PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS Aula 03: Propriedades Mecânicas dos Materiais Prof: Iran Aragão PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS OBJETIVO DA AULA Ao final desta aula, você deverá: 1. Saber o conceito de Tensão; 2. Conhecer a Lei de Hooke; 3. Identificar os esforços atuantes: Tração, Compressão, Cisalhamento, Flexão, Torsão e Flambagem; 4. Identificar Mecânica, as Propriedades Elasticidade, Mecânicas: Ductilidade, Resistência Plasticidade, Tenacidade, Resiliência, Dureza, Resistência a Fadiga e a Fluência. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS INTRODUÇÃO • Tipos de deformações: Elásticas: os átomos se afastam das posições originais sem ocuparem definitivamente novas posições. O material retorna às suas dimensões originais, quando é cessada o motivo da deformação. Plásticas: ao retirarmos o esforço, o material não retorna às suas dimensões originais. Suas dimensões originais ficam alteradas após cessar o esforço externo. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS PROPRIEDADES MECÂNICAS Estudo do comportamento mecânico dos materiais, utilizando o Ensaio de Tração e o Diagrama Tensão x Deformação. Ensaio Tração (Corpo de Prova): Considerando uma barra cilíndrica de área S0 e comprimento L0 submetida a um esforço externo P (uniaxial) na direção de seu eixo principal. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS ESFORÇOS DE TRAÇÃO E COMPRESSÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS ELASTICIDADE Tensão e deformação são suficientemente pequenas. Tensão m ódulode elásticidade( E ) deform ação A constante de proporcionalidade entre deformação denomina-se LEI DE HOOKE. tensão e S.I: Newton/metro (N/m) Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS TIPOS DE ESFORÇOS EXTERNOS Tração; Compressão; Flexão; Torção; Flambagem; Cisalhamento. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS TIPOS DE ESFORÇOS EXTERNOS Tração: A força atuante tende a provocar um alongamento do elemento na direção da mesma. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS TIPOS DE ESFORÇOS EXTERNOS Compressão: A força atuante tende a provocar um alongamento do elemento na direção da mesma. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS TIPOS DE ESFORÇOS EXTERNOS Flexão: A força atuante provoca uma deformação do eixo perpendicular à mesma. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS TIPOS DE ESFORÇOS EXTERNOS Torção: Forças atuam em um plano perpendicular ao eixo e cada seção transversal tende a girar em relação às outras. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS TIPOS DE ESFORÇOS EXTERNOS Flambagem: É um esforço de compressão em uma barra de seção transversal pequena em relação ao comprimento, que tende a produzir uma curvatura na barra. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS TIPOS DE ESFORÇOS EXTERNOS Cisalhamento: Forças atuantes tendem a produzir um efeito de corte, isto é, um deslocamento linear entre seções transversais. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO • Diagrama resultante do ensaio de tração. Neste ensaio traciona-se um corpo de prova cilíndrico até que sofra fratura em uma máquina de tração com velocidade constante. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO • Os registros da carga atuante e das deformações são registrados automaticamente pela máquina em forma de gráfico de Carga x Deformação, do qual poderá ser retirado os valores de carga máxima, carga de ruptura e de escoamento, que divididos pela área do corpo de prova, fornecem os valores de Tensão Máxima ou Limite de resistência, Tensão de Ruptura ou Limite de Ruptura e de Tensão de Escoamento ou Limite de Escoamento. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS LEI DE HOOKE A relação entre a tensão e a deformação elástica de um material foi demonstrada em 1678 por Robert Hooke que ficou conhecida como lei de Hooke e podemos escrever: σ=ε.E Sendo a constante “ E “ conhecida como o módulo de elasticidade ou módulo de Young, representada pela tangente do ângulo formado pelo gráfico Tensão x Deformação no período elástico com o eixo da “deformação“. É uma propriedade de cada material. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS LEI DE HOOKE O módulo de elasticidade é a medida da rigidez do material. Quanto maior for o módulo, menor será a deformação elástica resultante da aplicação de uma tensão e mais rígido será o material. Esta propriedade é muito importante na seleção de materiais para fabricação de molas. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS LEI DE HOOKE (Alongamento) σ=F/A e σ=ε.E assim: F/A=ε.E mas F / A = Δl . E / l ε = Δl / l e teremos: o que nos dá: Δl = F . l / E . A Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS (MPa) Curva Tensão () x Deformação () LR f LE Deformação plástica uniforme Deformação plástica não uniforme =E Região elástica Região plástica Deformação plástica total LR LE E = Tensão limite de resistência (TS - tensile strength) = Tensão limite de escoamento (YS - yield strength) = Módulo de elasticidade Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS • Define-se alongamento como δ =LF - Lo • A deformação longitudinal pode ser dada em termos do alongamento: εxx=δ/L • Cada material possui propriedades que são determinadas experimentalmente. • Algumas propriedades estão no diagrama tensão deformação. (σxx x εxx). Caracterizando materiais dúcteis e frágeis. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Limite elástico: O ponto marcado no final da parte reta do gráfico da Figura representa o limite elástico. Se o ensaio for interrompido antes deste ponto e a força de tração for retirada, o corpo volta à sua forma original, como faz um elástico. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Limite de proporcionalidade A lei de Hooke só vale até um determinado valor de tensão, denominado limite de proporcionalidade, a partir do qual a deformação deixa de ser proporcional à carga aplicada. Na prática, considera-se que o limite de proporcionalidade e o limite de elasticidade são coincidentes. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Escoamento No início da fase plástica ocorre um fenômeno chamado escoamento. O escoamento caracteriza-se por uma deformação permanente do material sem que haja aumento de carga, mas com aumento da velocidade de deformação. Durante o escoamento a carga oscila entre valores muito próximos uns dos outros. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Limite de resistência Após o escoamento ocorre o encruamento, que é um endurecimento causado pela quebra dos grãos que compõem o material quando deformados a frio. O material resiste cada vez mais à tração externa, exigindo uma tensão cada vez maior para se deformar. Nessa fase, a tensão recomeça a subir, até atingir um valor máximo num ponto chamado de limite de resistência. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Limite de ruptura Continuando a tração, chega-se à ruptura do material, que ocorre num ponto chamado limite de ruptura. Note que a tensão no limite de ruptura é menor que no limite de resistência, devido à diminuição da área que ocorre no corpo de prova depois que se atinge a carga máxima. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Estricção É a redução percentual da área da seção transversal do corpo de prova na região onde vai se localizar a ruptura. A estricção determina a ductilidade do material. Quanto maior for a porcentagem de estricção, mais dúctil será o material. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS DIAGRAMA TENSÃO x DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS Diagrama Tensão - Deformação: Materiais Dúcteis Quando uma grande deformação plástica ocorre entre o limite de elasticidade e o ponto de fratura, dizemos que esse material é DUCTIL. Ex: Fio de ferro, deforma mas não quebra com facilidade. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS Diagrama Tensão - Deformação: Materiais Frágeis No entanto quando a fratura ocorre imediatamente após ultrapassar o limite de elasticidade, o material é (QUEBRADIÇO) FRÁGIL. Ex: Fio de aço do piano que rompe ao ultrapassar o limite elástico. Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS TENSÃO X DEFORMAÇÃO Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS EXERCÍCIO Calcule a deformação elástica que acontece em um tirante que está submetido a uma força de tração de 8 000 N. O tirante tem seção circular constante cujo diâmetro vale 6 mm, seu comprimento é 0,3 m e seu material tem módulo de elasticidade valendo 2,1 x 105 N / mm2. Δl = F . l / E.A Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS EXERCÍCIO Calcule a deformação elástica que acontece em um tirante que está submetido a uma força de tração de 8 000 N. O tirante tem seção circular constante cujo diâmetro vale 6 mm, seu comprimento é 0,3 m e seu material tem módulo de elasticidade valendo 2,1 x 105 N / mm2. Δl = F . l / E.A Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS EXERCÍCIO Uma peça de cobre de 305 mm é tracionada com uma tensão de 276 MPa. Se a deformação é considerada totalmente elástica, qual será o alongamento da peça? Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS EXERCÍCIO Uma peça de cobre de 305 mm é tracionada com uma tensão de 276 MPa. Se a deformação é considerada totalmente elástica, qual será o alongamento da peça? = E. = E.L/L0 L = L0/E E é obtido de uma tabela: Assim: ECu = 11.0 x 104 MPa L = 276 . 305/11.0 x 104 = 0.76 mm Aula 03: Propriedades Mecânicas dos Materiais PRINCÍPIOS DA CIÊNCIA E TECNOLOGIA DOS MATERIAIS Bom Estudo! Até a próxima aula! Aula 03: Propriedades Mecânicas dos Materiais