๐‘…, onde ๐‘ž é primo, ๐‘› โ‰ฅ 1 e ๐‘ž não divide ๐‘…. Supõe-se a
existência de inteiro ๐‘Ž > 1, tal que:
(i) ๐‘Ž๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘),
(ii) ๐‘š๐‘‘๐‘ (๐‘Ž(๐‘โˆ’1)โ„๐‘ž โˆ’ 1, ๐‘) = 1.
Então, todo fator primo de ๐‘ é da forma ๐‘š๐‘ž ๐‘› + 1, com ๐‘š โ‰ฅ 1.
Demonstração: Seja ๐‘ um fator primo de ๐‘ e seja ๐‘’ a ordem de ๐‘Ž módulo ๐‘ (ou seja, ๐‘’ é o
menor inteiro positivo, tal que: ๐‘Ž๐‘’ โ‰ก 1 ๐‘š๐‘œ๐‘‘ ๐‘ ), logo ๐‘’ divide ๐‘ โˆ’ 1; pela condição (ii), ๐‘’ não pode
dividir (๐‘ โˆ’ 1)/๐‘ž, porque ๐‘ divide ๐‘; então ๐‘ž não divide (๐‘ โˆ’ 1)/๐‘’ e daí que ๐‘ž ๐‘› divide ๐‘’ e, a
fortiori, ๐‘ž ๐‘› divide ๐‘ โˆ’ 1.
๏€ 
Se se puder verificar que todo fator primo ๐‘ = ๐‘š๐‘ž ๐‘› + 1, é maior que โˆš๐‘ então ๐‘ é primo,
Se ๐‘ž ๐‘› é bem grande, essa verificação pode ser feita em pouco tempo.
22
A segunda proposição de Pocklington, é uma melhoria do resultado (RIBENBOIM, 2012):
2ª Proposição: Seja ๐‘ โˆ’ 1 = ๐น๐‘… onde ๐‘š๐‘‘๐‘ (๐น, ๐‘…) = 1 e onde a fatoração de ๐น é
conhecida. Supõe-se que, para todo fator primo ๐‘ž de ๐น, exista um inteiro ๐‘Ž = ๐‘Ž(๐‘ž) > 1, tal que:
(i) ๐‘Ž๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘),
(ii) ๐‘š๐‘‘๐‘ (๐‘Ž(๐‘โˆ’1)โ„๐‘ž โˆ’ 1, ๐‘) = 1.
Então, todo fator primo de ๐‘ é da forma ๐‘š๐น + 1, com ๐‘š โ‰ฅ 1.
Os mesmos comentários de aplicam a essa situação. Em particular, se ๐น > โˆš๐‘, então ๐‘ é
primo.
Os dois testes a seguir são consequências dessas proposições e foram propostos por Proth
em 1878. Como dito anteriormente estes testes necessitam do conhecimento dos fatores primos de
๐‘ โˆ’ 1 (RIBENBOIM, 2012).
Teste 4: Seja ๐‘ = 2๐‘› โ„Ž + 1, com โ„Ž ímpar e 2๐‘› > โ„Ž. Supõe-se que exista um inteiro ๐‘Ž > 1
tal que ๐‘Ž(๐‘โˆ’1)โ„2 โ‰ก โˆ’1 (๐‘š๐‘œ๐‘‘ ๐‘). Então ๐‘ é primo.
Demonstração: ๐‘ โˆ’ 1 = 2๐‘› โ„Ž com โ„Ž ímpar e ๐‘Ž๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘). Sendo dado que ๐‘ é
ímpar, então ๐‘š๐‘‘๐‘ (๐‘Ž(๐‘โˆ’1)โ„2 โˆ’ 1, ๐‘ ) = 1. Pelo resultado acima, cada fator primo ๐‘ de ๐‘ é da
forma ๐‘ = 2๐‘› ๐‘š + 1 > 2๐‘› . Ora, ๐‘ โˆ’ 2๐‘› โ„Ž + 1 < 22๐‘› , daí โˆš๐‘ < 2๐‘› < ๐‘ e, por consequência,
๐‘ é primo!
๏€ 
Teste 5: Seja ๐‘ โˆ’ 1 = ๐น๐‘… com ๐‘š๐‘‘๐‘ (๐น, ๐‘…) = 1, a fatoração de ๐น suposta conhecida: ๐ต é
um inteiro tal que ๐น๐ต > โˆš๐‘ e ๐‘… sem qualquer fator primo inferior a ๐ต. Também se supões:
(i) para cada fator primo ๐‘ž de ๐น, existe um inteiro ๐‘Ž = ๐‘Ž(๐‘ž) > 1, tal que ๐‘Ž๐‘โˆ’1 โ‰ก
1 (๐‘š๐‘œ๐‘‘ ๐‘) e ๐‘š๐‘‘๐‘ (๐‘Ž(๐‘โˆ’1)โ„๐‘ž โˆ’ 1, ๐‘) = 1.
(ii) existe um inteiro ๐‘ > 1 tal que ๐‘ ๐‘โˆ’1 โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘) e ๐‘š๐‘‘๐‘ (๐‘ ๐น โˆ’ 1, ๐‘) = 1.
Então, ๐‘ é primo.
23
Demonstração: Seja ๐‘ um fator primo de ๐‘, seja ๐‘’ a ordem de ๐‘ módulo ๐‘; então ๐‘’ divide
๐‘ โˆ’ 1 e ๐‘’ também divide ๐‘ โˆ’ 1 = ๐น๐‘…. Sendo dado que ๐‘’ não divide ๐น, então ๐‘š๐‘‘๐‘ (๐‘’, ๐‘…) โ‰  1 e
daí, existe um número primo ๐‘ž tal que ๐‘ž | ๐‘’ e ๐‘ž | ๐‘… e, então, ๐‘ž divide ๐‘ โˆ’ 1. Entretanto, pelo
resultado precedente, ๐น divide ๐‘ โˆ’ 1; sendo dado que ๐‘š๐‘‘๐‘ (๐น, ๐‘…) = 1, ๐‘ž๐น divide ๐‘ โˆ’ 1. Assim,
๐‘ โˆ’ 1 โ‰ฅ ๐‘ž๐น โ‰ฅ ๐ต๐น > โˆš๐‘. Isto acarreta que ๐‘ = ๐‘ e então ๐‘ é primo!
๏€ 
ALGORITMO AKS
No final de 2002, um professor indiano, Manindra Agrawal, e seus dois alunos, Neeraj Kayal e
Nitin Saxena, descobriram um algoritmo que está sendo chamado de AKS (iniciais de seus nomes),
que permite verificar, sem margem de erro, se um inteiro positivo é ou não primo, em tempo polinomial.
O algoritmo AKS ganhou destaque por ser o primeiro algoritmo publicado que é simultaneamente
polinomial, determinístico, e incondicional. O que isto significa, o tempo máximo de processamento do
algoritmo pode ser expresso como um polinômio em relação ao número de dígitos do número
analisado. Isto permite classificar o número informado como primo ou composto ao invés de retornar
um resultado probabilístico. (FARIAS, PUC BRASILIA)
4.
DISTRIBUIÇÃO DOS NÚMEROS PRIMOS
Uma das questões sobre os números primos que desaviam os matemáticos diz respeito à
distribuição dos números primos. Existe alguma lógica que nos permita prever como os números
primos se distribuem? É possível determinar o enésimo número primo? Podemos dizer quantos
números primos existem inferiores a um dado número ๐‘?
24
À primeira vista a distribuição dos primos nos parece totalmente aleatória. A Tabela 1
apresenta a relação de números primos até 1009. Visualmente não é possível perceber qualquer
regularidade. Quando analisamos os 100 primeiros números antes de 10.000.000, encontramos 9
números primos, porém dentre os 100 primeiros números depois de 10.000.000, encontramos apenas
2.
Tabela 1: Números Primos até 1.009
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
101
103
107
109
113
127
131
137
139
149
151
157
163
167
173
179
181
191
193
197
199
211
223
227
229
233
239
241
251
257
263
269
271
277
281
283
293
307
311
313
317
331
337
347
349
353
359
367
373
379
383
389
397
401
409
419
421
431
433
439
443
449
457
461
463
467
479
487
491
499
503
509
521
523
541
547
557
563
569
571
577
587
593
599
601
607
613
617
619
631
641
643
647
653
659
661
673
677
683
691
701
709
719
727
733
739
743
751
757
761
769
773
787
797
809
811
821
823
827
829
839
853
857
859
863
877
881
883
887
907
911
919
929
937
941
947
953
967
971
977
983
991
997
1009
Mas, para os matemáticos, alguns exemplos não bastam, eles seguem buscando padrões e
estruturas no mundo dos números. No caso particular dos números primos essa busca se iniciou ha
muito tempo atrás e ainda persiste como um mistério que a natureza ainda não se dispôs a revelar,
embora progressos tenham sido feitos. A seguir faremos um relato histórico das descobertas sobre o
tema, conforme Ribenboim em Números Primos โ€“ Velhos Mistérios, Novos Recordes (RIBENBOIM,
2012).
25
Chamaremos de ๐œ‹(๐‘ฅ) a função de contagem dos números primos, ou seja, para todo número
๐‘ฅ > 0, deseigna-se por ๐œ‹(๐‘ฅ) o número de primos ๐‘ tais que ๐‘ โ‰ค ๐‘ฅ.
Com base nesta definição, o que se espera é que uma dada função que nos retorne ๐œ‹(๐‘ฅ), os
valores obtidos sejam tão próximos quanto possível de ๐œ‹(๐‘ฅ). Isso não é fácil, até o presente momento
todas as funções fornecem aproximações de ๐œ‹(๐‘ฅ), desta forma, sempre existirá algum erro. Então
para cada função deve-se estimar o erro.
4.1.
EULER
Começamos nosso relato histórico com Euler. Euler observou que, para todo número real ๐œŽ >
1, a série (RIBENBOIM, 2012):
โˆž
โˆ‘
๐‘›=1
1
๐‘›๐œŽ
É convergente.
Observou também que para todo ๐œŽ0 > 1, ela é uniformemente convergente na semirreta ๐œŽ0 โ‰ค
๐œŽ < โˆž. Assim, essa série define uma função ๐œ(๐œŽ), chamada função zeta, para 1 < ๐œŽ < โˆž, que é
contínua e diferenciável. Além disso,
lim ๐œ(๐œŽ) = 1
๐œŽโ†’โˆž
e
lim (๐œŽ โˆ’ 1)๐œ(๐œŽ) = 1.
๐œŽโ†’1+0
A ligação entre a função zeta e os números primos é uma expressão analítica da fatoração
única de inteiros como produto de números primos:
โˆž
1
1
= โˆ
, para ๐œŽ > 1
๐œŽ
1
๐‘›
๐‘›=1
๐‘ 1โˆ’ ๐œŽ
๐‘
๐œ(๐œŽ) = โˆ‘
26
โˆ
๐‘
1
1
1 โˆ’ ๐‘๐œŽ
= โˆ(1 + ๐‘โˆ’๐œŽ + ๐‘โˆ’2๐œŽ + โ‹ฏ )
Expandindo o último produto, temos:
+โˆž
๐œ(๐œŽ) = โˆ‘ ๐œ โˆ’๐œŽ
๐œ=1
Uma vez que cada número inteiro ๐œ โ‰ฅ 1 pode ser exclusivamente expresso como um produto
de potência de primos racionais. Além disso, temos, para ๐œŽ > 1:
+โˆž
๐œ
1 < ๐œ(๐œŽ) < 1 + โˆ‘ โˆซ
๐‘ก โˆ’๐œŽ ๐‘‘๐‘ก = 1 + โˆซ
๐œ=2 ๐œโˆ’1
+โˆž
๐‘ก โˆ’๐œŽ ๐‘‘๐‘ก = 1 + (๐œŽ โˆ’ 1)โˆ’1
1
O que mostra que ๐œ(๐œŽ) é convergente para ๐œŽ > 1 e tende para 1 quando ๐œŽ โ†’ +โˆž (WEIL,
1974).
Daí se conclui que ๐œ(๐œŽ) โ‰  0 para ๐œŽ > 1.
Euler demonstrou também que a soma dos inversos dos números primos é divergente:
โˆ‘
๐‘
1
=โˆž
๐‘
Demonstração: Seja ๐‘ um número natural arbitrário. Todo inteiro ๐‘› โ‰ค ๐‘ é o produto, que se
obtém de modo único, de potências de números primos ๐‘ โ‰ค ๐‘›. Igualmente, para cada primo ๐‘.
โˆž
1
1
=
.
๐‘๐‘˜ 1 โˆ’ 1
๐‘˜=0
๐‘
โˆ‘
Então:
๐‘
โˆž
1
1
1
โˆ‘ โ‰ค โˆ (โˆ‘ ๐‘˜ ) = โˆ
.
1
๐‘›
๐‘
1
โˆ’
๐‘›=1
๐‘โ‰ค๐‘ ๐‘˜=0
๐‘โ‰ค๐‘
๐‘
Mas:
27
1
= โˆ’ โˆ‘ log (1 โˆ’ ) .
1
๐‘
๐‘โ‰ค๐‘ 1 โˆ’
๐‘โ‰ค๐‘
๐‘
log โˆ
1
E, para cada primo ๐‘:
โˆž
โˆž
๐‘š=1
โ„Ž=0
1
1
1 1
1
โˆ’ log (1 โˆ’ ) = โˆ‘
โ‰ค
+
(โˆ‘
)=
๐‘
๐‘š๐‘๐‘š ๐‘ ๐‘2
๐‘โ„Ž
=
1 1
1
1
1
+ 2๐‘ฅ
= +
๐‘ ๐‘ 1 โˆ’ 1 ๐‘ ๐‘(๐‘ โˆ’ 1)
๐‘
<
1
1
+
.
๐‘ (๐‘ โˆ’ 1)2
Então:
๐‘
โˆž
1
1
1
1
1
1
log โˆ‘ โ‰ค log โˆ
โ‰คโˆ‘ +โˆ‘
โ‰ค โˆ‘ +โˆ‘ 2.
2
1
๐‘›
๐‘
(๐‘ โˆ’ 1)
๐‘
๐‘›
๐‘›=1
๐‘โ‰ค๐‘ 1 โˆ’
๐‘โ‰ค๐‘
๐‘
๐‘›=1
๐‘ ๐‘โ‰ค๐‘
๏€ 
โˆ‘ 1/p diverge onde a soma é sobre todos os primos positivos em โ„ค.
p1 , p2 , โ€ฆ , pl(n)
Seja
1
โˆ’1
โˆl(n)
i=1 (1 โˆ’ p ) . Se (1 โˆ’
i
1 โˆ’1
)
pi
todos os números primos menores que n definido por ฮป(n) =
1โ„ a
pi i
= โˆโˆž
ai = 0
a1 โˆ’1
vemos que ฮป(n) = โˆ‘(p1a1 pa2
2 โ€ฆ โ€ฆ pl ) ,
Onde a somatória é válida para todo ๐‘™ de integrais não negativas ( a1 , a2 , โ€ฆ , al ).
Em particular se percebe que 1 +
1
2
+
1
3
n โ†’ โˆž.
Isto já comprova que existe infinitos primos.
Considerando ๐‘™๐‘œ๐‘” ฮป(n) temos
+ โ‹ฏ + 1โ„n < ๐œ†(n). Assim ฮป(n) โ†’ โˆž como
28
l
m โˆ’1
โˆž
๐‘™๐‘œ๐‘” ฮป(n) = โˆ’ โˆ‘li=1 log (1 โˆ’ pโˆ’1
= p1โˆ’1 + pโˆ’1
2 +โ‹ฏ+
i ) = โˆ‘i=1 โˆ‘m=1 (mpi )
l
m โˆ’1
โˆž
pโˆ’1
l + โˆ‘i=1 โˆ‘m=2 (mpi )
m โˆ’1
โˆ’m
โˆ’1 โˆ’1
Agora, โˆ‘โˆž
< โˆ‘โˆž
= pโˆ’2
โ‰ค 2pโˆ’2
m=2 (mpi )
m=2 pi
i (1 โˆ’ pi )
i .
โˆ’1
โˆ’2
โˆ’2
โˆ’2
Assim ๐‘™๐‘œ๐‘” (ฮป) < p1โˆ’1 pโˆ’1
2 + โ‹ฏ + pl + 2 (p1 + p2 + โ‹ฏ + pl ).
โˆ’2
É sabido que โˆ‘โˆž
converge.
n=1 n
โˆ’2
Segue-se que โˆ‘โˆž
converge.
i=1 pi
Assim se โˆ‘ pโˆ’1 converge, haveria uma constante M de modo que log ฮป(n) < ๐‘€ , ou ฮป(n) <
eM .
Isso é impossível pois ฮป(n) โ†’ โˆž e n โ†’ โˆž.
Logo โˆ‘ pโˆ’1 diverge.
๏€ 
2
Mas a série โˆ‘โˆž
๐‘›=1(1โ„๐‘› ) é convergente. Como ๐‘ é arbitrário e a série harmônica
โˆž
โˆ‘โˆž
๐‘›=1(1โ„๐‘›) é divergente, log โˆ‘๐‘›=1(1โ„๐‘› = โˆž) e, em consequência, a série โˆ‘๐‘(1โ„๐‘) é divergente.
2
Como a série โˆ‘โˆž
๐‘›=1(1โ„๐‘› ) é convergente, pode-se então dizer que os quadrados são โ€œmais
frequentesโ€ que os números primos.
Uma das belas descobertas de Euler é a soma da série:
โˆž
1
๐œ‹2
โˆ‘ 2=
.
๐‘›
6
๐‘›=1
2๐‘˜
Euler também calculou as somas de โˆ‘โˆž
๐‘›=1(1โ„๐‘› ) para todo ๐‘˜ โ‰ฅ 1, dando assim a solução
de um problema que desafiava os matemáticos da época, e obteve:
๐œ(2๐‘˜)=
1
โˆ‘โˆž
๐‘›โ‰ฅ1 ๐‘›2๐‘˜
=
22๐‘˜โˆ’1
๐ต ๐œ‹ 2๐‘˜
(2๐‘˜ )! ๐‘˜
Para fazê-lo utilizou os números de Bernoulli, que são definidos da seguinte forma:
29
1
๐ต1 = โˆ’ ,
2
๐ต0 = 1,
1
๐ต2 = ,
6
โ‹ฏ
E ๐ต๐‘˜ é definido pela relação:
(
๐‘˜+1
๐‘˜+1
๐‘˜+1
) ๐ต๐‘˜ + (
) ๐ต๐‘˜โˆ’1 + โ‹ฏ + (
) ๐ต1 + ๐ต0 = 0.
1
2
๐‘˜
Esses números são racionais e é fácil ver que ๐ต2๐‘˜+1 = 0 para todo ๐‘˜ โ‰ฅ 1. Eles aparecem
também como coeficientes do seguinte desenvolvimento de Taylor:
โˆž
๐‘ฅ
๐ต๐‘˜ ๐‘˜
๐‘ฅ
๐‘ฅ 2๐‘˜
๐‘˜+1
=
โˆ‘
๐‘ฅ
=
1
โˆ’
+
โˆ‘(โˆ’1)
๐ต
๐‘˜
(2๐‘˜)!
๐‘’๐‘ฅ โˆ’ 1
๐‘˜!
2
๐‘˜=0
๐‘˜โ‰ฅ1
Por meio da fórmula de Stirling
โˆš2๐œ‹๐‘›
๐‘›! ~
๐‘’๐‘›
๐‘›+
1
2
,
quando ๐‘› โ†’ โˆž.
pode-se mostrar que:
|๐ต2๐‘› |~4โˆš๐œ‹๐‘› (
๐‘› 2๐‘›
) .
๐œ‹๐‘’
A série acima é então convergente no intervalo |๐‘ฅ| < 2๐œ‹.
Euler já havia utilizado os números de Bernoulli para representar somas de potências dadas de
inteiros consecutivos:
๐‘›
โˆ‘ ๐‘—๐‘˜ = ๐‘†๐‘˜ (๐‘›),
para ๐‘˜ โ‰ฅ 1.
๐‘—=1
Onde:
๐‘†๐‘˜ (๐‘‹) =
1
๐‘˜+1
๐‘˜+1
๐‘˜+1
[๐‘‹ ๐‘˜+1 โˆ’ (
) ๐ต1 ๐‘‹ ๐‘˜ + (
) ๐ต2 ๐‘‹ ๐‘˜โˆ’1 + โ‹ฏ + (
) ๐ต๐‘˜ ๐‘‹].
๐‘˜+1
1
2
๐‘˜
A fórmula de Euler dando o valor de ๐œ(2๐พ) é:
โˆž
1
(2๐œ‹)2๐‘˜ ๐ต2๐‘˜
๐‘˜+1
๐œ(2๐‘˜) = โˆ‘ 2๐‘˜ = (โˆ’1)
.
๐‘›
2(2๐‘˜)!
๐‘›=1
Em particular:
30
โˆž
๐œ(2) = โˆ‘
๐‘›=1
โˆž
๐œ(4) = โˆ‘
๐‘›=1
1
๐œ‹
=
,
๐‘›2 6
1
๐œ‹4
=
,
๐‘›4 90
etc.
Euler também considerou os polinômios de Bernoulli, que são assim definidos:
๐‘˜
๐‘˜
๐ต๐‘˜ (๐‘‹) = โˆ‘ ( ) ๐ต๐‘– ๐‘‹ ๐‘˜โˆ’๐‘– ,
๐‘–
para ๐‘˜ โ‰ฅ 0.
๐‘–=0
Os polinômios ๐‘†๐‘˜ (๐‘‹) podem exprimir-se por meio dos polinômios de Bernoulli. Uma de suas
mais importantes aplicações é uma generalização da fórmula do somatório de Abel, dando origem às
fórmulas do somatório de Euler-MacLaurin, que lembramos aqui:
Se ๐‘“(๐‘ฅ) é função contínua, tendo derivadas contínuas de ordem tão grande quanto
necessário, se ๐‘Ž < ๐‘ são inteiros, então, para todo ๐‘˜ > 1,
๐‘
๐‘
๐‘˜
โˆ‘ ๐‘“(๐‘›) = โˆซ ๐‘“(๐‘ก)๐‘‘๐‘ก + โˆ‘(โˆ’1)๐‘Ÿ
๐‘›=๐‘Ž+1
๐‘Ž
๐‘Ÿ=1
๐ต๐‘Ÿ (๐‘Ÿโˆ’1)
(๐‘) โˆ’ ๐‘“ (๐‘Ÿโˆ’1) (๐‘Ž))
(๐‘“
๐‘Ÿ!
(โˆ’1)๐‘˜+1 ๐‘
+
โˆซ ๐ต๐‘˜ (๐‘ก โˆ’ [๐‘ก])๐‘“ ๐‘ก (๐‘ก)๐‘‘๐‘ก.
๐‘˜!
๐‘Ž
onde [๐‘ก] designa a parte inteira de ๐‘ก.
31
4.2.
LEGENDRE
A primeira tentativa séria de estudo da função ๐œ‹(๐‘ฅ) (função de contagem dos números primos,
como mencionado na introdução do item 4) é devida a Legendre (1808) que utilizou o crivo de
Eratóstenes para mostrar que (RIBENBOIM, 2012):
๐‘
๐œ‹(๐‘) = ๐œ‹(โˆš๐‘) โˆ’ 1 + โˆ‘ ๐œ‡(๐‘‘) [ ] .
๐‘‘
O somatório refere-se a todos os divisores ๐‘‘ do produto de todos os primos ๐‘ โ‰ค โˆš๐‘ e ๐œ‡(๐‘ฅ) é
a função de Möbius, que é assim definida:
๐œ‡(๐‘›) = {
(โˆ’1)๐‘Ÿ
1, ๐‘†๐‘’ ๐‘› = 1
๐‘ ๐‘’ ๐‘› é ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘ก๐‘œ ๐‘‘๐‘’ ๐‘Ÿ ๐‘›ú๐‘š๐‘’๐‘Ÿ๐‘œ๐‘  ๐‘๐‘Ÿ๐‘–๐‘š๐‘œ๐‘  ๐‘‘๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘ก๐‘œ๐‘ .
0 ๐‘ ๐‘’ ๐‘› ๐‘›ã๐‘œ é ๐‘™๐‘–๐‘ฃ๐‘Ÿ๐‘’ ๐‘‘๐‘’ ๐‘ž๐‘ข๐‘Ž๐‘‘๐‘Ÿ๐‘Ž๐‘‘๐‘œ๐‘ .
Como corolário, Legendre conjecturou em 1798 e em 1808, que:
๐œ‹(๐‘ฅ)~
๐‘ฅ
,
log ๐‘ฅ โˆ’ ๐ด(๐‘ฅ)
Onde: lim ๐ด(๐‘ฅ) = 1,08366 โ‹ฏ
๐‘ฅโ†’โˆž
Tschebycheff mostrou, quarenta anos depois, que a conjectura de Legendre era falsa.
4.3.
GAUSS
Na idade de 15 anos, em 1792, Gauss conjecturou que ๐œ‹(๐‘ฅ) era assintoticamente igual à
função integral logarítmica, definida como (RIBENBOIM, 2012):
32
๐‘ฅ
๐ฟ๐‘–(๐‘ฅ) = โˆซ
2
๐‘‘๐‘ก
.
log ๐‘ฅ
Sendo ๐ฟ๐‘–(๐‘ฅ)~ ๐‘ฅ โ„log ๐‘ฅ, pode-se escrever a conjectura como:
๐œ‹(๐‘ฅ)~
๐‘ฅ
.
log ๐‘ฅ
Com o tempo, essa conjectura revelou-se verdadeira e esse fato é hoje conhecido como o
Teorema dos Números Primos.
A aproximação de ๐œ‹(๐‘ฅ) por ๐‘ฅโ„log ๐‘ฅ não é das melhores; a aproximação pela integral
logarítmica é bem melhor.
4.4.
TSCHEBYCHEFF
Um importante progresso para a determinação da ordem de grandeza da função ๐œ‹(๐‘ฅ) é
devido a Tschebycheff, em 1850 (RIBENBOIM, 2012). Demonstrou ele, usando métodos elementares,
que existem constantes ๐ถ e ๐ถ โ€ฒ , 0 < ๐ถ โ€ฒ < 1 < ๐ถ, tais que:
๐ถโ€ฒ
๐‘ฅ
๐‘ฅ
< ๐œ‹(๐‘ฅ) < ๐ถ
log ๐‘ฅ
๐‘™๐‘œ๐‘”๐‘ฅ
para ๐‘ฅ โ‰ฅ 2.
Ele até calculou valores para ๐ถ e ๐ถโ€ฒ, todos muito próximos de 1. Assim, por exemplo, se ๐‘ฅ โ‰ฅ
30, então as desigualdades acima valem com:
๐ถ โ€ฒ = log
21โ„2 31โ„3 51โ„5
= 0,92129 โ‹ฏ ,
301โ„30
๐ถ=
6 โ€ฒ
๐ถ = 1,10555 โ‹ฏ
5
Por outro lado, se existir o
๐œ‹(๐‘ฅ)
๐‘ฅโ†’โˆž ๐‘ฅ โ„log ๐‘ฅ
lim
então ele deve ser igual a 1. Ele também concluiu que a aproximação de Legendre para ๐œ‹(๐‘ฅ)
não podia estar correta.
33
Tschebycheff também demonstrou o postulado de Bertrand (1845), que afirma que, para todo
número natural ๐‘› โ‰ฅ 2, existe um número primo entre ๐‘› e seu dobro 2๐‘›.
Ele estudou a função ๐œƒ(๐‘ฅ) = โˆ‘๐‘โ‰ค๐‘ฅ log ๐‘, hoje chamada a Função de Tschebycheff, que dá
essencialmente a mesma informação que ๐œ‹(๐‘ฅ), sendo, entretanto mais fácil de manipular.
A despeito do fato de Tschebycheff ter-se aproximado da demonstração do Teorema dos
Fundamental dos Números Primos, conjecturado por Gauss, a demonstração se fez ainda esperar por
cinquenta anos, até o fim do século. Neste entretempo, Riemann trouxe ideias novas e fundamentais à
Teoria dos Números Primos.
4.5.
RIEMANN
Riemann teve a ideia de definir a função zeta para todos os números complexos ๐‘ , tendo parte
real superior a 1, por (RIBENBOIM, 2012):
โˆž
๐œ(๐‘ ) = โˆ‘
๐‘›=1
1
,
๐‘›๐‘ 
para ๐‘…๐‘’(๐‘ ) > 1.
A fórmula do produto de Euler é ainda válida, para todo ๐‘  tal que ๐‘…๐‘’(๐‘ ) > 1.
Por meio da fórmula do somatório de Euler e de MacLaurin, pode-se exprimir ๐œ(๐‘ ) da seguinte
maneira:
๐‘˜
โˆž
1
1
๐ต๐‘Ÿ
1
๐‘‘๐‘ฅ
๐œ(๐‘ ) =
+ + โˆ‘ ๐‘ (๐‘  + 1) โ‹ฏ (๐‘  + ๐‘Ÿ โˆ’ 2) โˆ’ ๐‘ (๐‘  + 1) โ‹ฏ (๐‘  + ๐‘˜ โˆ’ 1) โˆซ ๐ต๐‘˜ (๐‘ฅ โˆ’ {๐‘ฅ}) ๐‘ +๐‘˜
๐‘ โˆ’1 2
๐‘Ÿ!
๐‘˜!
๐‘ฅ
1
๐‘Ÿ=2
Aqui, ๐‘˜ é um número inteiro qualquer, ๐‘˜ โ‰ฅ 1, os números ๐ต๐‘Ÿ são os de Bernoulli (não
confundir com ๐ต๐‘˜ (๐‘ฅ โˆ’ [๐‘ฅ]), que é o valor do ๐‘˜ é๐‘ ๐‘–๐‘š๐‘œ polinômio de Bernoulli ๐ต๐‘˜ (๐‘‹) em ๐‘ฅ โˆ’ [๐‘ฅ]).
A integral converge quando ๐‘…๐‘’(๐‘ ) > 1 โˆ’ ๐‘˜; como ๐‘˜ é um número natural qualquer, a
fórmula fornece a extensão de ๐œ(๐‘ ) no plano inteiro. ๐œ(๐‘ ) é sempre holomorfa, exceto em ๐‘  = 1,
onde a função tem pólo simples, de resíduo igual a 1, isto é:
34
lim(๐‘  โˆ’ 1)๐œ(๐‘ ) = 1.
๐‘ โ†’1
Em 1859, Riemann encontrou a equação funcional para a função ๐œ(๐‘ ). Como nessa equação
intervém a função ฮ“(๐‘ ), vamos defini-la em primeiro lugar. Para ๐‘…๐‘’(๐‘ ) > 0, uma definição
conveniente utiliza a integral euleriana:
โˆž
ฮ“(๐‘ ) = โˆซ ๐‘’ โˆ’๐‘ข ๐‘ข ๐‘ โˆ’1 ๐‘‘๐‘ข.
0
Para números complexos arbitrários ๐‘ , a função ฮ“(๐‘ ) pode ser definida do modo seguinte:
โˆž
1
๐‘’ ๐‘ โ„๐‘›
ฮ“(๐‘ ) = ๐›พ๐‘  โˆ
๐‘ .
๐‘ ๐‘’
1
+
๐‘›=1
๐‘›
Onde ๐›พ é a constante de Euler, que é igual a:
๐›พ = lim (1 +
๐‘›โ†’โˆž
1
1
+ โ‹ฏ + โˆ’ log ๐‘›) = 0,577215665 โ‹ฏ
2
๐‘›
A constante de Euler está ligada ao produto de Euler pela seguinte fórmula devida a Mertens:
โˆž
1
1
๐‘’ = lim
โˆ
1
๐‘›โ†’โˆž log ๐‘›
๐‘–=1 1 โˆ’
๐‘๐‘–
๐›พ
ฮ“(๐‘ ) nunca vale 0; ela é sempre holomorfa, exceto nos pontos 0, โˆ’1, โˆ’2, โˆ’3, โ‹ฏ onde a
função tem polos simples. Para todo inteiro positivo ๐‘›, ฮ“(๐‘ฅ) = (๐‘› โˆ’ 1)!; então a função gama é
uma extensão da função fatorial.
A função gama satisfaz muitas relações interessantes, entre elas as equações funcionais:
ฮ“(๐‘ )ฮ“(1 โˆ’ ๐‘ ) =
๐œ‹
,
sin(๐œ‹๐‘ )
ฮ“(๐‘  + 1) = ๐‘ ฮ“(๐‘ )
e,
1
โˆš๐œ‹
ฮ“(๐‘ )ฮ“ (๐‘  + ) = 2๐‘ โˆ’1 ฮ“(2๐‘ ).
2
๐‘’
Agora a equação funcional para a função zeta de Riemann:
๐‘ 
1โˆ’๐‘ 
๐œ‹ โˆ’๐‘ โ„2 ฮ“ ( ) ๐œ(๐‘ ) = ๐œ‹ โˆ’(1โˆ’๐‘ )โ„2 ฮ“ (
) ๐œ(1 โˆ’ ๐‘ ).
2
2
35
Resulta, por exemplo, da equação funcional, que ๐œ(0) = โˆ’ 1โ„2.
Os zeros da função zeta são os seguintes:
(i) Zeros simples nos pontos โˆ’2, โˆ’4, โˆ’6, โ‹ฏ que são chamados zeros triviais.
(ii) Zeros no domínio crítico, que é o conjunto dos números complexos ๐‘  tais que 0 โ‰ค
๐‘…๐‘’(๐‘ ) โ‰ค 1.
Com efeito, se ๐‘…๐‘’(๐‘ ) > 1, de acordo com o produto de Euler, ๐œ(๐‘ ) โ‰  0. Se ๐‘…๐‘’(๐‘ ) < 0,
então ๐‘…๐‘’(1 โˆ’ ๐‘ ) > 1, a expressão à direita da equação funcional não é nula e então os zeros de
๐œ(๐‘ ) estão nos pontos โˆ’2, โˆ’4, โˆ’6, โ‹ฏ, que são exatamente os polos de ฮ“(๐‘ โ„2).
O conhecimento dos zeros da função zeta no domínio crítico se traduz por um conhecimento
mais profundo da distribuição dos números primos. A primeira coisa a observar é que os zeros no
domínio crítico não são reais e que eles se colocam simetricamente em relação ao eixo real e também
em relação à reta de equação ๐‘…๐‘’(๐‘ ) = 1โ„2.
Riemann conjecturou que os zeros não triviais ๐œŒ da função zeta se encontram sobre a reta
crítica ๐‘…๐‘’(๐‘ ) = 1โ„2, quer dizer, ๐œŒ = 2 + ๐‘–๐‘ก. Essa é a célebre Hipótese de Riemann, que até o
1
momento não foi provada e sobre a qual varias generalizações já foram provadas. Note que esse
problema é chamado de hipótese que tem uma conotação muito mais forte que uma conjectura que
representa uma previsão do matemático sobre o modo que o mundo se comporta. Isso se dá devido à
necessidade que muitos matemáticos tiveram para formular milhares de teoremas, pois se viram
obrigados a pressupor a veracidade da previsão de Riemann para atingir seus próprios objetivos. Se a
Hipótese de Riemann se transformar em um teorema, todos os resultados pendentes serão validados.
Riemann também teve a ideia de considerar todas as potências de números primos ๐‘๐‘› โ‰ค ๐‘ฅ,
atribuindo a cada um desses números primos o peso 1โ„๐‘›. Foi por ele definida a função:
36
1
1
1
1
1
1
1
๐œ‹(๐‘ฅ) + ๐œ‹ (๐‘ฅ โ„2 ) + ๐œ‹ (๐‘ฅ โ„3 ) + ๐œ‹ (๐‘ฅ โ„4 ) + โ‹ฏ โˆ’
,
2
3
4
2๐‘š
๐‘ž๐‘ข๐‘Ž๐‘›๐‘‘๐‘œ ๐‘ฅ = ๐‘๐‘š , ๐‘œ๐‘›๐‘‘๐‘’ ๐‘š โ‰ฅ 1 ๐‘’ ๐‘ é ๐‘ข๐‘š ๐‘›ú๐‘š๐‘’๐‘Ÿ๐‘œ ๐‘๐‘Ÿ๐‘–๐‘š๐‘œ.
1
1
1 1
๐ฝ(๐‘ฅ) =
1
1
๐œ‹(๐‘ฅ) + ๐œ‹ (๐‘ฅ โ„2 ) + ๐œ‹ (๐‘ฅ โ„3 ) + (๐œ‹ โ„4 ) + โ‹ฏ
2
3
4
๐‘ž๐‘ข๐‘Ž๐‘›๐‘‘๐‘œ ๐‘ฅ > 0 é ๐‘ข๐‘š ๐‘›ú๐‘š๐‘’๐‘Ÿ๐‘œ ๐‘Ÿ๐‘’๐‘Ž๐‘™๐‘ž๐‘ข๐‘’ ๐‘›ã๐‘œ é ๐‘๐‘Ÿ๐‘–๐‘š๐‘œ,
{
๐‘›๐‘’๐‘š ๐‘๐‘œ๐‘กê๐‘›๐‘๐‘–๐‘Ž ๐‘‘๐‘’ ๐‘›ú๐‘š๐‘’๐‘Ÿ๐‘œ ๐‘๐‘Ÿ๐‘–๐‘š๐‘œ.
Uma das principais fórmulas conjecturadas por Riemann era uma expressão de ๐ฝ(๐‘ฅ) em
função da integral logarítmica; essa fórmula faz intervir os zeros de ๐œ(๐‘ ).
É preciso, em primeiro lugar, definir ๐ฟ๐‘–(๐‘’ ๐‘ค ), para todo número complexo ๐‘ค = ๐‘ข + ๐‘–๐‘ฃ, da
maneira seguinte:
๐ฟ๐‘–(๐‘’
๐‘ค)
๐‘’๐‘ก
= โˆซ ๐‘‘๐‘ก + ๐‘ง
๐‘ก
Onde a integral é calculada sobre a semirreta horizontal de โˆ’โˆž a ๐‘ข + ๐‘–๐‘ฃ e ๐‘ง = ๐œ‹๐‘–, โˆ’๐œ‹๐‘– ou
0, segundo ๐‘ฃ > 0, ๐‘ฃ < 0 ou ๐‘ฃ = 0.
A fórmula de Riemann, provada por Von Mangoldt, é a seguinte:
๐ฝ(๐‘ฅ) = ๐ฟ๐‘–(๐‘ฅ) โˆ’ โˆ‘ ๐ฟ๐‘–(๐‘ฅ ๐œŒ ) + โˆซ
โˆž
๐‘ก(๐‘ก 2
๐‘ฅ
๐œŒ
๐‘‘๐‘ก
โˆ’ log 2
โˆ’ 1) log ๐‘ก
em que o somatório é estendida a todos os zeros não triviais ๐œŒ de ๐œ(๐‘ ), cada um contado com
sua multiplicidade.
Seja:
โˆž
๐‘…(๐‘ฅ) = โˆ‘
๐‘š=1
๐œ‡(๐‘š)
1
๐ฟ๐‘– (๐‘ฅ โ„๐‘š ),
๐‘š
função hoje chamada de Função de Riemann.
Riemann indicou a fórmula seguinte, que exprime ๐œ‹(๐‘ฅ) à custa da função ๐‘…(๐‘ฅ):
๐œ‹(๐‘ฅ) = ๐‘…(๐‘ฅ) โˆ’ โˆ‘ ๐‘…(๐‘ฅ ๐œŒ )
๐œŒ
em que o somatório percorre todos os zeros ๐œŒ não triviais de ๐œ(๐‘ ), cada um contado com a
sua multiplicidade.
37
A Função de Riemann ๐‘…(๐‘ฅ) dá uma excelente aproximação de ๐œ‹(๐‘ฅ). A expressão do erro
utiliza os valores de ๐‘…(๐‘ฅ ๐œŒ ), para todas as raízes ๐œŒ de ๐œ(๐‘ ) no domínio crítico.
Em 1893, Gram indicou a seguinte série de potências, que converge muito rapidamente, e
permite calcular a função de Riemann:
โˆž
1
(log ๐‘ฅ)๐‘›
๐‘…(๐‘ฅ) = 1 + โˆ‘
๐‘ฅ
.
๐œ‹๐œ(๐‘› + 1)
๐‘›!
๐‘›=1
4.6.
DE LA VALLÉE POUSSIN E HADAMARD
Riemann forneceu muitas ferramentas para a demonstração do Teorema dos Números Primos
(RIBENBOIM, 2012):
๐œ‹(๐‘ฅ)~
๐‘ฅ
โ†” lim
๐‘ฅโ†’โˆž
log ๐‘ฅ
๐œ‹(๐‘ฅ)
=1
๐‘ฅโ„
๐‘™๐‘œ๐‘”๐‘ฅ
Outras ferramentas foram obtidas da teoria das funções analíticas complexas, que passava por
um período de grande desenvolvimento. O teorema foi provado por dois eminentes analistas de
maneira independente e durante o mesmo ano de 1896. Eles foram: De La Valleé Poussin e
Hadamard.
De La Valleé Poussin demonstrou a seguinte propriedade: existe ๐‘ > 0 e ๐‘ก0 = ๐‘ก0 (๐‘) > ๐‘’ 2๐‘ ,
tais que ๐œ(๐‘ ) โ‰  0 para todo ๐‘  = ๐œŽ + ๐‘–๐‘ก na região:
๐‘
โ‰ค ๐œŽ โ‰ค 1,
log ๐‘ก0
{
๐‘
1โˆ’
โ‰ค ๐œŽ โ‰ค 1,
log|๐‘ก|
1โˆ’
๐‘ž๐‘ข๐‘Ž๐‘›๐‘‘๐‘œ |๐‘ก| โ‰ค ๐‘ก0
๐‘ž๐‘ข๐‘Ž๐‘›๐‘‘๐‘œ ๐‘ก0 โ‰ค |๐‘ก|
Então, em particular, ๐œ(1 + ๐‘–๐‘ก) โ‰  0 para todo ๐‘ก, como fora provado por Hadamard.
38
A determinação de uma grande região onde a função ๐œ(๐‘ ) não tem zeros foi um dos pontos
importantes da demonstração do teorema dos números primos.
Hadamard e De La Valleé Poussin não se contentaram em demonstrar o Teorema dos
Números Primos. Também calcularam o erro, mostrando que:
๐œ‹(๐‘ฅ) = ๐ฟ๐‘–(๐‘ฅ) + ๐‘‚(๐‘ฅ๐‘’ โˆ’๐ดโˆšlog ๐‘ฅ ),
em que ๐ด é uma constante positiva.
Existem outras demonstrações do Teorema dos Números Primos com métodos analíticos.
Entre elas, uma demonstração de Grosswald (1964) e outra, particularmente simples, deve-se a
Newman (1980).
Existem outras formulações equivalentes do Teorema dos Números Primos. Utilizando a
função de Tschebycheff, o teorema pode ser expresso assim:
๐œƒ(๐‘ฅ)~๐‘ฅ.
Outra formulação faz intervir a função do somatório de Von Mangoldt. Seja:
ฮ›(๐‘›) = {
๐‘ ๐‘’ ๐‘› = ๐‘๐œˆ (๐œˆ โ‰ฅ 1)๐‘’ ๐‘ é ๐‘๐‘Ÿ๐‘–๐‘š๐‘œ,
๐‘›๐‘œ๐‘  ๐‘‘๐‘’๐‘š๐‘Ž๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘œ๐‘ .
log ๐‘,
0,
Esta função aparece na expressão da derivada logarítmica da função zeta:
โˆž
๐œ โ€ฒ (๐‘ )
ฮ›(๐‘›)
โˆ’
=โˆ‘ ๐‘  ,
๐œ(๐‘ )
๐‘›
๐‘๐‘Ž๐‘Ÿ๐‘Ž ๐‘…๐‘’(๐‘ ) > 1.
๐‘›=1
É também ligada à função ๐ฝ(๐‘ฅ):
๐ฝ(๐‘ฅ) = โˆ‘
๐‘›โ‰ค๐‘ฅ
ฮ›(๐‘›)
.
log ๐‘›
A função somatório de ฮ›(๐‘›) é definida por:
๐œ“(๐‘ฅ) = โˆ‘ ฮ›(๐‘›).
๐‘›โ‰ค๐‘ฅ
Ela se exprime, sem dificuldade, a partir da função de Tschebycheff:
๐œ“(๐‘ฅ) = ๐œƒ(๐‘ฅ) + ๐œƒ (๐‘ฅ
1โ„
2)
+ ๐œƒ (๐‘ฅ
1โ„
3)
+ โ‹ฏ.
39
O Teorema dos Números Primos também admite o enunciado equivalente seguinte:
๐œ“(๐‘ฅ)~๐‘ฅ.
4.7.
ERDÖS E SELBERG
Acreditou-se durante muito tempo que métodos analíticos deviam ser empregados na
demonstração do Teorema dos Números Primos. Houve grande surpresa na comunidade matemática,
quando Erdös, assim como Selberg, em 1949, deu uma demonstração utilizando unicamente as
estimativas elementares de certas funções aritméticas (RIBENBOIM, 2012).
Algumas dessas estimativas já eram conhecidas, como, por exemplo:
โˆ‘
๐‘โ‰ค๐‘ฅ
โˆ‘
๐‘›โ‰ค๐‘ฅ
log ๐‘
= log ๐‘ฅ + ๐›พ + ๐‘‚(1),
๐‘
onde ๐›พ é a constante de Euler,
1
๐‘ฅ1โˆ’๐œŽ
1
=
+ ๐œ(๐œŽ) + ๐‘‚ ( ๐œŽ ) ,
๐œŽ
๐‘›
1โˆ’๐œŽ
๐‘ฅ
๐‘œ๐‘›๐‘‘๐‘’ ๐œŽ > 1,
โˆ‘ log ๐‘› = ๐‘ฅ log ๐‘ฅ โˆ’ ๐‘ฅ + ๐‘‚(log ๐‘ฅ),
๐‘›โ‰ค๐‘ฅ
โˆ‘
๐‘›โ‰ค๐‘ฅ
log ๐‘› 1
log ๐‘ฅ
= (log ๐‘ฅ)2 + ๐ถ + ๐‘‚ (
).
๐‘›
2
๐‘ฅ
As estimativas acima podem se obter utilizando as fórmulas de somatório de Abel, ou de Euler
e MacLaurin e, de fato, não têm conteúdo aritmético.
As fórmulas a seguir, onde interveem números primos, são mais interessantes:
โˆ‘
๐‘โ‰ค๐‘ฅ
โˆ‘
๐‘โ‰ค๐‘ฅ
log ๐‘
= log ๐‘ฅ + ๐‘‚(1),
๐‘
1
1
= log log ๐‘ฅ + ๐ถ + ๐‘‚ (
),
๐‘
log ๐‘ฅ
๐‘œ๐‘›๐‘‘๐‘’ ๐ถ = 0,2615 โ‹ฏ,
40
โˆ‘
๐‘›โ‰ค๐‘ฅ
โˆ‘
๐‘›โ‰ค๐‘ฅ
ฮ›(๐‘›)
= log ๐‘ฅ + ๐‘‚(1),
๐‘›
ฮ›(๐‘›) log ๐‘› 1
= (log ๐‘ฅ)2 + ๐‘‚(log ๐‘ฅ).
๐‘›
2
Selberg deu, em 1949, a seguinte estimativa:
โˆ‘(log ๐‘)2 + โˆ‘ (log ๐‘) (log ๐‘ž) = 2๐‘ฅ log ๐‘ฅ + ๐‘‚(๐‘ฅ),
๐‘โ‰ค๐‘ฅ
๐‘œ๐‘›๐‘‘๐‘’ ๐‘, ๐‘ž ๐‘ ã๐‘œ ๐‘›ú๐‘š๐‘’๐‘Ÿ๐‘œ๐‘  ๐‘๐‘Ÿ๐‘–๐‘š๐‘œ๐‘ .
๐‘๐‘žโ‰ค๐‘ฅ
Verdadeiramente, essa estimativa é equivalente a cada uma das duas seguintes:
๐‘ฅ
๐œƒ(๐‘ฅ) log ๐‘ฅ + โˆ‘ ๐œƒ ( ) log ๐‘ = 2๐‘ฅ log ๐‘ฅ + ๐‘‚(๐‘ฅ),
๐‘
๐‘โ‰ค๐‘ฅ
โˆ‘ ฮ›(๐‘›) log ๐‘› + โˆ‘ ฮ›(m)ฮ›(n) = 2๐‘ฅ log ๐‘ฅ + ๐‘‚(๐‘ฅ).
๐‘›โ‰ค๐‘ฅ
๐‘š๐‘›โ‰ค๐‘ฅ
A partir dessas estimativas, Selberg pode dar uma demonstração elementar do Teorema dos
Números Primos. Simultaneamente, Erdös apresentou, por um método elementar diferente, sua
demonstração do Teorema dos Números Primos, utilizando a seguinte variante da estimativa de
Selberg:
๐œ“(๐‘ฅ)
1
๐œ“(๐‘ฅโ„๐‘›) ฮ›(๐‘›)
1
+
โˆ‘
×
= 2+๐‘‚(
).
๐‘ฅ
log ๐‘ฅ
๐‘ฅโ„๐‘›
๐‘›
log ๐‘ฅ
๐‘›โ‰ค๐‘ฅ
Em 1970, Diamond e Steinig deram uma demonstração elementar com um erro explícito.
Diamond (1982) escreveu um trabalho expositivo sobre os métodos elementares para a demonstração
do Teorema dos Números Primos.
4.8.
PRIMOS EM PROGRESSÃO ARITMÉTICA
Em 1837, Dirichlet demonstrou um teorema clássico:
41
Teorema de Dirichlet: Se ๐‘‘ โ‰ฅ 2 e ๐‘Ž โ‰  0 são inteiros primos entre si, então a progressão aritmética
๐‘Ž, ๐‘Ž + ๐‘‘, ๐‘Ž + 2๐‘‘, ๐‘Ž + 3๐‘‘, โ€ฆ
contém uma infinidade de números primos.
A demonstração usual deste teorema utilizando variáveis complexas pode ser encontrada em
MARTINEZ; MOREIRA; SALDANHA; TENGAN, 2011.
Apresentamos a seguir a demonstração de um caso particular do teorema (MARTINEZ; MOREIRA;
SALDANHA; TENGAN, 2011), utilizando o polinômio ciclotômico ฮฆ๐‘š (๐‘ฅ) definido pela fórmula:
Função de Euler:
Seja โ„“ โˆˆ {1, 2, โ€ฆ . . , โ„“, โ€ฆ โ€ฆ โ€ฆ }
๐œ‘(โ„“) é o número de elementos do conjunto ๐’ฎ.
๐’ฎ = {โ„“ โˆˆ โ„• |1 โ‰ค ๐‘ฅ โ‰ค โ„“| ๐‘š. ๐‘‘. ๐‘. (๐‘ฅ , โ„“) = 1}
Definição polinômio ciclotômico ฮฆ๐‘š (๐‘ฅ)
ฮฆ๐‘™ (๐‘ฅ) = โˆ(๐‘˜,๐‘™)=1(๐‘ฅ โˆ’ ๐œ ๐‘˜ ) para ๐œ = ๐‘’ 2๐œ‹๐‘–/๐‘™
assim ๐œ ๐‘™ = 1
grau ฮฆ๐‘™ (๐‘ฅ) = ๐œ‘(โ„“) função Euler
โˆ๐‘™|๐‘š ฮฆ๐‘™ (๐‘ฅ) = ๐‘ฅ ๐‘š โˆ’ 1
Verifica-se facilmente que ฮฆ๐‘š (๐‘ฅ) é o polinômio mônico de grau ฮฆ๐‘š cujas raízes são
exp(2๐‘˜๐œ‹๐‘–/๐‘š), 0 โ‰ค ๐‘˜ < ๐‘š, ๐‘š๐‘‘๐‘(๐‘˜, ๐‘š) = 1. Além disso ฮฆ๐‘š (๐‘ฅ) โˆˆ โ„ค[๐‘ฅ].
Caso particular do teorema de Dirichlet: Para todo inteiro positivo d, existem infinitos primos na
progressão aritmética ๐‘† = {๐‘‘๐‘› + 1}๐‘›โˆˆโ„• .
Demonstração: Suponhamos que em ๐‘† existe apenas um número finito de primos ๐‘1 , โ‹ฏ , ๐‘๐‘™ e
definamos ๐‘Ž = 2๐‘‘๐‘1 โ‹ฏ ๐‘๐‘™ . Seja ๐‘ž um divisor primo de ฮฆ๐‘‘ (๐‘Ž). Dado que ๐‘ž|ฮฆ๐‘‘ (๐‘Ž)| ๐‘Ž๐‘‘ โˆ’ 1, temos
que ๐‘Ž๐‘‘ โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘ž). Mostremos que ๐‘‘ = ๐‘œ๐‘Ÿ๐‘‘๐‘ž ๐‘Ž. De fato, se ๐‘’ = ๐‘œ๐‘Ÿ๐‘‘๐‘ž ๐‘Ž é um divisor próprio de
๐‘‘, como o polinômio (๐‘ฅ ๐‘’ โˆ’ 1)ฮฆ๐‘‘ (๐‘ฅ) divide ๐‘ฅ ๐‘‘ โˆ’ 1 então ๐‘Ž ๐‘š๐‘œ๐‘‘ ๐‘ž será raiz dupla de ๐‘ฅ ๐‘‘ โˆ’ 1 โˆˆ
โ„ค/(๐‘ž)[๐‘ฅ]. Mas ๐‘ž | ๐‘Ž๐‘‘ โˆ’ 1 e ๐‘‘|๐‘Ž implica ๐‘ž โˆค ๐‘‘, assim todas as raízes de ๐‘ฅ ๐‘‘ โˆ’ 1 são simples porque
sua derivada ๐‘‘๐‘ฅ ๐‘‘โˆ’1 só é nula em ๐‘ฅ โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘ž), que não é raiz de ๐‘ฅ ๐‘‘ โˆ’ 1. Portanto ๐‘‘ = ๐‘œ๐‘Ÿ๐‘‘๐‘ž ๐‘Ž
e assim ๐‘‘|๐‘ž โˆ’ 1, isto é, ๐‘ž = ๐‘›๐‘‘ + 1 โˆˆ ๐‘†, mas ๐‘ž โ‰  ๐‘๐‘— pois ๐‘ž|๐‘Ž๐‘‘ โˆ’ 1 โŸน ๐‘ž โˆค ๐‘Ž, logo ๐‘ž โˆ‰ ๐‘†, o que
é uma contradição.
๏€ 
42
5.
FUNÇÕES QUE DEFINEM OS NÚMEROS PRIMOS
Outro desafio imposto pelos números primos aos matemáticos de todos os tempos é definir
funções que retornem números primos. Esse desafio se tornou mais premente após o desenvolvimento
do método de criptografia RSA que requer dois números primos grandes.
Algumas fórmulas foram desenvolvidas, entretanto, ainda não se conhece uma fórmula simples
para gerar números primos arbitrariamente grandes. As fórmulas existentes são tão complicadas que
não ajudam muito nem a gerar números primos, nem a responder perguntas teóricas sobre a
distribuição dos números primos.
RIBENBOIM (2012) classifica as fórmulas para gerar números primos em três grupos:
(A)
Fórmulas em que: ๐‘“(๐‘›) = ๐‘๐‘› (0 enésimo número primo)
(B)
Fórmulas em que ๐‘“(๐‘›) é sempre um número primo e, se ๐‘› โ‰  ๐‘š, então ๐‘“(๐‘›) โ‰ 
(C)
Fórmulas onde o conjunto dos números primos é igual ao conjunto dos valores
๐‘“(๐‘š).
positivos da função.
Citaremos algumas das fórmulas existem a título de ilustração, sem nos preocuparmos com as
demonstrações, devido à complexidade do tema.
43
5.1.
FÓRMULA DE GANDHI
Em 1971, Gandhi descobriu a seguinte fórmula para gerar o enésimo número primo
(RIBENBOIM, 2012):
๐‘๐‘› = โŒŠ1 โˆ’
1
1
๐œ‡(๐‘‘)
log (โˆ’ + โˆ‘ ๐‘‘
)โŒ‹
log 2
2
2 โˆ’1
๐‘‘|๐‘ƒ๐‘›โˆ’1
Onde:
๏‚ท
O símbolo โŒŠ๐‘ฅโŒ‹ indica o maior inteiro ๐‘› tal que ๐‘› โ‰ค ๐‘ฅ (๐‘ฅ sendo um número real
positivo).
๏‚ท
๐‘ƒ๐‘›โˆ’1 = ๐‘1 ๐‘2 โ‹ฏ ๐‘๐‘›โˆ’1
๏‚ท
๐œ‡(๐‘‘) é a Função de Möbius, assim definida:
Uma forma equivalente de expressar a fórmula de Gandhi é: ๐‘๐‘› é o único número inteiro tal
que:
1
๐œ‡(๐‘‘)
1 < 2๐‘๐‘› (โˆ’ + โˆ‘ ๐‘‘
) < 2.
2
2 โˆ’1
๐‘‘|๐‘ƒ๐‘›โˆ’1
Abaixo demonstração elaborada por Vanden Eynden em 1972.
๐œ‡(๐‘‘)
Demonstração: Para simplificar a notação, seja ๐‘„ = ๐‘ƒ๐‘›โˆ’1 , ๐‘ = ๐‘๐‘› e ๐‘† = โˆ‘๐‘‘|๐‘„ 2๐‘‘ โˆ’1.
Então,
(2๐‘„ โˆ’ 1)๐‘† = โˆ‘ ๐œ‡(๐‘‘)
๐‘‘|๐‘„
2๐‘„ โˆ’ 1
= โˆ‘ ๐œ‡(๐‘‘)(1 + 2๐‘‘ + 22๐‘‘ + โ‹ฏ + 2๐‘„โˆ’๐‘‘ ).
2๐‘‘ โˆ’ 1
๐‘‘|๐‘„
Se 0 โ‰ค ๐‘ก < ๐‘„, o termo ๐œ‡(๐‘‘)2๐‘ก aparece exatamente quando ๐‘‘ divide ๐‘š๐‘‘๐‘(๐‘ก, ๐‘„). Então, o
coeficiente de 2๐‘ก na soma é โˆ‘๐‘‘|๐‘š๐‘‘๐‘(๐‘ก,๐‘„) ๐œ‡(๐‘‘); em particular, se ๐‘ก = 0, esse coeficiente é igual a
โˆ‘๐‘‘|๐‘„ ๐œ‡(๐‘‘).
๏€ 
44
Entretanto, para todo inteiro ๐‘š โ‰ฅ 1, é bem conhecido e fácil de demonstrar que:
1, ๐‘ ๐‘’ ๐‘š = 1
โˆ‘ ๐œ‡(๐‘‘) = {
0, ๐‘ ๐‘’ ๐‘š > 1.
๐‘‘|๐‘š
Se se escreve โˆ‘โ€ฒ0<๐‘ก<๐‘„ como a soma estendida a todos os valores de ๐‘ก tais que 0 < ๐‘ก < ๐‘„
e ๐‘š๐‘‘๐‘(๐‘ก, ๐‘„) = 1, então (2๐‘„ โˆ’ 1)๐‘† = โˆ‘โ€ฒ0<๐‘ก<๐‘„ 2๐‘ก ; o maior índice ๐‘ก nessa soma é ๐‘ก = ๐‘„ โˆ’ 1. Daí
resulta que:
1
2(2๐‘„ โˆ’ 1) (โˆ’ 2 + ๐‘†) = โˆ’(2๐‘„ โˆ’ 1) + โˆ‘โ€ฒ0<๐‘ก<๐‘„ 2๐‘ก+1 = 1 + โˆ‘โ€ฒ0<๐‘ก<๐‘„โˆ’1 2๐‘ก+1 .
Se 2 โ‰ค ๐‘— < ๐‘๐‘› = ๐‘, existe um número primo ๐‘ž tal que ๐‘ž < ๐‘๐‘› = ๐‘ (então ๐‘ž divide ๐‘„) e ๐‘ž
divide ๐‘„ โˆ’ ๐‘—. Cada um dos índices ๐‘ก, na soma considerada acima, satisfaz 0 < ๐‘ก๐‘„ โˆ’ ๐‘. Então:
1 + โˆ‘โ€ฒ0<๐‘กโ‰ค๐‘„โˆ’๐‘ 2๐‘ก+1 2๐‘„โˆ’๐‘+2
2๐‘„โˆ’๐‘+1
1
<โˆ’ +๐‘† =
<
,
2 × 2๐‘„
2
2(2๐‘„ โˆ’ 1)
2 × 2๐‘„
onde as desigualdades são fáceis de estabelecer.
Com uma multiplicação por 2๐‘ , temos:
1
1 < 2๐‘ (โˆ’ 2 + 2) < 2.
๏€ 
5.2.
PRIMOS DE MILLS
Outra fórmula para gerar números primos foi desenvolvida por Mills. Em 1947, ele provou que
๐‘›
existe um número real ๐œƒ > 0 tal que para todo inteiro ๐‘› โ‰ฅ 1 o número โŒŠ๐œƒ 3 โŒ‹ é primo. Mills
determinou que ๐œƒ ~ 1,3064 (RIBENBOIM, 2012).
Mais tarde demonstrou-se que se ๐‘ > 2,106, existe um conjunto não enumerável de números
๐‘›
reais ๐œƒ > 0 tais que para todo inteiro ๐‘› o número โŒŠ๐œƒ ๐‘ โŒ‹ é primo. Quando ๐‘ = 3 o número ๐œƒ indicado
por Mills é o menor possível e é chamado constante de Mills.
45
๐‘›
Os números primos da forma โŒŠ๐œƒ 3 โŒ‹, onde ๐œƒ é a constante de Mills, são chamados primos de
Mills.
O valor da constante de Mills foi calculado com mais precisão, supondo a validade da Hipótese
de Riemann, por Caldwell e Cheng em 2005: ๐œƒ = 1,3063778838 โ‹ฏ (com 61.684 algarismos).
Esta fórmula para gerar números primos não tem grande aplicação prática, pois as potências
crescem muito rapidamente, além de ser conhecido apenas uma aproximação, ainda que bastante
precisa, da constante de Mills.
Já se sabe que os números gerados pela fórmula de Mills com ๐‘› = 1, 2, 3 โ‹ฏ 10 são números
11
primos, sendo que quando ๐‘› = 10 o número gerado tem 6.854 algarismos. Os números โŒŠ๐œƒ 3 โŒ‹ e
12
โŒŠ๐œƒ 3 โŒ‹ foram calculados por P. Carmody e possuem 20.562 e 61.684 algarismos, respectivamente.
Outra fórmula similar de gerar números primos é:
๐‘ค
โˆ™2
โˆ™โˆ™
2
2
๐‘(๐‘›) = โŒŠ2
โŒ‹ , com uma sucessão de ๐‘› expoentes
Onde: ๐‘› โ‰ฅ 1
๐‘ค~1,9287800 โ‹ฏ
Esta fórmula possui as mesmas limitações da fórmula de Mills, resultando em um número com
mais de 5.000 algarismos quando ๐‘› = 4.
6.
CASOS PARTICULARES DE PRIMOS
46
6.1.
NÚMEROS DE FERMAT GENERALIZADOS
๐‘›
Fermat conjecturou que todo número da forma ๐น๐‘› = 22 + 1 era primo. Assim são chamados
Números de Fermat, os números com tal formulação. Ele verificou sua conjectura até ๐‘› โ‰ค 4 e até este
ponto, todos os números de Fermat são primos (MARTINEZ; MOREIRA; SALDANHA; TENGAN, 2011):
๐น0 = 3, ๐น1 = 5, ๐น2 = 17, ๐น3 = 257, ๐น4 = 65.537
O número seguinte, ๐น5 , já é um número com 10 algarismos, o que impediu que Fermat
testasse sua primariedade, visto que nesta época não havia tabelas de primos com números tão
grandes.
Observe-se que 2๐‘› + 1 não é primo se ๐‘› não é uma potência de 2: se ๐‘ é um fator primo
ímpar de ๐‘›, podemos escrever
๐‘Ž๐‘› + 1 = ๐‘ ๐‘ + 1 = (๐‘ + 1)(๐‘ ๐‘โˆ’1 โˆ’ ๐‘ ๐‘โˆ’2 + โ‹ฏ + ๐‘ 2 โˆ’ ๐‘ + 1).
Euler mostrou que todo fator primo de números ๐น๐‘› de Fermat (com ๐‘› โ‰ฅ 2) é da forma ๐‘˜ ×
2๐‘›+2 + 1 e, testanto tais números conseguiu provar que 641 dividia ๐น5 .
5
22 โ‰ก โˆ’1(641)
641 โ‰ก 54 + 24 = 27 . 5 + 1
54 โ‰ก โˆ’24 . (641)
27 . 5 โ‰ก โˆ’1 (641)
228 . 54 โ‰ก (โˆ’1)4 โ‰ก 1 (641)
โˆ’232 โ‰ก 1 (641)
(641) l 232 +1
47
De fato, temos: ๐น5 = 4.294.967.297 = 641 × 6.700.417
๐‘›
๐‘›+1
Demonstração: Seja ๐‘ um fator primo de ๐น๐‘› ; então 22 โ‰ก โˆ’1(๐‘š๐‘œ๐‘‘ ๐‘), daí 22
โ‰ก
1 (๐‘š๐‘œ๐‘‘ ๐‘) e assim, a ordem de 2 ๐‘šó๐‘‘๐‘ข๐‘™๐‘œ ๐‘ é igual a 2๐‘›+1 ; resulta que 2๐‘›+1 divide ๐‘ โˆ’ 1, pelo
pequeno Teorema de Fermat, em particular, 8 divide ๐‘ โˆ’ 1. Assim, o símbolo de Legendre
2(๐‘โˆ’1)โ„2 โ‰ก (2 | ๐‘) โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘). Então 2๐‘›+1 divide (๐‘ โˆ’ 1)โ„2, o que mostra ser ๐‘ = ๐‘˜ ×
2๐‘›+2 + 1.
๏€ 
Já se demonstrou que ๐น๐‘› é composto para vários outros valores de ๐‘›; nenhum outro primo de
Fermat é conhecido. Até outubro de 2011 o menor número de Fermat que se desconhece se é primo
๐‘›
ou composto é ๐น33 , mas se conhecem muitos primos (alguns bastante grandes) da forma ๐‘Ž2 + 1,
que são conhecidos como Primos de Fermat Generalizados. O Teste de Pépin mostra como testar a
primalidade de ๐น๐‘› .
Antes de apresentar este teste é necessário apresentar a seguinte proposição:
Proposição: Seja ๐‘› > 1. Se para cada fator primo ๐‘ž de ๐‘› โˆ’ 1 existe um inteiro ๐‘Ž๐‘ž tal que
๐‘Ž๐‘ž ๐‘›โˆ’1 โ‰ก 1(๐‘š๐‘œ๐‘‘ ๐‘›) e ๐‘Ž๐‘ž (๐‘›โˆ’1)/๐‘ž โ‰ข 1(๐‘š๐‘œ๐‘‘๐‘›) então ๐‘› é primo.
Demonstração: Seja ๐‘ž ๐‘˜๐‘ž a maior potência de ๐‘ž que divide ๐‘› โˆ’ 1. A ordem de ๐‘Ž๐‘ž em
(โ„คโ„(๐‘›))๐‘ฅ é um múltiplo de ๐‘ž ๐‘˜๐‘ž , donde ๐œ‘(๐‘›) é um múltiplo de ๐‘ž ๐‘˜๐‘ž . Como isto vale para todo fator
primo ๐‘ž de ๐‘› โˆ’ 1, ๐œ‘(๐‘›) é um múltiplo de ๐‘› โˆ’ 1 e ๐‘› é primo.
๏€ 
๐‘›
Teste de Pépin (MARTINEZ; MOREIRA; SALDANHA; TENGAN, 2011): Seja ๐น๐‘› = 22 + 1;
๐น๐‘› é primo se, e somente se, 3(๐น๐‘› โˆ’1)/2 โ‰ก โˆ’1 (๐‘š๐‘œ๐‘‘ ๐น๐‘› ).
Demonstração: Se 3(๐น๐‘› โˆ’1)/2 โ‰ก โˆ’1 (๐‘š๐‘œ๐‘‘ ๐น๐‘› ) então a primalidade de ๐น๐‘› segue da
proposição apresentada acima. Por outro lado, se ๐น๐‘› é primo então pelo critério de Euler e a lei de
reciprocidade quadrática temos:
48
3
๐น๐‘›
2
3(๐น๐‘› โˆ’1)/2 โ‰ก ( ) = ( ) = ( ) = โˆ’1 (๐‘š๐‘œ๐‘‘ ๐น๐‘› )
๐น๐‘›
3
3
๏€ 
O Teste de Pepin é muito prático, mas se ๐น๐‘› é composto, o teste não dará qualquer fator de
๐น๐‘› . Desta forma, a fatoração de números de Fermat tem sido objeto de intensa exploração.
Em 1985, Dubner conseguiu descobrir números de Fermat generalizados bastante grandes
11
que são primos, como por exemplo, 1502 + 1. Em 202, Dubner e Gallot descreveram um método de
computação para determinar a primariedade dos números de Mersenne.
Com esse processo, no fim de 2002, já haviam sido descobertos mais de 100 números de
Fermat generalizados primos com mais de 100.000 algarismos. 46 números primos de Fermat
generalizados são conhecidos com mais de 300.000. O maior entre eles tem mais de um milhão de
organismos.
6.2.
PRIMOS DE MERSENNE
Números da forma ๐‘€๐‘ = 2๐‘ โˆ’ 1, são conhecidos como números de Mersenne (MARTINEZ;
MOREIRA; SALDANHA; TENGAN, 2011). Marin Mersenne foi um matemático, teórico musical, padre
mínimo, teólogo e filósofo francês. Ficou conhecido sobretudo pelo seu estudo dos chamados primos
de Mersenne. O asteróide 8191 Mersenne foi baptizado em sua honra (WIKIPÉDIA). Atualmente, os
maiores números primos conhecidos são números de Mersenne. Os nove maiores números primos
conhecidos até abril de 2010, são primos de Mersenne ๐‘€๐‘ = 2๐‘ โˆ’ 1 onde:
๐‘ = 43.112.609
๐‘ = 42.643.801
๐‘ = 37.156.667
49
๐‘ = 32.582.657
๐‘ = 30.402.457
๐‘ = 25.964.951
๐‘ = 24.036.583
๐‘ = 20.996.011
๐‘ = 13.466.917
Esses são os únicos primos conhecidos com mais de 4.000.000 algarismos.
Sabe-se, desde os tempos de Mersenne, que números desta forma podem ser primos ou
compostos.
Por exemplo: ๐‘€2 = 3, ๐‘€3 = 7, ๐‘€5 = 31, ๐‘€7 = 127, são primos. Já, ๐‘€11 = 2.047 =
23 × 89, não é primo.
Em 1640, Mersenne afirmou que ๐‘€๐‘ž é primo para ๐‘ž = 13, 17, 19, 31, 67, 127 ๐‘’ 257. Em
sua afirmação ele estava enganado em relação ๐‘ž = 67 ๐‘’ 257, que são números compostos. Além
disso, deixou de citar ๐‘ž = 61, 89 ๐‘’ 107que são inferiores à 257 e também geram números primos de
Mersenne. Apesar dos enganos cometidos, trata-se de um grande feito, tendo em vista a grandeza dos
números envolvidos e poucos recursos computacionais da época.
O problema que se apresenta então é determinar se um determinado número de Mersenne é
primo ou não e, neste caso, determinar seus fatores primos.
Parte do interesse em primos de Mersenne deve-se a sua estreita relação com os números
perfeitos. Um número perfeito é um inteiro positivo que é igual à soma de seus divisores próprios.
Exemplos:
6= 1+2+3
28 = 1 + 2 + 4 + 7 + 14
Números perfeitos pares são precisamente números da forma: 2๐‘โˆ’1 (2๐‘ โˆ’ 1) onde 2๐‘ โˆ’ 1 é
um primo de Mersenne.
50
Pode-se demonstrar que 2๐‘ โˆ’ 1 só pode ser primo quando ๐‘ é primo.
Proposição: Se 2๐‘› โˆ’ 1 é primo, então ๐‘› é primo.
Demonstração:
Se ๐‘› = ๐‘Ž๐‘ com ๐‘Ž, ๐‘ โ‰ฅ 2,
Então 1 < 2๐‘Ž โˆ’ 1 < 2๐‘› โˆ’ 1 e
2๐‘› โˆ’ 1 = 2๐‘Ž๐‘ โˆ’ 1 = (2๐‘Ž )๐‘ โˆ’ 1 โ‰ก 1๐‘ โˆ’ 1 = 0 (๐‘š๐‘œ๐‘‘ 2๐‘Ž โˆ’ 1)
e,
2๐‘› โˆ’ 1 é composto. ๏€ 
Em 1536, Hudalricus Regius mostrou que 2๐‘ โˆ’ 1 não precisa ser primo sempre que ๐‘ for
primo. Como mostra o exemplo já citado anteriormente: ๐‘€11 = 211 โˆ’ 1 = 2.047 = 23 × 89.
Não se sabe demonstrar nem que existam infinitos primos de Mersenne, nem que existem
infinitos primos ๐‘ para os quais, ๐‘€๐‘ é composto. Conjectura-se que existam infinitos primos ๐‘ para os
quais ๐‘€๐‘ é primo e que, se ๐‘๐‘› é o enésimo primo deste tipo, temos:
0<๐ด<
log ๐‘๐‘›
< ๐ต < +โˆž
๐‘›
para constantes ๐ด e ๐ต.
Existem algumas conjecturas mais precisas quanto ao valor de
lim ๐‘›โˆš๐‘๐‘› .
๐‘›โ†’โˆž
Eberhart conjectura que este limite exista e seja igual a 3/2; Wagstaff por outro lado
conjectura que o limite seja:
2๐‘’
โˆ’๐›พ
โ‰ˆ 1,4757613971
onde ๐›พ é a constante de Euler-Mascheroni.
Mesmo quando ๐‘€๐‘ não é primo, podemos garantir que seus fatores primos serão especiais.
Isso é muito útil quando procuramos primos de Mersenne, pois podemos eliminar alguns expoentes
encontrando fatores primos de ๐‘€๐‘ . Isso também pode ser útil para conjecturarmos quanto à
โ€œprobabilidadeโ€ de ๐‘€๐‘ ser primo, ou mais precisamente, quanto a distribuição dos primos de Mersenne.
51
Teorema de Reciprocidade Quadrática:
๐‘โˆ’1
โˆ’1
( ) = (โˆ’1) 2
๐‘
๐‘2 โˆ’1
2
( ) = (โˆ’1) 8
๐‘
๐‘โˆ’1 ๐‘žโˆ’1
๐‘ ๐‘ž
( ) ( ) = (โˆ’1) 2 2
๐‘ž ๐‘
Proposição: Sejam ๐‘ > 2 e ๐‘ž primos com ๐‘ž um divisor de ๐‘€๐‘ . Então ๐‘ž โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘)e ๐‘ž โ‰ก
±1 (๐‘š๐‘œ๐‘‘ 8).
Demonstração: Se ๐‘ž divide ๐‘€๐‘ então 2๐‘ โ‰ก 1 (๐‘š๐‘œ๐‘‘ ๐‘ž), o que significa que a ordem de
2 ๐‘šó๐‘‘๐‘ข๐‘™๐‘œ ๐‘ž é ๐‘ (pois ๐‘ é primo). Isso significa que ๐‘ é um divisor de ๐‘ž โˆ’ 1, ou seja, que ๐‘ž โ‰ก
๐‘+1
1 (๐‘š๐‘œ๐‘‘ ๐‘). Por outro lado, 2 โ‰ก 2
= (2
(๐‘+1)โ„2 2
2
) (๐‘š๐‘œ๐‘‘ ๐‘ž), donde (๐‘ž) = (โˆ’1)
๐‘ž2 โˆ’1
8
(Símbolo
de Legendre) o que significa que ๐‘ž โ‰ก ±1(๐‘š๐‘œ๐‘‘ 8).
๐‘Ž
( )={
๐‘
0,
1,
โˆ’1,
๐‘
se โ„๐‘Ž
๐‘ ๐‘’ ๐‘Ž โ‰ก ๐‘š๐‘œ๐‘‘ ๐‘
caso contrário
Os vários valores de ๐‘ para os quais a primalidade de ๐‘€๐‘ foi testada sugerem que para a
ampla maioria dos valores de ๐‘, ๐‘€๐‘ não é primo. Isso é apenas uma conjectura: não se saber sequer
se existem infinitos primos ๐‘ para os quais ๐‘€๐‘ seja composto. Vamos agora ver uma proposição que
serve para garantir que para certos valores especiais de ๐‘, alguns muito grandes, ๐‘€๐‘ não é primo.
Proposição: Seja ๐‘ primo, ๐‘ โ‰ก 3 (๐‘š๐‘œ๐‘‘ 4). Então 2๐‘ + 1 é primo (๐‘ é primo de Sophie
Germain) se, e somente se, 2๐‘ + 1 divide ๐‘€๐‘ .
Demonstração: Se ๐‘ž = 2๐‘ + 1 é primo então:
52
2
๐‘€๐‘ = 2๐‘ โˆ’ 1 = 2(๐‘žโˆ’1)โ„2 โˆ’ 1 โ‰ก ( ) โˆ’ 1(๐‘š๐‘œ๐‘‘ ๐‘ž).
๐‘ž
2
Mas ๐‘ โ‰ก 3 (๐‘š๐‘œ๐‘‘ 4) significa que ๐‘ž โ‰ก 7 (๐‘š๐‘œ๐‘‘ 8) donde (๐‘ž) = 1. Assim, ๐‘€๐‘ โ‰ก
0 (๐‘š๐‘œ๐‘‘ ๐‘ž), o que demonstra uma das implicações da proposição.
Por outro lado, se 2๐‘ + 1 não é primo, ele tem fatores primos ๐‘Ÿ com ๐‘Ÿ โ‰ข 1 (๐‘š๐‘œ๐‘‘ ๐‘) (pois
๐‘Ÿ < ๐‘). Se 2๐‘ + 1 dividisse ๐‘€๐‘ , ๐‘Ÿ seria um fator primo de ๐‘€๐‘ , contrariando a proposição anterior.
๏€ 
O melhor método atualmente conhecido para saber se ๐‘€๐‘ž é primo ou composto, repousa
sobre o cálculo de uma sucessão recorrente indicada por Lucas (1878) e Lehmer (1930 e 1935).
Entretanto, o método não permite determinar os fatores no caso de o número ser composto.
Teste de Primariedade para Números de Mersenne (RIBENBOIM, 2012): Sejam ๐‘ƒ = 2 e
๐‘„ = โˆ’2; consideram-se as sucessões de Lucas (๐‘ˆ๐‘š )๐‘šโ‰ฅ0 e (๐‘‰๐‘š )๐‘šโ‰ฅ0 tendo parâmetros 2 e โˆ’2 e,
consequentemente, discriminante ๐ท = 12. Então ๐‘ = ๐‘€๐‘› é primo se e somente se ๐‘ divide
๐‘‰(๐‘+1)โ„2.
É desejável, para simplificar os cálculos, substituir a sucessão de Lucas (๐‘‰๐‘š )๐‘šโ‰ฅ0 pela
sucessão (๐‘†๐‘˜ )๐‘˜โ‰ฅ0 , que é definida, por recorrência, da seguinte maneira:
๐‘†0 = 4,
๐‘†๐‘˜+1 = ๐‘†๐‘˜2 โˆ’ 2
Assim, a sucessão começa pelos números 4, 14, 194, โ‹ฏ. O teste pode ser formulado como se
segue.
๐‘€๐‘› é primo se e somente se ๐‘€๐‘› divide ๐‘†๐‘›โˆ’2 .
๐‘˜โˆ’1
Demonstração: ๐‘†0 = 4 = ๐‘‰2โ„2. Supõe-se ๐‘†๐‘˜โˆ’1 = ๐‘‰2๐‘˜ โ„22
๐‘†๐‘˜ =
2
๐‘†๐‘˜โˆ’1
โˆ’2=
๐‘‰22๐‘˜
๐‘˜
22
; então
๐‘˜ +1
โˆ’2=
๐‘‰2๐‘˜+1 + 22
๐‘˜
22
โˆ’2=
De acordo com o teste, ๐‘€๐‘› é primo, se e somente se, ๐‘€๐‘› divide:
๐‘‰2๐‘˜+1
๐‘˜
22
.
53
๐‘›โˆ’2
๐‘‰(๐‘€๐‘› +1)โ„2 = ๐‘‰2๐‘›โˆ’1 = 22
๐‘†๐‘›โˆ’2 .
Isso é, ๐‘€๐‘› divide ๐‘†๐‘›โˆ’2.
๏€ 
Com esse teste, Lucas mostrou em 1876 que ๐‘€127 é um número primo e ๐‘€67 é composto.
Um pouco mais tarde, Pervushin mostrou que ๐‘€61 é primo. Em 1927, Lehmer mostrou que ๐‘€257 é
composto.
6.3.
PRIMOS GÊMEOS
Dizemos que ๐‘ e ๐‘ž são primos gêmeos se ๐‘ e ๐‘ž são primos e |๐‘ โˆ’ ๐‘ž| = 2 (RIBENBOIM,
2012).
Conjectura-se que existem infinitos pares de primos gêmeos. Os menores números primos são:
(3, 5), (5, 7), (11, 13), (17, 19). Alguns primos gêmeos muito grandes são também conhecidos,
como 65.516.468.355 โˆ™ 2333333 ± 1, que tem 100.355 dígitos cada um.
Os números primos gêmeos foram caracterizados por Clement em 1949, da seguinte maneira:
Seja ๐‘› โ‰ฅ 2. Os inteiros ๐‘› e ๐‘› + 2 são ambos primos, se e somente se:
4[(๐‘› โˆ’ 1)! + 1] + ๐‘› โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘› + 2)
Demonstração: Se a congruência for satisfeita, então ๐‘› โ‰  2,4 e (๐‘› โˆ’ 1)! + 1 โ‰ก 0 ๐‘š๐‘œ๐‘‘ ๐‘›
e, pelo Teorema de Wilson, ๐‘› é primo. Por outro lado,
4(๐‘› โˆ’ 1)! + 2 โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘› + 2)
Que multiplicada por ๐‘›(๐‘› + 1), dá:
[4(๐‘› + 1)! + 1] + 2๐‘›2 + 2๐‘› โˆ’ 4 โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘› + 2)
E então:
54
4[(๐‘› + 1)! + 1] + (๐‘› + 2)(2๐‘› โˆ’ 2) โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘› + 2)
Logo:
(๐‘› + 1)! + 1 โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘› + 2)
De acordo com o Teorema de Wilson, ๐‘› + 2 é também primo.
Reciprocamente, se ๐‘› e ๐‘› + 2 são primos, então ๐‘› โ‰  2 e:
(๐‘› โˆ’ 1)! + 1 โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘›),
(๐‘› + 1)! + 1 โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘› + 2).
Ora, ๐‘›(๐‘› + 1) = (๐‘› + 2)(๐‘› โˆ’ 1) + 2 e daí 2(๐‘› โˆ’ 1)! + 1 = ๐‘˜(๐‘› + 2) onde ๐‘˜ é inteiro.
De (๐‘› โˆ’ 1)! โ‰ก โˆ’1 (๐‘š๐‘œ๐‘‘๐‘›), resulta que 2๐‘˜ + 1 โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘›) e, fazendo uma substituição,
4(๐‘› โˆ’ 1)! + 2 โ‰ก โˆ’(๐‘› + 2) (๐‘š๐‘œ๐‘‘ ๐‘›(๐‘› + 2))
E então:
4[(๐‘› โˆ’ 1)! + 1] + ๐‘› โ‰ก 0 (๐‘š๐‘œ๐‘‘ ๐‘›(๐‘› + 2))
๏€ 
Entretanto, essa caracterização não tem qualquer interesse prático para determinar primos
gêmeos.
O problema principal é decidir se existe uma infinidade de pares de primos gêmeos.
Para todo ๐‘ฅ > 1, seja ๐œ‹2 (๐‘ฅ) o número de primos ๐‘, tais que ๐‘ + 2 seja também primo e
๐‘ + 2 โ‰ค ๐‘ฅ.
Brun anunciou em 1919 que existe um inteiro ๐‘ฅ0 , efetivamente calculável, tal que se ๐‘ฅ โ‰ฅ ๐‘ฅ0 ,
então:
๐œ‹2 (๐‘ฅ) <
100๐‘ฅ
.
(log ๐‘ฅ)2
A demonstração foi publicada em 1920.
Em outro artigo de 1919, Brun demonstrou o célebre resultado:
1
1
โˆ‘( +
)
๐‘ ๐‘+2
55
Onde a soma é estendida a todos os primos ๐‘ tais que ๐‘ + 2 também seja primo, é
convergente, o que significa que, mesmo que existam infinitos pares de primos gêmeos, eles acabam
por se afastar uns dos outros.
A soma:
1 1
1 1
1
1
1
1
๐ต = ( + ) + ( + ) + ( + ) + โ‹ฏ+ ( +
)+โ‹ฏ
3 5
5 7
11 13
๐‘ ๐‘+2
É chamada constante de Brun. Apoiando-se em considerações heurísticas sobre a distribuição
dos primos gêmeos, essa constante foi calculada por Shanks e Wrench (1974), por Brent (1976) e mais
recentemente por Nicely (2001) e por Sebah (2002), com o valor:
๐ต = 1,90216051823 โ‹ฏ
Brun também demonstrou que para todo ๐‘š โ‰ฅ 1, existem ๐‘š primos sucessivos que não
primos gêmeos.
A estimativa dada para ๐œ‹2 (๐‘ฅ) foi melhorada com a determinação da constante e do respectivo
limite de erro. Isso foi executado, entre outros, por Bombieri e Davenport em 1966, através da
aplicação do método do crivo.
Eis o resultado:
๐œ‹2 (๐‘ฅ) โ‰ค 2๐ถ โˆ
๐‘>2
๐‘(๐‘ โˆ’ 2)
๐‘ฅ
.
(๐‘ โˆ’ 1)2 (log ๐‘ฅ)2
Hardy e Littlewood (1923) conjecturaram que a constante ๐ถ seria igual a 1. Os melhores
resultados obtidos até agora para a constante ๐ถ foram:
๐ถ = 3,5
por Bombieri, Friedlander e Iwaniec (1986)
๐ถ = 3,13
por S. Lou (não publicado)
O produto infinito:
๐ถ2 = โˆ
๐‘>2
๐‘(๐‘ โˆ’ 2)
(๐‘ โˆ’ 1)2
56
é chamado a constante dos primos gêmeos e seu valor 0,66016 โ‹ฏ foi calculado por Wrench
em 1961.
6.4.
PRIMOS DE SOPHIE GERMAIN
Sophie Germain provou o chamado primeiro caso do último Teorema de Fermat para os primos
๐‘ para os quais 2๐‘ + 1 é primo. Por isso os primos que apresentam esta forma são chamados de
primos de Sophie Germain. No dia 28 de junho de 1993, o matemático britânico Andrew Wiles fez a
demonstração do teorema de Fermat também conhecido como o último Teorema de Fermat.
Sophie Germain demonstrou o seguinte teorema:
Se ๐‘ e 2๐‘ + 1 são primos com ๐‘ > 2, então não existem inteiros ๐‘ฅ, ๐‘ฆ, ๐‘ง com
๐‘š๐‘‘๐‘(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 1 e ๐‘ โˆค ๐‘ฅ๐‘ฆ๐‘ง tais que ๐‘ฅ ๐‘ + ๐‘ฆ ๐‘ + ๐‘ง ๐‘ = 0. Em outras palavras: o primeiro caso do
último Teorema de Fermat é verdadeiro para todo expoente primo de Sophie Germain.
Demonstração: Observe inicialmente que 2๐‘ + 1 | ๐‘ฅ๐‘ฆ๐‘ง: caso contrário, pelo pequeno
Teorema de Fermat, ๐‘ฅ 2๐‘ โ‰ก1 (mod 2p+1), o que equivale a (๐‘ฅ ๐‘ โˆ’ 1)(๐‘ฅ ๐‘ + 1) โ‰ก 0 (๐‘š๐‘œ๐‘‘ 2๐‘ + 1).
Assim, temos que ๐‘ฅ ๐‘ โ‰ก ±1 (๐‘š๐‘œ๐‘‘ 2๐‘ + 1) e analogamente ๐‘ฆ ๐‘ โ‰ก ±1 (๐‘š๐‘œ๐‘‘ 2๐‘ + 1) e ๐‘ง ๐‘ โ‰ก
±1 (๐‘š๐‘œ๐‘‘ 2๐‘ + 1). Mas ๐‘ฅ ๐‘ + ๐‘ฆ ๐‘ + ๐‘ง ๐‘ โ‰ก ±1 ± 1 ± 1 โ‰ข 0(๐‘š๐‘œ๐‘‘ 2๐‘ + 1), um absurdo.
๏€ 
Por outro lado temos,
(โˆ’๐‘ฅ)๐‘ = (๐‘ฆ + ๐‘ง)(๐‘ฆ ๐‘โˆ’1 โˆ’ ๐‘ฆ ๐‘โˆ’2 ๐‘ง + โ‹ฏ โˆ’ ๐‘ฆ๐‘ง ๐‘โˆ’2 + ๐‘ง ๐‘โˆ’1 )
Vamos mostrar que os dois fatores da direita são primos entre si. Se ๐‘ž é um primo que divide
ambos os termos, então ๐‘ฆ โ‰ก โˆ’๐‘ง(๐‘š๐‘œ๐‘‘ ๐‘ž) e, portanto, 0 โ‰ก ๐‘ฆ ๐‘โˆ’1 โˆ’ ๐‘ฆ ๐‘โˆ’2 ๐‘ง + โ‹ฏ + ๐‘ง ๐‘โˆ’1 โ‰ก
๐‘๐‘ฆ ๐‘โˆ’1 (๐‘š๐‘œ๐‘‘ ๐‘ž); temos ๐‘ž โ‰  ๐‘ pois ๐‘ž | ๐‘ฅ, assim ๐‘ž | ๐‘๐‘ฆ ๐‘โˆ’1 โŸน ๐‘ž |๐‘ฆ, mas então ๐‘ง โ‰ก โˆ’๐‘ฆ โ‰ก
57
0 (๐‘š๐‘œ๐‘‘ ๐‘ž) e ๐‘ž dividiria simultaneamente ๐‘ฅ, ๐‘ฆ, ๐‘ง, contrariando a hipótese ๐‘š๐‘‘๐‘(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 1. Assim,
pela fatoração única em primos existem inteiros ๐‘Ž, ๐‘‘ tais que:
๐‘Ž๐‘ = ๐‘ฆ + ๐‘ง e ๐‘‘๐‘ = ๐‘ฆ ๐‘โˆ’1 โˆ’ ๐‘ฆ ๐‘โˆ’2 ๐‘ง + โ‹ฏ โˆ’ ๐‘ฆ๐‘ง ๐‘โˆ’2 + ๐‘ง ๐‘โˆ’1
e analogamente:
๐‘ ๐‘ = ๐‘ฅ + ๐‘ง e ๐‘’ ๐‘ = ๐‘ฅ ๐‘โˆ’1 โˆ’ ๐‘ฅ ๐‘โˆ’2 ๐‘ง + โ‹ฏ โˆ’ ๐‘ฅ๐‘ง ๐‘โˆ’2 + ๐‘ง ๐‘โˆ’1
๐‘ ๐‘ = ๐‘ฅ + ๐‘ฆ e ๐‘“ ๐‘ = ๐‘ฅ ๐‘โˆ’1 โˆ’ ๐‘ฅ ๐‘โˆ’2 ๐‘ฆ + โ‹ฏ โˆ’ ๐‘ฅ๐‘ฆ ๐‘โˆ’2 + ๐‘ฆ ๐‘โˆ’1
para ๐‘, ๐‘, ๐‘’, ๐‘“ inteiros.
Como 2๐‘ + 1 | ๐‘ฅ๐‘ฆ๐‘ง, podemos supor sem perda de generalidade que 2๐‘ + 1 | ๐‘ฅ. Assim, de
2๐‘ฅ = ๐‘ ๐‘ +๐‘ ๐‘ โˆ’ ๐‘Ž๐‘ , temos que 2๐‘ + 1 | ๐‘ ๐‘ + ๐‘ ๐‘ โˆ’ ๐‘Ž๐‘ e o mesmo argumento no início da
demonstração mostra que 2๐‘ + 1 | ๐‘Ž๐‘๐‘ também.
Mas se 2๐‘ + 1 | ๐‘ = ๐‘ฅ + ๐‘ง ou 2๐‘ + 1 | ๐‘ = ๐‘ฅ + ๐‘ฆ, como 2๐‘ + 1 | ๐‘ฅ e ๐‘ฅ ๐‘ + ๐‘ฆ ๐‘ + ๐‘ง ๐‘ =
0 teríamos que 2๐‘ + 1 | ๐‘š๐‘‘๐‘(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 1, um absurdo.
Por outro lado, temos๐‘“ ๐‘ โ‰ก ๐‘ฆ ๐‘โˆ’1 (๐‘š๐‘œ๐‘‘ 2๐‘ + 1) e se 2๐‘ + 1 | ๐‘Ž, então 2๐‘ + 1 โˆค ๐‘‘ e ๐‘ฆ โ‰ก
โˆ’๐‘ง (๐‘š๐‘œ๐‘‘ 2๐‘ + 1) โŸน ๐‘‘๐‘ โ‰ก ๐‘๐‘ฆ ๐‘โˆ’1 (mod 2p + 1).
Assim, 2๐‘ + 1|๐‘“, pois caso contrário teríamos:
± ๐‘ โ‰ก ๐‘๐‘“ ๐‘ โ‰ก ๐‘๐‘ฆ ๐‘โˆ’1 โ‰ก ๐‘‘ ๐‘ โ‰ก ± 1 (mod 2p + 1)
Um absurdo.
Mas neste caso, 2๐‘ + 1 | ๐‘ง também, o que é impossível já que ๐‘š๐‘‘๐‘ (๐‘ฅ, ๐‘ฆ, ๐‘ง) = 1,
completando a prova.
Conjectura-se a existência de uma infinidade de primos de Sophie Germain, porém sua
demonstração pode ser tão difícil quanto à da existência de uma infinidade de primos gêmeos.
O teorema de Sophie Germain foi estendido por Legendre e Dénes (1951) e mais
recentemente, por Fee e Grandville (1991).
A estimativa do número de primos de Sophie Germain inferiores a um número ๐‘ฅ โ‰ฅ 1 é dada
por ๐œ‹๐‘†๐บ (๐‘ฅ):
58
๐œ‹๐‘†๐บ (๐‘ฅ) <
๐ถ๐‘ฅ
.
(log ๐‘ฅ)2
๐ถ๐‘ฅ
Acredita-se que ๐œ‹๐‘†๐บ (๐‘ฅ) seja assintótico a (log ๐‘ฅ)2 para algum ๐‘ > 0, mas como dito, não se
sabe demonstrar sequer a existência de infinito primos de Sophie Germain.
59
7. CONCLUSÃO
Este trabalho nos revela o fascínio provocado pelos números primos em acadêmicos ao longo
de toda a história da matemática. Este fascínio não é um acaso, como vimos, trata-se de um tema
profundamente complexo e instigante que vem desafiando a comunidade científica há séculos. Sua
aplicação em criptografia RSA, que viabiliza diariamente milhares de transações financeiras via
internet, torna o tema ainda mais discutido em diversos campos de estudo e com os mais diversos
interesses, incluindo desde aqueles que buscam garantir e aprimorar a segurança do sistema, como os
que buscam suas fragilidades para uso menos nobres.
Diante de sua complexidade, o tema é abordado de forma superficial tanto no ensino médio
quanto no ensino superior de Matemática. O que é plenamente compreendido pela necessidade de
conhecimento de Matemática Avançada para maior aprofundamento. Entretanto, a literatura já registra
algumas tentativas de simplificar o tema de forma a torna-lo compreensível a alunos com poucos ou
nenhum conhecimento de matemática avançada, sendo por tanto, um tema bastante interessante para
futuros trabalhos de monografia para professores de matemática.
60
8.
REFERÊNCIAS
ÁVILA, Geraldo Severo de Souza. Várias Faces da Matemática: Tópicos para licenciatura e leitura
geral. São Paulo: Blucher, 2010.
DU SAUTOY, Marcus. A Música dos Números Primos: A história de um problema não resolvido na
matemática. Rio de Janeiro: Zahar, 2007.
FARIAS, Fernando de. Uma análise comparativa entre os testes de primalidade AKS e MillerRabin. Monografia (Conclusão de curso). Universidade Católica de Brasília Curso de Matemática
IRELAND, Kenneth; ROSEN, Michael. A Classical Introduction to Modern Number Theory. 1972,
1982, 1980 Springer Verlag New York, Inc.
MARTINEZ, Fábio Brochero; MOREIRA, Carlos Gustavo; SALDANHA, Nicolau; TENGAN, Eduardo.
Teoria dos Números: Um passeio com primos e outros números familiares pelo mundo inteiro. Rio de
Janeiro: IMPA, 2011.
MOREIRA, Carlos Gustavo; SALDANHA, Nicolau. Primos de Mersene (e outros primos muito
grandes). Rio de Janeiro: IMPA, 2008.
RIBENBOIM, Paulo. Números Primos: Velhos mistérios e novos recordes. Rio de Janeiro: IMPA,
2012.
SANTOS, José Plínio de Oliveira. Teoria dos Números. Rio de Janeiro: IMPA, 2011.
WEIL, André. Basic Number Theory. New York: Heidelberg, Berlin, 1974.
Download

Nรบmeros Primos - Biblioteca Digital de Teses e Dissertaรงรตes da