Tópico 8. Aula Prática: Sistema Massa-Mola 1. INTRODUÇÃO No experimento anterior foi verificado, teoricamente e experimentalmente, que o período de oscilação de um pêndulo simples é determinado pelo seu comprimento. Neste experimento será verificado que em um sistema massa-mola, o período de oscilação depende da massa do corpo suspenso. 2. OBJETIVOS DA EXPERIÊNCIA Os objetivos do experimento são: i) verificar se um corpo elástico (mola) obedece à Lei de Hooke; ii) calcular a constante elástica da mola, k, através de um experimento simples com um sistema massa-mola e com o auxílio de um papel milimetrado (ou gráfico linear construído usando o programa Excel). 3. TEORIA O oscilador massa-mola é constituído por um corpo de massa m ligado a uma mola de constante elástica k, presa a uma parede (verticalmente ou horizontalmente). Cada mola tem a sua constante elástica, que depende do material de que é feita e da sua geometria. O corpo executa o MHS sobre uma superfície horizontal sem atrito. Veja a Figura 1. Quando a mola é comprimida (ou esticada) e liberada, o corpo passa a executar um movimento unidimensional de vai-e-vem. O movimento é regido pela Lei de Hooke, que relaciona a força restauradora com o deslocamento da massa: onde F é a força elástica em Newtons, x é o deslocamento em metros e k é a constante elástica da mola. Figura 1 - A esfera suspensa à mola efetua um MHS (desprezando-se a ação do ar). São mostradas as 3 fases do movimento: em (a), (c) e (e) as máximas elongações, e em (b) e (d) o ponto de equilíbrio. Na aula anterior vimos que a aceleração no MHS é dada por: ( ) Pelo princípio fundamental da dinâmica, a força elástica ser igual a: Assim: deve ( ) Eliminando x em ambos os lados e isolando T, √ Portanto, em um sistema massa-mola, o período depende da massa presa à mola e da constante elástica da mola k. 4. PARTE EXPERIMENTAL 4.1. MATERIAIS UTILIZADOS Para a realização deste experimento, serão utilizados os seguintes materiais: 1. Mola de metal com constante elástica desconhecida; 2. Haste para fixação da mola; 3. Suporte para massas; 4. Pesos graduados, em gramas; 5. Cronômetro; 6. Régua milimetrada. 4.2. PROCEDIMENTO EXPERIMENTAL Neste experimento trabalharemos com um sistema massa-mola na vertical, conforme ilustrado na Figura 2. Esta figura mostra três momentos durante o movimento oscilatório. Em todos esses momentos há sempre 2 forças atuando sobre a massa: a força peso (P = m.g) e a força restauradora F. Vamos analisar brevemente o que acontece na fase (b): se o sistema não estivesse oscilando, seria essa a sua posição de repouso. Em oscilação, esse é o ponto médio em torno do qual o movimento acontece. Nesta posição, há um equilíbrio entre F e P, que significa que a força resultante tem que ser zero: FR = P + F = 0. Em (a) teremos F > P, ou seja, a força elástica ganha da força peso: a força resultante FR aponta para cima. Em (c) a situação é oposta: P > F, a força peso ganha da força elástica, e a resultante aponta para baixo. Figura 2. Esquema do experimento massa-mola. A Figura mostra 3 fases do movimento: em (a) e (c) são mostradas as máximas elongações, e em (b) o ponto de equilíbrio. Parte 1 (Sistema Estático): 1. Pendure uma mola flexível (que se alongue facilmente) num suporte vertical. Pendure nessa mola o suporte para massas (esta montagem é também conhecida como balança de Joly). Meça e anote o comprimento da mola L0 (cm). 2. Escolha cinco cargas de pesos diferentes conforme sugerido na Tabela 1. Coloque as cargas uma seguida da outra. Para cada carga colocada, meça o comprimento da mola L e o correspondente alongamento x em cm. Com esses valores preencha a Tabela 1. 3. Coloque esses valores num plano coordenado e construa o gráfico de F em função de x. Verifique se a mola obedece à Lei de Hooke (se a função F = k.x é de fato linear). Se sim, determine a constante elástica da mola. Tabela 1. Valores da massa (g) e respectivo alongamento da mola: x = L – L0 (cm). Massa (g) Alongamento da mola: Peso da massa total x = L – L0 (cm) colocada: F (dyna) 10 20 30 40 50 1 dyna = 1 g.cm/s2 Parte 2 (Sistema em Movimento): 1. Coloque inicialmente uma ficha de 10 gramas no suporte para massas preso à mola. Anote a massa na primeira coluna da Tabela 2. Coloque a mola para oscilar e meça com um cronômetro o tempo para que se completem 10 oscilações. Faça o mesmo procedimento mais duas vezes, anotando os valores obtidos na coluna 4. Em resumo: você deverá medir o tempo de oscilação do sistema massa-mola em 3 séries de 10 oscilações. Tabela 2. Dados para a 2ª parte do experimento. Massa Número Número ̅ (s) (g) da de Tempo (s) medida oscilações t (s) 80 1 10 2 10 3 1 20 2 10 3 1 30 2 10 3 1 40 2 10 3 1 50 2 10 3 ̅ (s) (s) ̅ 2 (s2) 2. Adicione mais uma ficha de 10g ao suporte e repita o passo acima. Vá aumentando a massa de 10 em 10 gramas e repetindo o experimento, até chegar em 50g. Cuidado para não colocar carga em excesso, isso pode Danificar a mola e invalidar o experimento. 3. Para cada valor de massa, calcule o tempo e o período médio em segundos. Anote esses valores nas colunas 5 e 6 da Tabela 2. 4. Para cada valor de massa da tabela, calcule o desvio padrão dos períodos medidos, , e escreva-os na coluna 7. 5. Calcule os quadrados dos períodos (T2, coluna 7 da Tabela 2) e faça a propagação de erros para obter . 6. Faça um gráfico em papel milimetrado (ou Excel) colocando m no eixo x e T2 no eixo y. Marque os pontos obtidos no experimento. Considere os valores de no gráfico (barra de erros). 7. Determine a constante elástica da mola através do coeficiente angular da reta obtida e do uso da equação (5) - vide procedimento experimental utilizado no experimento anterior (Pêndulo simples). Questões: a. Com base no experimento, o que pode ser dito sobre a relação entre a massa e o período do sistema massa-mola? b. Compare os valores da constante elástica obtidos para cada experimento.