Experiência Medidores de vazão Tipos de medidores ensaidos: venturi e placa de orifício. A0 A2 A1 v1 v2 Q 1 0 2 3 O que será que há de comum entre os medidores anteriores O que existe em comum? Em ambos os medidores tem-se uma redução de área, no venturi tem-se a área máxima A1, que é igual a área da seção 1 e na placa de orifício tem-se a área do próprio orifício A0. Portanto o comum é que em ambos se tem uma contração de área, no venturi a área mínima corresponde a área da garganta e na placa de orifício corresponde a área contraída (A2). OK! Mas o que será que esta contração de área vai originar? Vai originar um aumento da carga cinética e em consequência uma diminuição da carga de pressão! Equacionamento dos medidores • Considera-se fluido ideal e aplica-se a equação de Bernoulli de 1 a 2: H1 H2 2 2 p1 v1 p2 v2 Z1 Z2 2g 2g Como os medidores foram instalados em um plano horizontal tem-se que a carga potencial (Z) é constante, portanto: p1 p2 2 v2 2 v1 2 v2 2 v1 2g p1 p2 2g Pelo fato de v2>v1 pode-se concluir que p1>p2 o que comprova que existe um aumento de carga cinética e em consequência uma redução da carga de pressão Isto também pode ser comprovado na própria bancada Pela equação da continuidade aplicada a um escoamento incompressível e em regime permanente tem-se: v1 A1 v2 A2 Importante: No caso do venturi A2 = Agarganta = Ad que é a área do diâmetro menor e que é facilmente determinada. Porém no caso da placa de orifício esta área é muito difícil de se determinar e por este motivo se recorre a definição do coeficiente de contração (CC) Portanto: Acontraída A2 CC Aorifício Ao A2 CC Ao No caso do venturi ele é projetado para CC = 1,0, portanto: A2 = Agarganta Portanto: v1 A1 CC v2 Ao 2 Ao Do v1 v2 CC v2 CC 2 A1 D1 Substituindo na equaçãoanterior : 4 p1 p2 2 2 Do v2 1 CC 2g D1 Através de uma manômetro diferencial em forma de U instalado entre as seções 1 e 2, tem-se: p1 p2 h ( m ) v2 m 2gh 2 1 CC Do D1 4 A velocidade v2 calculada anteriormente é teórica, isto porque se considerou um fluido ideal, ou seja, um fluido que escoa sem ter perda de carga. Portanto pode-se determinar a vazão teórica e com a definição de coeficiente de velocidade a vazão real: Qteórica v2 A2 CC Ao v2 Coeficiente de velocidade Cv v2 v2 real teórico m 2gh Qreal CC Ao Cv 4 2 Do 1 CC D1 Pelo conceito de coeficiente de vazão ou descarga, para a placa de orifício tem-se: Cd CC Cv m 2gh Qreal Cd Ao 4 2 Do 1 CC D1 Ou ainda: K Cd 2 Do 1 CC D1 4 m Qreal k A0 2gh Para o Venturi Cd CC Cv m 2gh Qreal Cd AG 4 DG 1 D1 obte r a curva de calibração Através da experiência deseja-se 27/04/2005 - v2 re s olve r e xe rcício obte r a curva caracte rís tica