11º MatViseu Conceitos de geometria…. Francisco Morgado 11º MatViseu • Equação da recta e do plano… culinária • Transição entre objectos, animações • Bolzano suas implicações e suas limitações • Determinação de zeros, porque falham alguns sistemas?, em pontos isolados, em componentes sem variação de sinal!!!!, …uma boa investigação!!!! • Funções … – Determinar o D’f (CDf), aritmética intervalar,etc. – Reunião/intersecção de objectos • Números complexos, aplicados na parte gráfica • Várias dimensões…. Equação da recta B A Recta X = A + t*(B-A) t Segmento de recta X = A + t*(B-A); t[0,1] X = (1-t)*A + t*B; t[0,1] X = (1-t^2)*A + t^2*B; t[0,1] X = (1-t^0.5)*A + t^0.5*B; t[0,1] 1 1 Equação do plano W(A,B,C) Importância!? v P u Ax+By+Cz+D=0 Equação da recta Qual a equação mais importante, para a programação ? •Vectorial •Paramétrica •Cartesiana •Reduzida Como posso saber quais os pontos que estão do mesmo lado? Aplicação (culinária) - Como fazer Arroz Doce !? ArrozDoce(t) = (1-t)*Arroz + t*Doce; t[0,1] Se t 1 => ArrozDoce(s,t) = Arroz + s*Leite + t*Açucar; s,t[0,1] Leite Arroz Açucar Leite Arroz Açucar Leite Arroz Açucar Aplicação (“Estudo”, cores, curvas bezier,…) - Aplicação ao estudo !? VidaEstudante(t) = (1-t)*Estudo + t*Diversão; t[0,1] Se t 1 ???; Se t = 0 (demasiado estudo) VidaEstudante(s,t) = Alimentação + s*Estudo + t*Diversão; - Aplicação nas cores !? - Mais dimensões!?, como representar ? MisturaCor(t) = (1-t)*Verde + t*Azul; t[0,1] Cor(s,t,u) = s*Vermelho+t*Verde + u*Azul; - Aplicação nas curvas, … na renault (inicialmente “Bezier”, 1962)… http://pt.wikipedia.org/wiki/Curva_de_B%C3%A9zier Programa de Bezier…. Aplicação (transição entre objectos) Objecto(t) = (1-t)*Obj_Inicial + t*Obj_Final; t[0,1] t=0 t=0.2 t=0.3 t=0.4 t=0.75 t=1 Aplicação (transição entre objectos) E se tivermos Objecto(t) = (1-t^2)*Obj_Inicial + t^2*Obj_Final; t[0,1] Qual o efeito, na animação? (em ter (t), (t^2), t^0.5) t=0 t=0.2 t=0.3 t=0.4 t=0.75 t=1 Programa Deformação…. Teorema de Bolzano… f(B) Zeros com variação de sinal A B X f(A) Normalmente os softwares de visualização utilizam o Corolário T. Bolzano, para determinar os zeros de uma função!!!, f(A) f(B) A B Mas nas situações onde não existe variação de sinal!!!!! Teorema de Bolzano… Zeros com e sem variação de sinal F(t)=f o r(t) + + [0,1] Componente com variação de sinal de f Componente sem variação de sinal de f (y-x).((x-2.2)2+(y-2.2)2).((x+2.8)2+(y-2.2)2-0.3)2=0 Trabalhando com outras forças!!!! Funções… Como poderemos contribuir para melhorar os sistemas gráficos? F(t)=f o r(t) - Não basear o cálculo dos zeros na variação de sinal - Aritmética intervalar ? - Aritmética Afim ? - D’f como determina? Y a b X … “Se é verdade que as funções com derivada são as mais simples, as mais fáceis de tratar, também é verdade que elas são as excepções, e não a regra. Ou, se se preferir uma linguagem geométrica, as curvas que não possuem tangente são a regra, enquanto as curvas regulares, como a circunferência, são casos, apesar de interessantes, muito particulares.” Repare-se nesta fotografia: onde os ovos com cascas lisas são os mais raros! No entanto são os mais conhecidos pela sociedade em geral! http://www.estv.ipv.pt/paginaspessoais/fmo rgado/Implicitas/ImplicitasModelacao.htm Cálculo com intervalos… Aritmética intervalar: foi introduzida por R. Moore em 1966 no contexto de investigação matemática, sendo aplicada na representação de curvas, determinação de zeros,… A aritmética intervalar consiste num conjunto de operações simples sobre intervalos, nomeadamente: Adição: [a,b]+[c,d] = [a+c,b+d] Subtração: [a,b]-[c,d] = [a-d,b-c] Produto: [a,b]*[c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)] Divisão: [a,b]/[c,d] = [a,b]*[1/d,1/c] - Considerar a função f(x,y) = x*y+y <=> f(x,y) = y(x+1) Subdivisão regular… “Dividir para conquistar” Desafio, encontrar uma função que dê a: Reunião de duas ou mais funções Intersecção de duas ou mais funções Outro tipo de partição… • “Se A,B C então existe grande probabilidade de existirem mais pontos pontos da curva (C ) entre A e B.” Ω Ω (a) Subespaço inicial e a árvore l2 l4 l1 l6 l1 (d) Terceira partição l5 Ω+ l1 l4 l1 Ω l7 Ω- Ω+ Ω- l1 l1 l3 l3 l5 l6 l3 (b) Primeira partição l2 l2 (c) Segunda partição l2 l3 l7 Exemplos (2x2+y2+z2-1)3-(1/10)x2z3-y2z3 = 0 Números complexos… Uma possível aplicação dos complexos, pode ser nas transformações geométricas…. Usadas nos jogos de computadores, onde o utilizador têm de rodar, ampliar, movimentar-se Z = ρcis(φ) Zα = 1cis(α) Zβ = 1cis(β) Z’ = Z*Zα*Zβ = ρcis(φ + α + β) ; Rotação Z = ρcis(φ) Conjugado(Z) = ρcis(-φ) Simetria XX Z = ρcis(φ) Z^n = Z; Quantas rotações preciso de fazer para voltar ao estado inicial ? Alguns desafios Encontrar uma “teoria” que permita determinar todos os zeros de uma função, sem usar “pré-requisitos”. Representar várias dimensões…(x,y,z,estado emocional, altura pessoa, etc) Propor um modelo de reformas que seja sustentável…, talvez usar eq. vectorial da recta???