Física no Vestibular 2013- Prof. Alessandro Freitas PROF. Alessandro FREITAS MODELO ATÔMICO DE BOHR E EFEITO COMPTON 1. POSTULADOS DE BOHR Para interpretar o espectro do átomo de hidrogênio, Bohr desenvolveu uma teoria baseada em três postulados: 1º) O elétron, no seu movimento natural em torno do núcleo, não emite energia, mantendo-se sempre na mesma órbita, numa dada temperatura. 3. ENERGIA (∆ ∆E) DO FÓTON EMITIDO POR UM ELÉTRON EXCITADO NUMA TRANSIÇÃO. É dada pela diferença entre a energia inicial do estado excitado (Ei) e a energia final do estado natural (Ef). Ei Ef 2º) O elétron recebe energia e “salta” para uma camada mais externa; ao voltar para sua camada natural, emite a energia que absorveu na forma de onda eletromagnética. M L K N Energia O P e− − e núcleo núcleo − e− fóton ∆E Q ∆E = E i - E f Transição Ei Energia inicial Ef Energia final Lembrando que: ∆E = h . f f Freqüência do fóton emitido na transição. − h Constante de Planck (h = 6,6 . 10 34 J.s) Onda Eletromagnética (fóton) APLICAÇÕES 3º) A energia do fóton ativador é máxima para o elétron do nível K, e mínima para o elétron do nível Q, pois, a força elétrica de atração entre o núcleo e o elétron é inversamente proporcional ao quadrado da distância que os separa. n=6 n=4 n=5 n = 3 n=2 P n=1 O N M Emáx r0 núcleo Q L K Emín − − e e 01. A figura dada é um esquema dos quatro primeiros níveis de energia do átomo de hidrogênio. Dados: c = 3,0 . 108 m/s − h = 6,6 . 10 34 J . s − 1 eV = 1,6 . 10 19 J 4 −0,85 eV 3 −1,51 eV 2 −3,39 eV 1 −13,6 eV rn Calcule a freqüência do fóton emitido na transição indicada do nível 3 para o nível 1. 2. NÍVEIS DE ENERGIA DO HIDROGÊNIO O raio orbital do elétron no enésimo nível (rn) é dado por: r n = n 2 x r0 n Número quântico principal. r0 Raio do estado fundamental (r0 = 0,53 Å) − Lembrete: 1 Å = 10 10 m Ex: r3 = ? n=3 rn = n2 x r0 r3 = 32 x 0,53 ⇒ r3 = 4,77 Å A energia do enésimo nível do hidrogênio (En) é dada por: n n=1 núcleo K ..... Eo En = E0 n2 En , E0 Energia do estado fundamental (Eo = −13,6 eV) 02. Um elétron salta da órbita de raio (n = 2) para a órbita de raio (n = 1). Determine: a) O raio orbital, em angstron, para n = 2; b) A energia do elétron, em eletronvolt, para n= 2. Dado: Constante de Planck: h = 6,6 . 10−34 J . s 03. O modelo de Bohr para o átomo de hidrogênio (um elétron gira em torno de um próton) pode ser grosseiramente comparado com uma pedra amarrada a um fio, girando em torno da mão de uma pessoa. Nessa analogia o elétron corresponde à pedra, o próton corresponde à mão e o raio da órbita do elétron corresponde ao comprimento do fio. Comparando as duas situações, analise as afirmativas abaixo classificando-as como verdadeiras ou falsas. I. O comprimento do fio pode variar continuamente, mas o raio da órbita do elétron só pode variar discretamente. II. A energia da pedra é quantizada mas a do elétron não o é. III. Ao mudar de órbita, o elétron emite ou absorve radiação eletromagnética, mas a pedra não. − Lembrete: 1 eV = 1,6 . 10−19 J TOK: A energia do elétron é quantizada, pois só pode existir como múltipla de uma quantidade mínima definida. Marque a alternativa que contém somente afirmação(ões) verdadeira(s): a) I, II, III Física no Vestibular 2013- Prof. Alessandro Freitas b) c) d) e) I, II II, III I, III II 04. Considere o modelo atômico de Bohr para um átomo de hidrogênio e a transição que um elétron, no estado excitado, faz da órbita, cujo o número quântico principal é n = 4, para o estado fundamental. Sendo a energia no estado fundamental E0 = −13,60 eV e o raio de Bohr, do estado fundamental igual a r0 = 0,53 angstron, calcule a energia, em eletronvolt, do fóton emitido nessa transição e o raio da órbita do elétron, em angstron, no estado excitado. EFEITO COMPTON 1. NOÇÕES DE ESPALHAMENTOS DE RAIOS X Em 1912, Laue sugeriu que, como os comprimentos de onda dos raios X eram da mesma ordem de grandeza do espaçamento entre os átomos de um cristal, esse arranjo regular de átomos num cristal poderia servir como uma rede tridimensional para a difração dos raios X. Esboço esquemático da experiência de Laue: Raios X Placa fotográfica com manchas de Laue ( espalhamento de raios X ) Cristal 2. EFEITO COMPTON Compton sugeriu que o espalhamento fosse uma conseqüência da "colisão" entre um fóton de raio X (de energia E1 = h . f1) e um elétron livre, onde o elétron no recuo absorveria parte da energia total, e o fóton desviado teria, portanto, energia e freqüência menores (f2 < f1 ⇒ λ2 > λ1). Cristal m Fóton λ1 f2 < f1 ⇒ λ2 > λ1 - - elétron θ λ2 Fóton θ ângulo de espalhamento m massa do elétron λ1 comprimento de onda do fóton antes do espalhamento λ2 comprimento de onda do fóton depois do espalhamento EFEITO COMPTON: "É o espalhamento de fótons de raios X devido à colisão com elétrons livres".