FISIOLOGIA CARDIOVASCULAR Robson A. S. Santos HEMODINÂMICA DA CIRCULAÇÃO PERIFÉRICA In 1627, William Harvey was able to confirm his observation that the blood circulates throughout the body, which he inferred from the structure of the venal valves. The following year, in Exercitatio Anatomica, he published these conclusions as well as a description of the heart as a mechanical pump In 1651, Harvey published the concept that all living things originate from eggs. Harvey believed that in principle organisms could be spontaneously generated, and that the process was one of the self-generation of a complicated machine. In 1661, Marcello Malpighi, in De pulmonibus, reported his observation of blood movement through the capillaries. He is also noted for his studied of the glands. In 1733, Hales measured blood pressure. In 1738, Daniel Bernoulli, in Hydrodynamica, asserted the principle that as the speed of a moving fluid increases, the pressure within the fluid decreases. In the process of determining this, he invented the 'molecular theory of gases,' now known as the 'kinetic theory of gases,' which introduced the notion that the gas particles were moving around rapidly and that a gas's temperature is a function of the average speed of its particles. PRINCIPAIS FUNÇÕES DO SISTEMA CIRCULATÓRIO Transporte e distribuição de substâncias essenciais para os tecidos. Remoção de produtos do metabolismo. Ajustar o suprimento de oxigênio e nutrientes em diferentes estados fisiológicos Regulação da temperatura corporal Comunicação humoral O CIRCUÍTO TÚBULOS BOMBA TÚBULOS DISTRIBUIDORES COLETORES VASOS DE TROCA Pressure Drop in the Vascular System ELASTIC TISSUE MUSCLE LARGE ARTERIES SMALL ARTERIES ARTERIOLES CAPILLARIES VENULES &VEINS LARGE SMALL INSIDE DIAMETER LARGE Distribuição do Sangue no Sistema Circulatorio 67% VEIAS SIST. /VENULAS 5% CAPILARES SISTÊMICOS 11% ARTÉRIAS SISTÊMICAS 5% VEIAS PULMONARES 3% ARTÉRIAS PULMONARES 4% CAPILARES PULMONARES 5% ÁTRIOS/VENTRICULOS Organização do Sistema Circulatório CIRCUITOS EM SÉRIE E EM PARALELO HEMODINÂMICA VELOCIDADE,FLUXO,PRESSÃO FLUXO LAMINAR LEI DE POISEUILLE RESISTÊNCIA(SERIE-PARALELO) FLUXO TURBILHONAR E NÚMERO DE REYNOLD PRESSÃO HIDROSTÁTICA 136cm 0 100 200 0 100 200 P=pxgxh 0 100mmHg P = Pressão mmHg p = densidade g = gravidade h = altura 136cm 0 100 200 0 0 100 200 CONCEITOS IMPORTANTES VELOCIDADE = DISTÂNCIA / TEMPO V = D / T FLUXO = VOLUME / TEMPO Q = VL / T VELOCIDADE -FLUXO- ÁREA V = Q / A ENERGIA DE UM FLUÍDO ESTÁTICO VS EM MOVIMENTO ENERGIA TOTAL= POTENTIAL + CINÉTICA ET = EP + EC FLUÍDO EM REPOUSO (HIDROSTÁTICA ) FLUÍDO EM MOVIMENTO (HYDROSTÁTICA + HIDRODINÂMICA) VELOCIDADE E PRESSÃO 0 0 100 200 ÁREA DE SECÇÃO TRANSVERSAL E VELOCIDADE A= 2cm2 Q=10ml/s a V= 5cm/s 10cm2 b 1cm/s V=Q/A 1cm2 c 10cm/s LEI DE POISEUILLE Fluxo em Tubos Cilíndricos Rigídos 4 (FLUXO)Q = DIFERENÇA DE PRESSÃO (Pi - Po) r 8ηL VISCOSIDADE COMPRIMENTO RAIO POISEUILLE’S LAW GOVERNING FLUID FLOW(Q) THROUGH CYLINDRIC TUBES RESISTÊNCIA AO FLUXO NO SISTEMA CARDIOVASCULAR CONCEITOS BÁSICOS Rt = R1 + R2 + R3…………. RESISTÊNCIAS EM SÉRIE 1/Rt = 1/R1 + 1/R2 + 1/R3…. RESISTÊNCIAS EM PARALELO R1 PARALELO SÉRIE R1 R2 R3 R2 R3 RESISTÊNCIA AO FLUXO NO SISTEMA CARDIOVASCULAR O QUE REALMENTE OCORRE NO SCV? BAIXA R ALTA R BAIXA R ARTÉRIAS ARTERÍOLAS CAPILARES Teorema de Bernoulli para um fluxo constante em um leito fechado. A soma da Energia de Pressão, Energia Cinética e Energia Potencial em um determinado ponto do leito vascular é igual a soma dessas Energias em um outro ponto do mesmo leito vascular. FLUXO LAMINAR VS FLUXO TURBILHONAR O Número de REYNOLD FLUXO LAMINAR Nr = pDv/ n laminar = 2000 ou inferior FLUXO TURBILHONAR p = D= v = n = densidade diâmetro velocidade viscosidade SISTEMA ARTERIAL COMPLACÊNCIA PRESSÃO ARTERIAL PRESSÃO DE PULSO MEDIDA DE PRESSÃO THE END THE CONCEPT OF THE HYDRAULIC FILTER SYSTOLE DIASTOLE COMPLIANT RIGID O2 CONSUMPTION (mlO2/100g/beat) EFFECTS OF PUMPING THROUGH A RIGID VS A COMPLIANT DUCT 0.1 PLASTIC TUBING NATIVE AORTA 0 5 STROKE VOLUME (ml) 15 % INCREASE IN VOLUME STATIC P-V RELATIONSHIP IN THE AORTA PRESSURE (mmHg) ELASTIC MODULUS OR ELASTANCE Ep = P / D/D ELASTANCE P V Ep= ELASTIC MODULUS D= MAX. CHANGE IN AORTIC DIAMETER. D= MEAN AORTIC DIAM. COMPLIANCE V P EP IS INVERSELY PROPORTIONAL TO C MEAN ARTERIAL PRESSURE (MAP) REMEMBER OHMS LAW? CARDIAC OUTPUT PERIPHERAL RESISTANCE INSTANTANEOUS INCREASE STEADY STATE INCREASE ARTERIAL PRESSURE (mmHg) EFFECT OF COMPLIANCE ON MAP Pa = Qh - Qr / Ca SMALL Ca LARGE Ca INCREASE CARDIAC OUTPUT TIME Qh- inflow (CO) Qr- outflow Ca- Compliance Pa- MAP PULSE PRESSURE STROKE VOLUME COMPLIANCE V4 VB VOLUME V3 V2 VA V1 P1 PA P2 P3 PB P4 PRESSURE PULSE PRESSURE EFFECTS OF: COMPLIANCE TOTAL PERIPHERAL RESISTANCE TPR COUPLING OF THE HEART AND BLOOD VESSELS VASCULAR FUNCTION CURVE HOW CARDIAC OUTPUT REGULATES CENTRAL VENOUS PRESSURE CARDIAC FUNCTION CURVE HOW CENTRAL VENOUS PRESSURE (PRELOAD) REGULATES CARDIAC OUTPUT VASCULAR FUNCTION CURVE CENTRAL VENOUR PRESSURE (mmHg) HOW CHANGES IN CARDIAC OUTPUT INDUCE CHANGES IN CENTRAL VENOUS PRESSURE? 8 Pmc B VASCULAR FUNCTION CURVE A -1 0 8 CARDIAC OUTPUT (L/min) CENTRAL VENOUR PRESSURE (mmHg) HOW BLOOD VOLUME AND VENOMOTOR TONE CHANGE THE VASCULAR FUNCTION CURVE? 8 VASCULAR FUNCTION CURVE -1 0 8 CARDIAC OUTPUT (L/min) CENTRAL VENOUR PRESSURE (mmHg) TOTAL PERIPHERAL RESISTANCE AND THE VASCULAR FUNCTION CURVE. 8 VASCULAR FUNCTION CURVE -1 0 8 CARDIAC OUTPUT (L/min) CARDIAC OUTPUT (L/min) THE CARDIAC FUNCTION CURVE CENTRAL VENOUS PRESSURE (mmHg) CARDIAC OUTPUT (L/min) EFFECTS OF SYMPATHETIC STIMULATION ON THE CARDIAC FUNCTION CURVE CENTRAL VENOUS PRESSURE (mmHg) HOW BLOOD VOLUME AND PERIPHERAL RESISTANCE CHANGE THE CARDIAC FUNCTION CURVE? CARDIAC OUTPUT (L/min) VOLUME CENTRAL VENOUS PRESSURE (mmHg) RESISTANCE CARDIAC OUTPUT (L/min) THE CARDIAC FUNCTION CURVE IN HEART FAILURE CENTRAL VENOUS PRESSURE (mmHg) HEART - BLOOD VESSELS COUPLING MORMAL FUNCTION PUMP VEINS ARTERIES Qh 5L/min Pa CPV=2mmHg=Pv 5L/min COMPLIANCES Cv = 19Ca Cv>>>>Ca Qr PERIPHERAL R= Pa - Pv / Qr R = 20mmHg/L/min MPA=102mmHg CARDIAC ARREST! INMEDIATE EFFECT FLOW STOPS HERE PUMP VEINS ARTERIES Qh 0L/min Pa CPV=2mmHg=Pv 5L/min FLOW CONTINUES HRE TRANSFER ART-->VEINS Qr R = 20mmHg/L/min Qr= Pa - Pv/20 Qr CONTINUES AS LONG AS A PRESSURE GRADIENT IS SUSTAINED CARDIAC ARREST STEADY STATE FLOW STOPPED PUMP VEINS ARTERIES Qh 0L/min Pa = 7mmHg Pv = 7mmHg = MEAN CIRCULATORY PRESSURE OR Pmc 95mmHg 5mmHg FLOW STOPPED 0L/min Qr Qr = 0 ( NO Pa - Pv DIFFERENCE) WE START PUMPING! INMEDIATE EFFECT FLOW STARTS SOME VENOUS BLOOD PUMP VEINS ARTERIES Qh 1L/min Pa = 7mmHg Pv = 7mmHg NO FLOW HERE YET 0L/min Qr FLOW RETURNS AT Qr AT THE NEW Qh PUMP VEINS ARTERIES Qh 1L/min Pa = 26mmHg Pv = 6mmHg FLOW STARTS 1L/min Qr R = 20mmHg Qr = Pa - Pv / 20 = 1L/min