UNIVERSIDADE FEDERAL DE LAVRAS/MG DEPARTAMENTO DE CIÊNCIAS EXATAS/DEX PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS AGRÁRIAS Curso Básico de Estatística Experimental Uso do SISVAR na Análise de Experimentos Roberta Bessa Veloso Silva Doutoranda em Estatística e Experimentação Agropecuária Patos de Minas, MG Agosto de 2007 ÍNDICE Página 1. INTRODUÇÃO ................................................................................................................................... 01 2. CONCEITOS BÁSICOS...................................................................................................................... 01 2.1 PRINCÍPIOS BÁSICOS DA EXPERIMENTAÇÃO......................................................................02 2.1.1 REPETIÇÃO.................................................................................................................................02 2.1.2 CASUALIZAÇÃO........................................................................................................................03 2.1.3 CONTROLE LOCAL...................................................................................................................03 3. PRESSUPOSIÇÕES DA ANÁLISE DE VARIÂNCIA.......................................................................03 3.1ADITIVIDADE.................................................................................................................................03 3.2 INDEPENDÊNCIA..........................................................................................................................03 3.3 NORMALIDADE............................................................................................................................03 3.4 HOMOGENEIDADE DE VARIÂNCIAS.......................................................................................03 4. ARQUIVO DE DADOS ...................................................................................................................... 04 5. DELINEAMENTO INTEIRAMENTE CASUALIZADO .................................................................. 04 6. ALGUMAS CONSIDERAÇÕES SOBRE A ESCOLHA DO TESTE ADEQUADO........................13 6.1 PRINCIPAIS TESTES DE COMPARAÇÃO DE MÉDIAS...........................................................14 7. DELINEAMENTO EM BLOCOS CASUALIZADOS ..................................... ..................................16 8. DELINEAMENTO EM QUADRADO LATINO.................................................................................24 9. REGRESSÃO NA ANÁLISE DE VARIÂNCIA.................................................................................29 10. EXPERIMENTOS FATORIAIS........................................................................................................ 36 11. EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS.................................................................... 45 12. REFERÊNCIAS BIBLIOGRÁFICAS ............................................................................................... 58 13. CONTATOS....................................................................................................................................... 59 1. INTRODUÇÃO Nas últimas décadas, os cálculos estatísticos foram muito facilitados pelo uso de aplicativos computacionais. Isso permitiu que métodos complexos e demorados fossem rotineiramente aplicados. Entretanto, muitos pesquisadores substituíram esses aplicativos por uma consulta a um profissional da área de estatística. O que se observa hoje são análises de experimentos mal realizadas e resultados erroneamente interpretados. Tal fato justifica a participação de um técnico com conhecimento em técnicas experimentais e métodos quantitativos em todas as fases do experimento, desde o planejamento, condução, coleta de dados, até a fase de análise dos dados e interpretação dos resultados. Diversos pacotes estatísticos para análise de experimentos estão disponíveis, podendo-se citar programas como o SAS – Statistical Analysis System – (Sas Institute Inc., 2000), que é, em geral, um dos programas mais utilizados em todo o mundo para análise de dados da área agronômica, biológica e social, o STATGRAPHICS – Statistical Graphics System – (Statgraphics, 1999), o STATISTICA for Windows (Statistica, 2002), dentre outros. Podem-se encontrar programas nacionais em que o leitor poderá ter acesso com maior facilidade, dentre eles: o SANEST – Sistema de Análise Estatística para Microcomputadores – da Universidade Federal de Pelotas (Zonta & Machado, 1991); o SISVAR – Sistema de Análise de Variância – da Universidade Federal de Lavras (Ferreira, 2000a); o SAEG – Sistema para Análises Estatísticas (Ribeiro Júnior, 2001) e o GENES – Aplicativo computacional em Genética e Estatística (Cruz, 2001), ambos da Universidade Federal de Viçosa. Este curso tem por objetivo apresentar alguns sistemas computacionais com aplicações diversas na análise estatística de experimentos com destaque ao SISVAR, pela facilidade de acesso e utilização. 2. CONCEITOS BÁSICOS Esse item tem por objetivo apresentar alguns conceitos básicos necessários a uma eficiente utilização dos programas estatísticos a serem vistos no curso. Maiores detalhes poder ser vistos em Banzatto & Kronka (1995), Ferreira (2000b), Pimentel Gomes (2000) e Pimentel Gomes e Garcia (2002). a) Experimentação: é uma atividade que tem por objetivo estudar os experimentos, ou seja, seu planejamento, condução, coleta e análise dos dados e interpretação dos resultados. 1 b) Experimentador: é o indivíduo responsável pela condução dos experimentos com a maior precisão possível. c) Estatística: Conjunto de técnicas que se ocupam com a coleta, organização, análise e interpretação de dados, tendo um modelo por referência. d) Estatístico: é o indivíduo especialista em estatística experimental. Contribui com os pesquisadores na tomada de decisão nas diversas fases dos experimentos. e) Experimento: é um trabalho planejado, que segue determinados princípios básicos, com o objetivo de se fazer comparações dos efeitos dos tratamentos. f) Tratamento: é a condição imposta à parcela experimental, cujo efeito deseja-se medir ou comparar em um experimento. g) Parcela experimental: é a menor unidade de um experimento em que se aplica o tratamento ou a combinação deste. Denomina-se de parcela útil a unidade na qual os tratamento são avaliados e onde são coletadas as variáveis respostas. h) Bordadura: é uma área de proteção utilizada para evitar que uma parcela seja afetada pelo tratamento da parcela vizinha. i) Delineamento experimental: é a forma de distribuição dos tratamentos na área experimental. Os principais delineamentos experimentais utilizados são: inteiramente casualizado, blocos casualizados e quadrado latino. j) Esquemas experimentais: são formas de arranjos dos tratamentos nos experimentos em que são estudados, ao mesmo tempo, os efeitos de dois ou mais tipos de tratamentos ou fatores. Os principais esquemas experimentais são fatorial, parcela subdividida e experimentos em faixa. k) Análise de variância: é uma técnica que permite decompor a variação total observada nos dados experimentais em causas conhecidas e não conhecidas. l) Erro experimental: variação devida ao efeito dos fatores não controlados ou que ocorre ao acaso, de forma aleatória. Ramalho et al. (2000) definem o erro experimental como as variações aleatórias entre parcelas que receberam o mesmo tratamento. 2.1 PRINCÍPIOS BÁSICOS DA EXPERIMENTAÇÃO São princípios que devem ser atendidos para que um experimento forneça dados que possam ser analisados através de procedimentos estatísticos. Os princípios básicos da experimentação são: repetição, casualização e controle local. 2.1.1 Repetição: consiste no número de vezes em que o tratamento aparece no experimento. Tem por finalidade permitir a obtenção da estimativa do erro 2 experimental, aumentar a precisão das estimativas e aumentar o poder dos testes estatísticos. 2.1.2 Casualização: consiste em propiciar aos tratamentos a mesma probabilidade de serem designados a qualquer uma das parcelas experimentais. Têm por finalidade dar validade às estimativas calculadas com os dados observados e aos testes de hipóteses realizados. 2.1.3 Controle local: sua função é diminuir o erro experimental. É usado quando uma área experimental é heterogênea. Tem por finalidade dividir uma área heterogênea em áreas menores e homogêneas, chamadas de blocos. 3. PRESSUPOSIÇÕES DA ANÁLISE DE VARIÂNCIA Para a realização de uma análise de variância devem-se aceitar algumas pressuposições básicas: 3.1 Aditividade: os efeitos de tratamento e erro devem ser aditivos; 3.2 Independência: os erros devem ser independentes, ou seja, a probabilidade de que o erro de uma observação qualquer tenha um determinado valor não deve depender dos valores dos outros erros; 3.3 Normalidade: os erros devem ser normalmente distribuídos; 3.4 Homogeneidade: os erros devem apresentar variâncias comuns (homogeneidade=homocedasticidade de variâncias). Estas pressuposições visam facilitar a interpretação dos resultados e testar a significância nos testes de hipóteses. Na prática, o que pode ocorrer é a validade aproximada e não exata de alguma (s) dessas pressuposições; nesse caso, o pesquisador não perderia tanto com a aproximação visto que os testes aplicados na análise de variância são robustos quanto a isso. A homogeneidade de variância é que, na maioria das vezes, é necessária pois, caso não seja verificada, o teste F e de comparações múltiplas poderão ser alterados. Quanto alguma (s) das pressuposições da análise não se verificam (m), existem alternativas que podem ser usadas, entre elas a transformação de dados com a posterior análise de variância destes dados transformados ou a utilização dos recursos da estatística não paramétrica. Feitas as considerações iniciais necessárias para o entendimento dos próximos assuntos, iniciaremos agora os conceitos e exemplos dos delineamentos mais usuais. 3 4. ARQUIVO DE DADOS O Microsoft Excel, além de ser uma planilha eletrônica que possui poderosos recursos, apresenta alta compatibilidade com os principais programas estatísticos. Além disso, tem a grande vantagem de facilidade de acesso e de interação com o usuário. Independente de se utilizar o SAS ou o SISVAR, as planilhas com os dados dos experimentos a serem analisados, serão feitas utilizando-se o Excel. Na Tabela 3 está apresentado um exemplo de planilha criada utilizando-se o Excel. Observe que nas colunas são especificados os tratamentos, blocos e variáveis a serem analisadas, e nas linhas estão às observações referentes às parcelas experimentais. Devemos utilizar sempre o ponto (.) ao invés da vírgula (,) como separador decimal. Se o tratamento for qualitativo devemos codificá-los por meio das letras (A, B, C,...), caso seja quantitativo, devemos informar as quantidades estudadas. 5. DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) No delineamento inteiramente casualizado é necessário a completa homogeneidade das condições ambientais e do material experimental (como por exemplo, quanto à fertilidade do solo, distribuição uniforme de água, etc) sendo os tratamentos distribuídos nas parcelas de forma inteiramente casual (aleatória). O DIC possui apenas os princípios da casualização e da repetição, não possuindo controle local e, portanto, as repetições não são organizadas em blocos. VANTAGENS • Possui grande flexibilidade quanto ao número de tratamentos e repetições, sendo dependente, entretanto, da quantidade de material e área experimental disponíveis; • Pode-se ter DIC não balanceado, ou seja, com números de repetições diferentes entre tratamentos, o que leva a grandes alterações na análise de variância; mas os testes de comparações múltiplas passam a ser aproximados e não mais exatos. O ideal é que os tratamentos sejam igualmente repetidos; • Considerando o mesmo número de parcelas e tratamentos avaliados, é o delineamento que possibilita o maior grau de liberdade do erro. 4 DESVANTAGEM • Exige homogeneidade das condições experimentais. Se as condições não forem uniformes, como se esperava antes da instalação do experimento, toda variação (exceto a devida a tratamentos) irá para o erro, aumentando sua estimativa e reduzindo, portanto, a precisão do experimento. O modelo estatístico para o delineamento inteiramente casualizado é dado por: yij = µ + α i + eij em que: yij µ αi ε ij é o valor observado na parcela experimental que recebeu o i -ésimo tratamento na j -ésima repetição ( j = 1,..., r ) ; representa uma constante geral associada e esta variável aleatória é o efeito do tratamento i ( i = 1, 2,..., t ) ; é o erro experimental associado a observação yij , suposto ter distribuição normal com média zero e variância comum. Na Tabela 1 é apresentado o esquema da análise de variância para os experimentos instalados no delineamento inteiramente casualizado. Tabela 1. Esquema da análise de variância para experimentos instalados no delineamento inteiramente casualizado. FV GL SQ QM F Tratamento SQ Trat QM Trat QM Trat / QM Erro t −1 t r − 1 Erro ( ) SQ Erro QM Erro Total SQ Total tr − 1 Um exemplo de um experimento em que serão avaliadas 5 tratamentos (T1, T2, T3, T4 e T5), instalado no delineamento inteiramente casualizado, com 4 repetições (R1, R2, R3 e R4), é apresentado a seguir: T4 R3 T1 R2 T2 R3 T4 R1 T3 R2 T1 R3 T2 R4 T5 R1 T5 R3 T2 R1 T4 R2 T3 R1 T3 R4 T3 R3 T4 R4 T5 R4 T1 R4 T2 R2 T5 R2 T1 R1 5 Observa-se que não há qualquer restrição à casualização, podendo um determinado tratamento ocupar qualquer posição na área experimental. Para exemplificar, será utilizado parte dos dados obtidos por uma empresa que avalia famílias de Eucaliptos camaldulensis. Os dados são referentes ao volume de madeira por árvore, em m3x104. São apresentados os dados de 5 famílias avaliadas em um delineamento inteiramente casualizado (DIC) com 6 repetições. Tabela 2. Volume de madeira por árvore, em m3x104, de 5 famílias de Eucaliptos camaldulensis. Repetições Famílias I II III IV V VI A 212 206 224 289 324 219 B 108 194 163 111 236 146 C 63 77 100 99 68 76 D 175 239 100 104 256 267 E 133 106 185 136 147 210 Delineamento Inteiramente Casualizado Balanceado (SISVAR) Sejam os dados apresentados na Tabela 2 referentes a um experimento instalado no delineamento inteiramente casualizado com 5 tratamentos e 6 repetições, em que foi avaliado o efeito das famílias de Eucaliptos camaldulensis sobre o volume de madeira, em m3x104. Serão listados abaixo os procedimentos para se efetuar a análise de variância utilizando o programa SISVAR. Para gerar arquivos do Excel do tipo dbase para ser usado diretamente no Sisvar, sem a necessidade de importar é necessário executar uma série de procedimentos. Esses procedimentos são descritos na seqüência para servir de referência para o usuário do Sisvar. É conveniente salientar que para que o Excel gere adequadamente os arquivos *.dbf é necessário seguir estritamente os passos a seguir. a) ir no painel de controle do computador e escolher configurações regionais. Na opção trocar os formatos de números, datas e horários escolher a aba opções regionais e modificar. Escolher a aba números e marcar somente a caixa símbolo decimal com “.” no lugar de “,”. Confirmar a opção clicando em Ok, duas vezes e pronto. b) Abra o Excel e se o arquivo estiver pronto é só abri-lo. Caso contrário digite o arquivo na seguinte estrutura: 6 • Primeira linha com o cabeçalho das variáveis; • Demais linhas com os valores de cada parcela – cada coluna deve ser uma variável; • Não deixe células vazias. Formatar cada coluna do seguinte tipo: se por exemplo, a primeira coluna for do tipo qualitativa (texto), então marque a coluna “A” e escolha formatar células e escolher a opção texto; se a segunda for numérica, marcar a segunda coluna e escolher formatar células número. Escolher o número de casas decimais correspondente ao maior número de casas decimais observado para essa coluna e marcar obrigatoriamente a caixa escrita usar separador de 1000 (.). Isso é importantíssimo, pois o Excel possui problemas de eliminar o separador de decimais no arquivo exportado, formando números onde a parte inteira e a decimal não foram separadas uma da outra. Repetir para as demais colunas esse procedimento. É possível marcar várias colunas do mesmo tipo ao mesmo tempo para serem formatadas conjuntamente. No caso numérico deve-se escolher o número de casas decimais do valor observado que apresente um maior número de casas decimais para que o arquivo final não seja truncado em uma precisão não pretendida. Após é necessário marcar toda a área de dados, inclusive a primeira linha com os nomes das variáveis. É importante não marcar células vazias após o final da digitação dos dados no meio do arquivo, pois o Sisvar não suporta esse tipo de dados. Foi feito pra trabalhar com dados balanceados. Escolher a opção arquivo salvar como e a sub-opção “salvar como tipo dbase 3 ou dbase 4, digitar o nome para o arquivo e confirmar. O Excel dá uma mensagem que o arquivo não suporta múltiplas planilhas e que pode ser perdidos os dados. Confirmar essa mensagem e pronto, o arquivo já é <nome.dbf>, pronto pra ser utilizado pelo Sisvar (não precisa importar). Existem alguns cuidados que devem ser tomados para esse processo: • Salve antes de qualquer coisa o arquivo Excel para poder recorrer ao mesmo, caso dê problemas na exportação para dbase; • Abra o arquivo no editor de dados do Sisvar para checar se tudo está certo, principalmente se as casas decimais não foram coladas a parte inteira dos dados (problema do Excel e não do Sisvar); • Lembre-se de sair do Excel antes de abrir o arquivo no Sisvar para não gerar conflitos de compartilhamento. 7 Após todo esse procedimento você terá o seu arquivo na extensão dbf pronto para ser utilizado pelo Sisvar. O Sisvar está com algum problema para identificar um caminho ou nome de arquivos em que sinais de acentuação de português foram utilizados. Assim recomenda-se nomes de pastas e arquivos sem acentos, principalmente se o usuário estiver utilizando o Windows XP em inglês. Tabela 3. Os dados são referentes ao volume de madeira por árvore, em m3x104. São apresentados os dados de 5 famílias de Eucaliptos camaldulensis avaliadas em um delineamento inteiramente casualizado (DIC) com 6 repetições. Família Repetição Volume (m3x104) A A A A A A B B B B B B C C C C C C D D D D D D E E E E E E 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 212 206 224 289 324 219 108 194 163 111 236 146 63 77 100 99 68 76 175 239 100 104 256 267 133 106 185 136 147 210 c) Efetuar a análise de variância • Abrir o SISVAR e ir para Análise\Anava; • Abrir arquivo exemplo1 DIC.dbf (no quadro “variáveis do arquivo” deve aparecer as variáveis do arquivo a ser analisado); 8 • Informar as Fontes de Variação. (no DIC, ver Tabela 1 → TRAT, Erro e Total. Não é necessário informar Erro e Total);Clicar em FAMILIA, adicionar e Fim; • Clicar em Yes para encerrar o quadro de análise de variância; • Clicar em FAMILIA no Quadro “Opções do quadro da análise de variância”; • Escolher a opção Teste de Tukey e/ou de Scott-Knott (Deve-se pedir cada teste individualmente, clicar em FAMILIA, teste escolhido, OK); • No quadro, “Variáveis a serem analisadas”, selecionar variável para analisar, no nosso exemplo “volume”; • Clicar em Finalizar\Finalizar. d) Saída dos resultados • Salvar relatório como exemplo1 DIC.doc RESULTADOS Arquivo analisado: C:\Documents and Settings\Bessa\Meus documentos\Roberta\Curso de estatística experimental\exemplo pag 4.DB -------------------------------------------------------------------------------Variável analisada: volume Opção de transformação: Variável sem transformação ( Y ) -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------FAMILIA 4 86725.533333 21681.383333 8.890 0.0001 erro 25 60973.833333 2438.953333 -------------------------------------------------------------------------------Total corrigido 29 147699.366667 -------------------------------------------------------------------------------CV (%) = 29.79 Média geral: 165.7666667 Número de observações: 30 --------------------------------------------------------------------------------------------------------------------------------------------------------------Teste Tukey para a FV FAMILIA -------------------------------------------------------------------------------DMS: 83.7649609862759 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 6 Erro padrão: 20.1616522691525 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------C 80.500000 a1 E 152.833333 a1 a2 B 159.666667 a1 a2 D 190.166667 a2 a3 A 245.666667 a3 -------------------------------------------------------------------------------- 9 -------------------------------------------------------------------------------Teste Scott-Knott (1974) para a FV FAMILIA -------------------------------------------------------------------------------NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 6 Erro padrão: 20.1616522691525 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------C 80.500000 a1 E 152.833333 a2 B 159.666667 a2 D 190.166667 a2 A 245.666667 a3 -------------------------------------------------------------------------------- APRESENTAÇÃO DOS RESULTADOS Tabela 4. Valores médios (erro padrão) de volume de madeira, em m3x104, de 5 famílias de Eucaliptos camaldulensis. 1 Famílias Médias (erro padrão) A 246 a (20,2) B 160 b (20,2) C 81 c (20,2) D 190 b (20,2) E 153 b (20,2) 1 – Médias seguidas da mesma letra, na coluna, não diferem entre si pelo teste de Scott-Knott, considerando o valor nominal de 5% de significância. Interpretação dos resultados Os resultados experimentais nos permitem concluir que houve efeito significativo das famílias de Eucaliptos camaldulensis (p=0,0001) sobre o volume de madeira, em m3x104. O volume de madeira produzido pela família A foi estatisticamente superior ao volume de madeira produzido pelas demais famílias, sendo que as famílias B, D e E foram estatisticamente iguais quanto ao volume produzido. A família C foi estatisticamente inferior a todas as demais quanto ao volume produzido pelo teste de Scott-Knott ao nível nominal de 5% de significância. Exemplo 2 de DIC 10 Em um estudo da influência do recipiente no desenvolvimento de mudas de Eucaliptos camaldulensis spp, empregou-se os seguintes tratamentos: A – Laminado de madeira; B – Torrão paulista, C – Saco plástico; D – Tubo de papel e E – Fértil pote. Cada tratamento foi repetido 6 vezes. No final do primeiro ano foram medidas as alturas das mudas, em metros, encontrando-se os seguintes resultados. Tabela 5. Altura, em metros, de mudas de Eucaliptos ssp., segundo os tipos de recipientes estudados. Tipos de Recipientes Repetições A B C D E 1 1,5 1,4 1,0 1,1 1,4 2 1,4 1,4 1,1 1,3 1,3 3 1,6 1,3 0,9 1,0 1,3 4 1,7 1,2 1,0 1,2 1,2 5 1,8 1,3 1,1 1,1 1,0 6 1,9 1,2 1,2 1,1 1,0 RESULTADOS Arquivo analisado: C:\Documents and Settings\Bessa\Meus documentos\Roberta\Curso de estatística experimental\exemplo pag 5.DB -------------------------------------------------------------------------------Variável analisada: Altura Opção de transformação: Variável sem transformação ( Y ) -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Recipientes 4 1.303333 0.325833 17.581 0.0000 erro 25 0.463333 0.018533 -------------------------------------------------------------------------------Total corrigido 29 1.766667 -------------------------------------------------------------------------------CV (%) = 10.75 Média geral: 1.2666667 Número de observações: 30 --------------------------------------------------------------------------------------------------------------------------------------------------------------Teste Tukey para a FV Recipientes -------------------------------------------------------------------------------DMS: 0.230907167377472 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 6 Erro padrão: 0.0555777733351102 11 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------C 1.050000 a1 D 1.133333 a1 a2 E 1.200000 a1 a2 B 1.300000 a2 A 1.650000 a3 --------------------------------------------------------------------------------------------------------------------------------------------------------------Teste Scott-Knott (1974) para a FV Recipientes -------------------------------------------------------------------------------NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 6 Erro padrão: 0.0555777733351102 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------C 1.050000 a1 D 1.133333 a1 E 1.200000 a2 B 1.300000 a2 A 1.650000 a3 -------------------------------------------------------------------------------- APRESENTAÇÃO DOS RESULTADOS Tabela 6. Altura média (erro padrão) de mudas de Eucaliptos ssp, em metros, em função dos tipos de recipientes estudados. 1 Tipos de recipientes Médias (erro padrão) A 1,65 a (0,05) B 1,30 b (0,05) C 1,05 c (0,05) D 1,13 c (0,05) E 1,23 b (0,05) 1 – Médias seguidas da mesma letra, na coluna, não diferem entre si pelo teste de Scott-Knott, considerando o valor nominal de 5% de significância. Interpretação dos resultados Os resultados experimentais nos permitem concluir que houve efeito significativo dos tipos de recipientes (p<0,0001) sobre a altura das mudas de Eucaliptos ssp. As mudas desenvolvidas no recipiente de laminado de madeira (recipiente A) foram estatisticamente superiores em altura do que as mudas desenvolvidas nos demais tipos de recipientes. Os recipientes, torrão paulista e fértil pote (recipientes B e E respectivamente) produziram mudas de alturas estatisticamente semelhantes. Os recipientes do tipo saco plástico e tubo de papel (recipientes C e D respectivamente) produziram mudas com alturas estatisticamente semelhante entre si e inferiores as alturas das mudas desenvolvidas nos demais recipientes, pelo teste de Scott-Knott ao nível de 5% de probabilidade. 12 6. ALGUMAS CONSIDERAÇÕES SOBRE A ESCOLHA DO TESTE ADEQUADO Em um projeto, a hipótese é a proposição testável que normalmente envolve a solução de determinado problema. Ela é de natureza criativa. Muitas vezes, o pesquisador não escreve sua hipótese, mas ela está em sua mente. O ideal é que seja escrita, para que o pesquisador possa raciocinar em cima do que está sendo redigido e analisar todas as opções possíveis para testar convenientemente essas hipóteses com os recursos disponíveis. A hipótese que será testada no experimento é frequentemente chamada de hipótese nula (H0) e, geralmente, preconiza a igualdade de efeitos ou igualdade de médias de tratamentos. A outra única possibilidade é que a hipótese nula seja falsa. A hipótese que afirma “a hipótese nula é falsa” é chamada de hipótese alternativa (Ha). É claro que gostaríamos de fazer o julgamento correto sobre a nossa hipótese nula. Podemos estar corretos de duas maneiras: não rejeitando a hipótese quando ela é verdadeira, ou rejeitando-a quando ela é falsa. Mas isso significa que há também duas possibilidades de estarmos errados: rejeitando a hipótese quando ela é verdadeira, ou não a rejeitando quando ela é falsa. O primeiro tipo de erro é chamado erro tipo I e a probabilidade de incorrer nesse tipo de erro é representada por α , o segundo é o erro tipo II e a probabilidade de cometer esse erro é representada por β . Quando aumentamos a região de não rejeição da hipótese nula estamos diminuindo a chance de cometer um erro tipo I. Entretanto, se ampliarmos a região de não rejeição, estamos aumentando o risco de não rejeitar a hipótese nula mesmo quando ela é falsa, cometendo um erro tipo II. A outra estratégia consiste em estreitar a zona de não rejeição. Assim, procedendo, é menos provável cometermos um erro tipo II, mas corremos um risco muito maior de cometer um erro tipo I (rejeitar a hipótese nula quando ela é verdadeira). Se decidirmos pela rejeição da hipótese nula, isso significa que temos quase certeza de que ela não é verdadeira. Mais especificamente, costumamos planejar nosso teste de modo que haja apenas 5% de chance de rejeitarmos a hipótese nula quando ela é, de fato, verdadeira. Se, entretanto, decidirmos não rejeitarmos a hipótese nula, isto não significa que ela seja verdadeira e, sim, que não temos evidências suficientes pra rejeitá-la. 6.1 PRINCIPAIS TESTES DE COMPARAÇÃO DE MÉDIAS O TESTE T DE STUDENT 13 Duas médias A e B, obtidas de rA e rB repetições respectivamente, podem ser comparadas pela relação: t= A− B QME QME + rA rB em que: QME é o quadrado médio do erro, estimado pela análise de variância. As médias comparadas por esse teste serão diferentes estatisticamente se o valor calculado de t for maior que aquele tabelado segundo os graus de liberdade do erro. O valor da diferença mínima significativa (DMS) é dada por: QME QME DMS (Student) = tgl do erro + rA rB OBS: t > ttabelado , o teste é significativo e rejeitamos a hipótese H0 (H0: média populacional do tratamento A=média populacional do tratamento B) TESTE DE STUDENT NEWMAN KEULS (SNK) Em uma relação decrescente de t médias (A, B, C, D, E), duas delas (A e F) apresentarão diferença significativa se: | A− F | QME r ≥ qi em que: A e F são as médias; QME é o quadrado médio do erro, estimado pela análise de variância e qi é o valor obtido em função da distância entre as médias e dos graus de liberdade do erro. A diferença mínima significativa entre duas médias com distância i entre elas é dada por: QME DMS(SNK) = qi r TESTE DE TUKEY A opção proposta por Tukey, em 1953, de apenas um valor de diferença mínima significativa, a despeito da existência de várias médias, caracterizou-se o teste como extremamente rigoroso, que embora controlasse muito bem o erro tipo I, permitia o aparecimento do erro tipo II. 14 A diferença mínima significativa proposta por Tukey é dada por: QME DMS(Tukey) = q r em que: q é o valor tabelado por Tukey em função do número de tratamentos e dos graus de liberdade do erro. TESTE DE SCHEFFÉ A flexibilidade proposta por Scheffé (1953), para comparar qualquer contraste entre médias e permitindo números de observações por tratamento definiu um teste um pouco mais rigoroso que aquele de Tukey, merecendo, portanto, os mesmos comentários com relação ao perigoso aumento do erro tipo II. A diferença mínima significativa para qualquer contraste é dada por: DMS (Scheffé) = (t − 1) Fν1 ,ν 2 var(contraste) em que: t é o número de tratamentos; Fν1 ,ν 2 é o valor tabelado de F com ν 1 (graus de liberdade de tratamento) e ν 2 (graus de liberdade do erro). A var(contraste) é dada por: var(contraste)=QME ∑c 2 i ri em que: ci é o coeficiente do tratamento i com ri repetições. TESTE DE DUNCAN O teste de Duncan utiliza a mesma argumentação do teste SNK porém as DMS para comparação de médias mais afastadas foi reduzida reduzindo então as chances de cometer o erro tipo II. QME DMS (Duncan) = qi r em que: QME é o quadrado médio do erro, estimado pela análise de variância e qi é o valor tabelado por Duncan obtido da distância entre as médias e dos graus de liberdade do erro. Os valores de qi não sobem tão rapidamente quanto aqueles do teste SNK. TESTE DE DUNNETT 15 Para as comparações múltiplas onde apenas um tratamento serve de referência (testemunha) para os demais, ou seja, deseja-se comparar todos com apenas um, Dunnett sugeriu a seguinte diferença mínima significativa (DMS): QME t 2 DMS(Dunnett) = D ∑ ci r i =1 em que: D é o valor encontrado na tabela de Dunnett proposta em função dos ( t − 1) graus de liberdade de tratamento e graus de liberdade do erro, ci é o coeficiente utilizado no contraste para o tratamento i . DESDOBRAMENTO DOS GRAUS DE LIBERDADE DE TRATAMENTOS De acordo com Banzatto e Kronka (1995), quando aplicamos o teste F numa análise de variância para tratamentos com mais de 1 grau de liberdade, podemos obter apenas informações muito gerais, relacionadas com o comportamento médio dos tratamentos, pois representa um teste médio de diversas comparações independentes. Então, se apenas uma das comparações envolve uma diferença marcante e as outras não, um teste F médio pode falhar para evidenciar a diferença existente. Por essa razão, devemos planejar comparações objetivas, fazendo-se o desdobramento ou decomposição dos graus de liberdade de tratamentos para obter informações mais específicas, relacionadas com o comportamento de cada um dos componentes do desdobramento. Além disso, após a decomposição dos graus de liberdade, podemos aplicar o teste F a cada um dos componentes do desdobramento. A cada comparação atribuímos 1 grau de liberdade e, portanto, para I tratamentos podemos estabelecer (I-1) comparações independentes. Essa técnica se baseia na utilização de contrastes, sendo necessário que cada componente seja explicado por um contraste e que todos os contrastes sejam ortogonais entre si, para que as comparações sejam independentes. Normalmente, trabalhamos com contrastes de médias de tratamentos, e o caso mais comum é aquele onde todos os tratamentos têm o mesmo número, r, de repetições. Nessas condições, uma função linear do tipo: Y = c1m1 + c2 m2 + ... + cI mI é denominada contrastes de médias de tratamentos, se: 16 c1 + c2 + ... + cI = 0 I ∑ ci = 0 i =1 onde: c1 + c2 + ... + cI , são os coeficientes das médias de tratamentos m1 + m2 + ... + mI , respectivamente. Assim, por exemplo: Y1 = m1 − m2 Y2 = m1 + m2 − 2m3 Y3 = m1 + m2 − m3 − m4 são contrastes de médias de tratamentos, pois as somas dos coeficientes são: Y1 → 1 + ( −1) = 0 Y2 → 1 + 1 + ( −2 ) = 0 Y3 → 1 + 1 + ( −1) + ( −1) = 0 Se Y é um contraste de médias de tratamentos, a soma de quadrados para a comparação feita em Y, é dada por: S .Q.Y = Yˆ 2 Yˆ 2 × r ou S . Q . = ×r Y I (c12 + c22 + ... + cI2 2 ∑ ci i =1 onde: Yˆ - é a estimativa do contraste, calculada substituindo em Y os mi pelos valores obtidos no experimento; r - é o número de parcelas (repetições) somadas para obter cada média de tratamentos ( mi ) que entra no contraste. Esta soma de quadrados é uma parte da S.Q.Tratamentos e a ela atribui 1 grau de liberdade. Dois contrastes são ortogonais entre si quando a soma dos produtos dos coeficientes das médias correspondentes for nula. Assim: Y1 = c1m1 + c2 m2 + ... + cI mI I ∑ ci = 0 i =1 17 e I ∑ bi = 0 i =1 Y2 = b1m1 + b2 m2 + ... + bI mI são contrastes ortogonais se: I ∑ ci bi = 0 i =1 c1b1 + c2b2 + ... + cI bI Então, S .Q.Y2 é uma parte extraída da diferença entre: S .Q.Trat − S .Q.Y1 Da mesma forma, para uma comparação Y3 (ortogonal a Y2 e Y1, S .Q.Y3 é uma parte extraída da diferença entre: S .Q.Trat − S .Q.Y1 − S .Q.Y2 Dessa maneira, se: Y1, Y2,...,Y(I-1) são mutuamente ortogonais, isto é, cada par é ortogonal, então: S .Q.Trat = S .Q.Y1 + S .Q.Y2 + ... + S .Q.Y( I −1) ou S .Q.Trat = Yˆ12 I ∑c i =1 2 1 ×r + Yˆ22 I ∑c × r + ... + 2 2 i =1 Yˆ( 2I −1) I ∑c i =1 ×r 2 ( I −1) Esta expressão identifica a partição da S.Q.Trat (que tem (I-1) g.l.), em (I-1) componentes, cada um representando um único grau de liberdade. Exemplo 3 Delineamento Inteiramente Casualizado usando Contrastes Vamos considerar os dados adaptados do trabalho “Aplicação da vermiculita em alfobres” (Dias, 1973), realizado no delineamento inteiramente casualizado, com 4 repetições. Foram comparados os efeitos de 5 tratamentos em relação ao crescimento de mudas de Pinus oocarpa, 60 dias após a semeadura. Os tratamentos utilizados foram: 1. Solo de cerrado (SC) 2. Solo de cerrado + esterco (SC + E) 3. Solo de cerrado + esterco + NPK (SC + E + NPK) 4. Solo de cerrado + vermiculita (SC + V) 18 5. Solo de cerrado + vermiculita + NPK (SC + V + NPK) Os resultados obtidos para as alturas médias de Pinus oocarpa sob aqueles tratamentos, em cm, aos 60 dias após a semeadura são apresentados na Tabela 7. Tabela 7. Alturas médias de Pinus oocarpa, aos 60 dias após a semeadura, em cm. Repetições Tratamentos 1 2 3 4 1 – SC 4,6 5,1 5,8 5,5 2 – SC + E 6,0 7,1 7,2 6,8 3 – SC + E + SPK 5,8 7,2 6,9 6,7 4 – SC + V 5,6 4,9 5,9 5,7 5 – SC + V + SPK 5,8 6,4 6,6 6,8 Examinando os tratamentos, uma comparação que pode interessar é: 1) Solo cerrado somente vs demais Dentre os demais, temos tratamentos: com esterco e com vermiculita. Podemos comparar: 2) Com esterco versus com vermiculita Dentre os tratamentos com esterco temos: com NPK e sem NPK, podemos comparar: 3) Esterco sem NPK versus esterco com NPK Com vermiculita podemos comparar: 4) Vermiculita sem NPK versus vermiculita com NPK Y1 = 4m1 − m2 − m3 − m4 − m5 Y2 = m2 + m3 − m4 − m5 Y3 = m2 − m3 Y3 = m4 − m5 Estes contrastes são ortogonais entre si, já que são ortogonais dois a dois (ver Banzatto e Kronka, 1995). 19 Algumas observações sobre a estrutura dos tratamentos: Solo cerrado ou solo cerrado com esterco ou vermiculita? SC SC + E ou SC + V versus Solo cerrado com esterco ou solo cerrado com vermiculita? SC + E SC + V versus Esterco sem NPK ou Esterco com NPK? E – NPK E+NPK versus Vermiculita sem NPK ou vermiculita com NPK? V - NPK versus V + NPK RESULTADOS Arquivo analisado: C:\Documents and Settings\Bessa\Meus documentos\Roberta\Curso de estatística experimental\analise DIC contraste.DB -------------------------------------------------------------------------------Variável analisada: Alturas Opção de transformação: Variável sem transformação ( Y ) -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Tratamentos 4 7.597000 1.899250 7.277 0.0018 erro 15 3.915000 0.261000 -------------------------------------------------------------------------------Total corrigido 19 11.512000 -------------------------------------------------------------------------------CV (%) = 8.35 Média geral: 6.1200000 Número de observações: 20 --------------------------------------------------------------------------------------------------------------------------------------------------------------Contraste para a FV Tratamentos -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.255440795488896 CONTRASTE NÚMERO 1 --------------------------------------------------------------------------------------------------------------------------------------------------------------O contraste testado está apresentado a seguir: -------------------------------------------------------------------------------Nível dessa Fonte de Variação Coeficientes -------------------------------------------------------------------------------1 4.0000 2 -1.0000 3 -1.0000 4 -1.0000 5 -1.0000 -------------------------------------------------------------------------------Obs. Valores dos coeficientes positivos foram divididos por 20 4 e os negativos por 4 -------------------------------------------------------------------------------Estimativa : -1.08750000 DMS Scheffé : 0.99843489 NMS: : 0.05 Variância : 0.08156250 Erro padrão : 0.28559149 t para H0: Y = 0 : -3.808 Pr>|t| : 0.002 F para H0: Y = 0 : 14.500 Pr>F : 0.002 Pr exata Scheffé : 0.029 --------------------------------------------------------------------------------------------------------------------------------------------------------------Contraste para a FV Tratamentos -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.255440795488896 CONTRASTE NÚMERO 2 --------------------------------------------------------------------------------------------------------------------------------------------------------------O contraste testado está apresentado a seguir: -------------------------------------------------------------------------------Nível dessa Fonte de Variação Coeficientes -------------------------------------------------------------------------------1 0.0000 2 1.0000 3 1.0000 4 -1.0000 5 -1.0000 -------------------------------------------------------------------------------Obs. Valores dos coeficientes positivos foram divididos por 2 e os negativos por 2 -------------------------------------------------------------------------------Estimativa : 0.75000000 DMS Scheffé : 0.89302732 NMS: : 0.05 Variância : 0.06525000 Erro padrão : 0.25544080 t para H0: Y = 0 : 2.936 Pr>|t| : 0.010 F para H0: Y = 0 : 8.621 Pr>F : 0.010 Pr exata Scheffé : 0.124 --------------------------------------------------------------------------------------------------------------------------------------------------------------Contraste para a FV Tratamentos -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.255440795488896 CONTRASTE NÚMERO 3 --------------------------------------------------------------------------------------------------------------------------------------------------------------O contraste testado está apresentado a seguir: -------------------------------------------------------------------------------Nível dessa Fonte de Variação Coeficientes -------------------------------------------------------------------------------1 0.0000 2 1.0000 3 -1.0000 -------------------------------------------------------------------------------Obs. Valores dos coeficientes positivos foram divididos por 1 e os negativos por 1 -------------------------------------------------------------------------------Estimativa : 0.12500000 DMS Scheffé : 1.26293134 NMS: : 0.05 Variância : 0.13050000 Erro padrão : 0.36124784 t para H0: Y = 0 : 0.346 Pr>|t| : 0.734 F para H0: Y = 0 : 0.120 Pr>F : 0.734 21 Pr exata Scheffé : 0.998 --------------------------------------------------------------------------------------------------------------------------------------------------------------Contraste para a FV Tratamentos -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.255440795488896 CONTRASTE NÚMERO 4 --------------------------------------------------------------------------------------------------------------------------------------------------------------O contraste testado está apresentado a seguir: -------------------------------------------------------------------------------Nível dessa Fonte de Variação Coeficientes -------------------------------------------------------------------------------1 0.0000 2 0.0000 3 0.0000 4 1.0000 5 -1.0000 -------------------------------------------------------------------------------Obs. Valores dos coeficientes positivos foram divididos por 1 e os negativos por 1 -------------------------------------------------------------------------------Estimativa : -0.87500000 DMS Scheffé : 1.26293134 NMS: : 0.05 Variância : 0.13050000 Erro padrão : 0.36124784 t para H0: Y = 0 : -2.422 Pr>|t| : 0.029 F para H0: Y = 0 : 5.867 Pr>F : 0.029 Pr exata Scheffé : 0.261 -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA DOS CONTRASTES -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Contraste 1 1 3.784500 3.784500 14.500 0.0017 Contraste 2 1 2.250000 2.250000 8.621 0.0102 Contraste 3 1 0.031250 0.031250 0.120 0.7341 Contraste 4 1 1.531250 1.531250 5.867 0.0286 Resíduo 15 3.915000 0.261000 -------------------------------------------------------------------------------- 22 APRESENTAÇÃO DOS RESULTADOS Tabela 8. Coeficientes e estimativa dos contrastes com suas respectivas significativas. Tratamentos (médias) Estimativa do Contraste Contrastes SC SC+E SC+E+NPK SC+V SC+V+NPK 5,25 6,775 6,65 5,525 6,4 Coeficientes dos contrastes Cerrado ou os demais 4 -1 -1 -1 -1 -1,0875 Esterco ou vermiculita 1 1 -1 -1 0,750 Esterco sem NPK ou 1 -1 0,125 esterco com NPK Vermiculita sem NPK ou vermiculita 1 -1 -0,875 com NPK Interpretação dos resultados Da análise de variância, concluímos que: 1) Solo cerrado somente vs demais Os efeitos sobre a altura de mudas de Pinus oocarpa são diferentes (P<0,01) e, pelos resultados das parcelas, verificamos que é interessante a utilização de esterco ou vermiculita. 2) Esterco vs vermiculita Os efeitos sobre a altura de mudas de Pinus oocarpa são diferentes (P<0,05) e, pelos resultados, verificamos que com esterco é melhor. 3) Esterco sem NPK vs esterco + NPK Os efeitos não diferem (P<0,05) e, portanto se usar esterco, colocar ou não NPK não altera os resultados de altura das mudas. 4) Vermiculita sem NPK vs vermiculita + NPK Se adicionarmos vermiculita, colocando-se NPK, as alturas das mudas serão diferentes (P<0,05) do que não se colocando NPK. 23 7. DELINEAMENTO EM BLOCOS CASUALIZADOS O delineamento em blocos casualizados é utilizado quando as condições experimentais não são homogêneas. A área heterogênea é subdividida em blocos, de forma que, cada bloco seja o mais homogêneo possível. A exigência de homogeneidade dentro de cada bloco pode limitar o número de tratamentos a serem testados. Considerando um experimento em que serão avaliados 5 tratamentos (T1, T2, T3, T4 e T5) em uma área heterogênea, instalado no delineamento em blocos casualizados com 4 blocos, um possível plano experimental a ser utilizado consta de: bloco 1 T3 T1 T2 T5 T4 bloco 2 T1 T4 T3 T5 T2 bloco 3 T5 T3 T1 T2 T4 bloco 4 T4 T5 T3 T2 T1 Observa-se que em cada bloco, tem-se uma repetição de cada tratamento. Os tratamentos são casualizados dentro de cada bloco. A disposição dos blocos vai depender das condições de heterogeneidade da área experimental. No esquema indicado, como a heterogeneidade é no sentido vertical, os blocos devem ser dispostos no sentido horizontal, ou seja, tem-se que em cada bloco todos os tratamentos serão avaliados sob a mesma condição. De maneira geral, o bloco deve ser o mais homogêneo possível, podendo haver diferenças marcantes de um bloco para o outro. VANTAGENS • Controla diferenças nas condições ambientais de um bloco para outro; • Leva a uma estimativa mais exata da variância residual, uma vez que a variação ambiental entre blocos é isolada. 24 DESVANTAGENS • Há uma redução no número de graus de liberdade do erro pois o DBC utiliza o princípio do controle local; • O número de tratamentos a ser utilizado é limitado pela exigência de homogeneidade dentro dos blocos, não podendo ser muito elevado. O modelo estatístico do delineamento em blocos casualizados é dado por: yij = µ + α i + β j + eij em que: yij µ βj αi ε ij é o valor observado na parcela experimental que recebeu o tratamento i no bloco j; representa uma constante geral associada a esta variável aleatória; é o efeito do bloco j ( j = 1, 2,..., b ) ; é o efeito do tratamento i ( i = 1, 2,..., t ) ; é o erro experimental. Na Tabela 7 é apresentado o esquema da análise de variância para experimentos instalados no delineamento em blocos casualizados. Tabela 9. Esquema da análise de variância para experimentos instalados no delineamento em blocos casualizados. FV GL SQ QM F SQ Bloco QM Bloco QM Bloco / QM Erro Bloco b −1 Tratamento SQ Trat QM Trat QM Trat / QM Erro t −1 Erro SQ Erro QM Erro ( b − 1)( t − 1) Total tb − 1 SQ Total Exemplo 1 de DBC Em 5 bosques distintos, fizeram-se estudos referentes ao crescimento em altura de 4 espécies de Álamo Americano. A distribuição dos tratamentos por blocos foi a seguinte: D B B C A D B A C D C A A D B C C D A B Bosque 1 Bosque 2 Bosque 3 Bosque 4 Bosque 5 Cada parcela constituiu de uma plantação de 100 gemas dos clones. Quando o experimento estava com 5 anos idade, se mediu a altura de todas as árvores sobreviventes e se calculou uma média por parcela. 25 Tabela 10. Altura média, em metros, por clones e por bosques das plantas cultivadas. Clones Bosques A B C D 1 5,47 4,26 3,65 4,86 2 4,56 4,56 4,87 3,95 3 4,87 4,56 2,43 4,56 4 4,26 3,65 3,04 3,65 5 3,65 4,26 2,74 4,26 Delineamento em Blocos Casualizados Balanceado (SISVAR) Sejam os dados da Tabela 10 referentes a um experimento instalado no delineamento em blocos casualizados para avaliar a altura de quatro espécies de Álamo Americano em cinco bosques distintos. a.3) Efetuar a análise de variância • Abrir o SISVAR e ir para Análise\Anava; • Abrir arquivo exemplo1 DBC.dbf (no quadro variáveis do arquivo deve aparecer as variáveis do arquivo a ser analisado); • Informar as Fontes de Variação. (No DBC, ver Tabela 7 → BLOCOS (BOSQUES), CLONES, Erro e Total. Não é necessário informar Erro e Total);Clicar em BLOCO, adicionar, CLONES, adicionar e Fim; • Clicar em Yes para encerrar o quadro de análise de variância; • Clicar em CLONES no Quadro “Opções do quadro da análise de variância”; • Escolher a opção Teste de Tukey e/ou de Scott-Knott (Deve-se pedir cada teste individualmente, clicar em CLONES, teste escolhido, Ok); • No quadro, “Variáveis a serem analisadas”, selecionar variável para analisar, no nosso exemplo “altura”; • Clicar em Finalizar\Finalizar. a.4) Saída dos resultados • Salvar relatório como exemplo1 DBC.doc 26 Tabela 11. Dados de um experimento instalado no delineamento em blocos casualizados para avaliar a altura, em metros, de quatro espécies de Álamo Americano plantados em cinco bosques distintos. Clones Blocos Altura 5,47 A 1 4,56 A 2 4,87 A 3 4,26 A 4 3,65 A 5 4,26 B 1 4,56 B 2 4,56 B 3 3,65 B 4 4,26 B 5 3,65 C 1 4,87 C 2 2,43 C 3 3,04 C 4 2,74 C 5 4,56 D 1 3,95 D 2 4,56 D 3 3,65 D 4 4,26 D 5 RESULTADOS Arquivo analisado: C:\Documents and Settings\Bessa\Meus documentos\Roberta\Curso de estatística experimental\exemplo 1de DBC.DB -------------------------------------------------------------------------------Variável analisada: ALTURA Opção de transformação: Variável sem transformação ( Y ) -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Clones 3 4.155695 1.385232 3.936 0.0362 Blocos 4 2.803820 0.700955 1.992 0.1600 erro 12 4.223580 0.351965 -------------------------------------------------------------------------------Total corrigido 19 11.183095 -------------------------------------------------------------------------------CV (%) = 14.45 Média geral: 4.1055000 Número de observações: 20 Teste Tukey para a FV Clones -------------------------------------------------------------------------------DMS: 1.11437416745546 NMS: 0.05 -------------------------------------------------------------------------------- 27 Média harmonica do número de repetições (r): 5 Erro padrão: 0.265316791779186 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------C 3.346000 a1 D 4.256000 a1 a2 B 4.258000 a1 a2 A 4.562000 a2 --------------------------------------------------------------------------------------------------------------------------------------------------------------Teste SNK para a FV Clones Médias DMS NMS: 0.05 -------------------------------------------------------------------------------4 1.11437416745546 3 1.00152091822158 2 0.817522501282244 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 5 Erro padrão: 0.265316791779186 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------C 3.346000 a1 D 4.256000 a1 a2 B 4.258000 a1 a2 A 4.562000 a2 --------------------------------------------------------------------------------------------------------------------------------------------------------------Teste Scott-Knott (1974) para a FV Clones -------------------------------------------------------------------------------NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 5 Erro padrão: 0.265316791779186 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------C 3.346000 a1 D 4.256000 a2 B 4.258000 a2 A 4.562000 a2 -------------------------------------------------------------------------------- APRESENTAÇÃO DOS RESULTADOS Tabela 12. Altura média (erro padrão) de clones de Álamo Americano, em metros. Clones 1 Médias (erro padrão) A 4,56 a (0,26) B 4,26 a (0,26) C 3,35 b (0,26) D 4,26 a (0,26) 1 – Médias seguidas da mesma letra, na coluna, não diferem entre si pelo teste de Scott-Knott, para o valor nominal de 5% de significância. 28 Interpretação dos resultados Os resultados experimentais nos permitem concluir que houve efeito significativo dos diferentes dos diferentes clones de Álamo Americano (p=0,0362) sobre a altura das plantas. Não houve efeito significativo do controle local exercido pelos diferentes bosques (p=0,1600) sobre a altura das árvores. As árvores dos clones A, B e D apresentaram alturas estatisticamente iguais e superiores quando comparadas a árvore do clone C pelo teste de Scott-Knott considerando o valor nominal de 5% de significância. Exemplo 2 de DBC Os dados da tabela 13, que se referem a um experimento de adubação de milho feito pelos engenheiros Agrônomos Glauco Pinto Viegas e Erik Smith, em blocos ao acaso, permite exemplificar a aplicação da teoria. Os tratamentos constaram de adubação com 0, 25, 50, 75, e 100 kg/ha de P2O5. Tabela 13. Produções de milho, em kg/parcela, de um experimento de adubação de milho. Tratamentos 0 25 50 75 100 Totais de Blocos 3,38 7,15 10,07 9,55 9,14 39,29 5,77 9,78 9,73 8,95 10,17 44,40 4,90 9,99 7,92 10,24 9,75 42,80 4,54 10,10 9,48 8,66 9,50 42,28 18,59 37,02 37,20 37,40 38,56 168,77 RESULTADOS Arquivo analisado: C:\Arquivos de programas\Sisvar\Exemplos\Pimen230.DB -------------------------------------------------------------------------------Variável analisada: Produção de milho Opção de transformação: Variável sem transformação ( Y ) -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Blocos 3 2.734855 0.911618 1.002 0.4252 Adubação kg/parcela 4 72.219880 18.054970 19.853 0.0000 29 erro 12 10.913320 0.909443 -------------------------------------------------------------------------------Total corrigido 19 85.868055 -------------------------------------------------------------------------------CV (%) = 11.30 Média geral: 8.4385000 Número de observações: 20 --------------------------------------------------------------------------------------------------------------------------------------------------------------Regressão para a FV Adubação kg/parcela -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.476823692084751 -------------------------------------------------------------------------------b1 : X b2 : X^2 b3 : X^3 Modelos reduzidos sequenciais --------------------------------------------------------------------------------------------------------------------------------------------------------------t para Parâmetro Estimativa SE H0: Par=0 Pr>|t| -------------------------------------------------------------------------------b0 6.422500 0.36934604 17.389 0.0000 b1 0.040320 0.00603140 6.685 0.0000 -------------------------------------------------------------------------------R^2 = 56.28% --------------------------------------------------------------------------------------------------------------------------------------------------------------Valores da variável independente Médias observadas Médias estimadas -------------------------------------------------------------------------------0.000000 4.647500 6.422500 25.000000 9.255000 7.430500 50.000000 9.300000 8.438500 75.000000 9.350000 9.446500 100.000000 9.640000 10.454500 --------------------------------------------------------------------------------------------------------------------------------------------------------------t para Parâmetro Estimativa SE H0: Par=0 Pr>|t| -------------------------------------------------------------------------------b0 5.189643 0.44875020 11.565 0.0000 b1 0.138949 0.02126319 6.535 0.0000 b2 -0.000986 0.00020390 -4.837 0.0004 -------------------------------------------------------------------------------R^2 = 85.74% --------------------------------------------------------------------------------------------------------------------------------------------------------------Valores da variável independente Médias observadas Médias estimadas -------------------------------------------------------------------------------0.000000 4.647500 5.189643 25.000000 9.255000 8.046929 50.000000 9.300000 9.671357 75.000000 9.350000 10.062929 100.000000 9.640000 9.221643 -------------------------------------------------------------------------------t para Parâmetro Estimativa SE H0: Par=0 Pr>|t| -------------------------------------------------------------------------------b0 4.709393 0.47340556 9.948 0.0000 b1 0.276620 0.04817182 5.742 0.0001 b2 -0.004828 0.00122339 -3.947 0.0019 b3 0.000026 0.00000804 3.185 0.0078 -------------------------------------------------------------------------------R^2 = 98.51% --------------------------------------------------------------------------------------------------------------------------------------------------------------Valores da variável independente Médias observadas Médias estimadas -------------------------------------------------------------------------------- 30 0.000000 4.647500 4.709393 25.000000 9.255000 9.007429 50.000000 9.300000 9.671357 75.000000 9.350000 9.102429 100.000000 9.640000 9.701893 -------------------------------------------------------------------------------Somas de quadrados seqüenciais - Tipo I (Type I) -------------------------------------------------------------------------------Causas de Variação G.L. S.Q. Q.M. Fc Prob.<F -------------------------------------------------------------------------------b1 1 40.642560 40.642560 44.689 0.000 b2 1 21.279114 21.279114 23.398 0.000 b3 1 9.225603 9.225603 10.144 0.008 Desvio 1 1.072603 1.072603 1.179 0.299 Resíduo 12 10.913320 0.909443 -------------------------------------------------------------------------------- APRESENTAÇÃO DOS RESULTADOS Em primeiro lugar, devemos observar os graus de liberdade referentes a tratamentos (Adubação) que serão decompostos em componentes individuais a fim de estudar separadamente os efeitos da regressão de 10 grau (linear), de 20 grau (quadrática), 30 grau (cúbica) e Desvios de Regressão que é o teste de ajustamento da equação de regressão. O quadro de Análise da Variância pode ser reescrito da seguinte maneira: Fonte de Variação gl Adubação Soma de Quadrados Quadrado Médio (p-valor) (4) 72,22 18,055 (p=0,000) Regressão Linear 1 40,64 40,64 (p=0,000) Regressão quadrática 1 21,28 21,28 (p=0,000) Regressão cúbica 1 9,23 9,23 (p=0,008) Desvio de Regressão 1 1,072 1,072 (0,299) Bloco 3 2,73 0,91 (p=0,4252) Erro 12 10,92 0,910 Os resultados experimentais nos mostram que existe um efeito significativo das adubações (p=0,000) sobre a sua produção. Verificamos também que uma regressão cúbica (p=0,008) é a que melhor se ajusta aos dados de produção. 8. DELINEAMENTOS EM QUADRADO LATINO (DQL) CARACTERÍSTICAS A casualização para quadrados latinos seguem algumas particularidades. Esse delineamento possui três princípios básicos da experimentação: casualização, repetição e 31 controle local, diferindo do delineamento em blocos casualizados por apresentar controle local em duas direções. O DQL é um delineamento bastante utilizado em condições de campo onde 2 fontes principais de variação estão presentes e que precisam ser controladas. Cada tratamento aparece uma única vez em cada linha (ou bloco horizontal) e em cada coluna (bloco vertical). A exigência principal do quadrado latino é que o número de repetições seja igual ao número de tratamentos. Os delineamentos em quadrado latino recebem este nome porque o número de parcelas totais do experimento corresponde ao quadrado do número de tratamentos ( n = t 2 ) e por terem sido, originalmente, representados por letras latinas. VANTAGENS • Controla diferenças nas condições ambientais de um bloco para outro em duas direções; • Leva a uma estimativa mais exata da variância residual, uma vez que a variação ambiental entre blocos, em duas direções, é isolada. DESVANTAGENS • Há uma redução no número dos graus de liberdade do erro, pois o DQL, utiliza o princípio do controle local em duas direções; • O número de tratamentos a ser utilizado é limitado pela exigência de homogeneidade dentro dos blocos, não podendo ser muito elevado, geralmente o tamanho máximo de quadrados latinos é 8x8. O modelo estatístico do delineamento em quadrado latino é dado a seguir: yijk = µ + α i + β j + τ k + eijk em que: yijk representa a observação do i -ésimo tratamento na j -ésima coluna e na k -ésima linha; µ αi representa uma constante geral associada a esta variável aleatória; é o efeito do tratamento i ( i = 1, 2,..., t ) ; βj é o efeito da j -ésima coluna; ( j = 1, 2,..., t ) ; τk é o efeito da k -ésima linha; ( k = 1, 2,..., t ) ; 32 representa o erro experimental associado a observação distribuição normal com média zero e variância comum. ε ijk yijk , suposto ter Tabela 14. Esquema da análise de variância para experimentos instalados no delineamento em quadrado latino. FV GL SQ QM F Tratamento SQ Trat QM Trat QM Trat / QM Erro t −1 Linha SQ Linhas QM Linhas t −1 Coluna SQ Colunas QM Colunas t −1 SQ Erro QM Erro Erro ( t − 1)( t − 2 ) Total SQ Total t 2 −1 em que, t é o número de tratamentos. CASUALIZAÇÃO A casualização para delineamentos em quadrados latinos com 2, 3 ou 4 tratamentos é processada como segue: • tome o quadrado padrão (sistematizado); • casualize todas as linhas, exceto a primeira; • casualize todas as colunas. Como exemplo, suponha que você deseja casualizar um quadrado latino com 4 tratamentos: A, B, C e D. Procedemos como segue: O quadrado sistematizado é o seguinte: Coluna 1 Coluna 2 Coluna 3 Coluna 4 Linha 1 A B C D Linha 2 D A B C Linha 3 C D A B Linha 4 B C D A Com o sorteio das linhas, exceto a primeira, obtemos o seguinte quadrado; Coluna 1 Coluna 2 Coluna 3 Coluna 4 Linha 1 A B C D Linha 4 B C D A Linha 2 D A B C Linha 3 C D A B Com o sorteio de todas as colunas, obtemos o quadrado casualizado pronto para a execução e acompanhamento no campo. 33 Coluna 2 Coluna 3 Coluna 4 Coluna 1 Linha 1 B C D A Linha 4 C D A B Linha 2 A B C D Linha 3 D A B C A casualização para quadrados latinos com 5 ou mais tratamentos é semelhante ao procedimento apresentado anteriormente. Para este sorteio não é necessário, no momento de sortear as linhas, fixar a primeira. Exemplo de Quadrado Latino Num experimento de competição de variedades de cana forrageira foram usadas 5 variedades: A= Co 290; B= Co 294; C= Co 297; D= Co 299 e E= Co 295, dispostas em um quadrado latino 5 x 5. O controle feito através de blocos horizontais (linhas) e blocos verticais (colunas) teve por objetivo eliminar influências devida a diferenças de fertilidade em 2 direções. As produções, em kg por parcela, foram as seguintes: Tabela 15. Produção, em kg por parcela, de 5 variedades de cana forrageira. Colunas Linhas 1 2 3 4 5 1 D (432) A (518) B (458) C (583) E (331) 2 C (724) E (478) A (524) B (550) D (400) 3 E (489) B (384) C (556) D (297) A (420) 4 B (494) D (500) E(313) A (486) C (501) 5 A (515) C (660) D (438) E (394) B (318) Delineamento em Quadrado Latino (SISVAR) Sejam os dados da Tabela 15 referentes a um experimento instalado no delineamento em quadrado latino para avaliar a produção, em kg, de cinco variedades de cana forrageira. a.3) Efetuar a análise de variância • Abrir o SISVAR e ir para Análise\Anava; 34 • Abrir arquivo exemplo DQL.dbf (no quadro variáveis do arquivo deve aparecer as variáveis do arquivo a ser analisado); • Informar as Fontes de Variação. (No DQL, ver Tabela 12 → Tratamentos, Linhas, Colunas, Erro e Total. Não é necessário informar Erro e Total);Clicar em Tratamentos, adicionar, Linhas, adicionar, Colunas e Fim; • Clicar em Yes para encerrar o quadro de análise de variância; • Clicar em tratamentos no quadro “Opções do quadro da análise de variância”; • Escolher a opção Teste de Tukey e/ou de Scott-Knott (Deve-se pedir cada teste individualmente, clicar em tratamentos, teste escolhido, Ok); • No quadro, “Variáveis a serem analisadas”, selecionar variável para analisar, no nosso exemplo “PRODUÇÃO”; • Clicar em Finalizar\Finalizar. a.4) Saída dos resultados • Salvar relatório como exemplo DQL.doc RESULTADOS Arquivo analisado: C:\Documents and Settings\Bessa\Meus documentos\Roberta\Curso de estatística experimental\exemplo DQL.DB -------------------------------------------------------------------------------Variável analisada: PRODUÇÃO Opção de transformação: Variável sem transformação ( Y ) -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Tratamentos 4 137488.240000 34372.060000 12.091 0.0004 Linhas 4 30480.640000 7620.160000 2.680 0.0831 Colunas 4 55640.640000 13910.160000 4.893 0.0142 erro 12 34114.720000 2842.893333 -------------------------------------------------------------------------------Total corrigido 24 257724.240000 -------------------------------------------------------------------------------CV (%) = 11.33 Média geral: 470.5200000 Número de observações: 25 --------------------------------------------------------------------------------------------------------------------------------------------------------------Teste Tukey para a FV Tratamentos -------------------------------------------------------------------------------DMS: 107.521299732566 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 5 35 Erro padrão: 23.8448876421481 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------E 401.000000 a1 D 413.400000 a1 B 440.800000 a1 A 492.600000 a1 C 604.800000 a2 --------------------------------------------------------------------------------------------------------------------------------------------------------------Teste SNK para a FV Tratamentos Médias DMS NMS: 0.05 -------------------------------------------------------------------------------5 107.521299732566 4 100.152450344729 3 90.0099598148694 2 73.4734204242411 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 5 Erro padrão: 23.8448876421481 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------E 401.000000 a1 D 413.400000 a1 B 440.800000 a1 A 492.600000 a1 C 604.800000 a2 -------------------------------------------------------------------------------- APRESENTAÇÃO DOS RESULTADOS Tabela 16. Produção média (erro padrão) de variedades de cana forrageira, em kg por parcela. Variedades 1 Médias (erro padrão) A 493 b (23,8) B 441 b (23,8) C 605 a (23,8) D 413 b (23,8) E 401 b (23,8) 1 – Médias seguidas da mesma letra, na coluna, não diferem entre si pelo teste de SNK, para o valor nominal de 5% de significância. Interpretação dos resultados Os resultados experimentais nos permitem concluir que houve efeito significativo das diferentes variedades de cana forrageira (p=0,0004) sobre a produção em kg por parcela das plantas. Não houve efeito significativo do controle local exercido por linhas (p=0,0831) e houve efeito significativo do controle exercido pelas colunas (p=0,0142), sobre a produção de cana forrageira. O melhor desempenho das variedades nesta competição foi alcançado pela 36 variedade de cana forrageira Co 297 que superou todas as demais. Não se constatou diferenças significativas entre Co 290, Co 294, Co 299 e Co 295 pelo teste de SNK considerando um valor nominal de 5% de probabilidade. 9. REGRESSÃO NA ANÁLISE DE VARIÂNCIA Regressão linear simples A regressão tem por objetivo estudar a relação entre 2 ou mais variáveis visando descobrir uma curva que a descreva, utilizando-se esta para fins de estimativa ou predição de uma das variáveis. Como por exemplo, podemos citar: • rendimento de culturas e quantidade de chuva caída; • produção de culturas e densidade de plantio; • temperatura e ataque de insetos, etc. A equação de regressão Considere uma amostra de n pares ( xi , yi ) de duas variáveis e suponha que exista uma relação funcional linear entre elas, que pode ser descrita pelo modelo: yi = β 0 + β1 xi + ε i , ( i = 1,..., n ) em que: yi : é a variável dependente; β0 é o coeficiente linear; β1 é o coeficiente de regressão; xi é a variável independente; εi é o erro do modelo de regressão. O objetivo de uma análise de regressão é estimar os parâmetros β 0 e β1 do modelo. Um exemplo de Regressão Linear Simples Um experimento foi conduzido com o objetivo de estudar a toxidade do Alumínio (Al+ + +) para certa variedade de planta. Os resultados foram: X 0,9 1,1 1,2 1,5 1,6 1,8 2,0 Y 1,0 0,9 0,8 0,9 0,6 0,5 0,5 37 em que: X é o teor de Al+ + + no solo em me/100cc de solo; Y a produtividade de cultura em t/ha. RESULTADOS Variável analisada: valores de Y --------------------------------------------------------------------------Variáveis do modelo e codificação usada -------------------------------------------------------------------------b( 1): valores de X --------------------------------------------------------------------------Análise de variância --------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc --------------------------------------------------------------------------Modelo 1 0.209277003 0.20927700 21.8608 0.0055 Erro 5 0.047865854 0.00957317 --------------------------------------------------------------------------Total cor 6 0.257142857 Média 0.74285714 Raiz do QME 0.09784258 R^2 0.81385501 R^2 ajustado 0.77662602 C.V.(%) 13.17111672 --------------------------------------------------------------------------Análise de variância seqüencial (Tipo I) --------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc --------------------------------------------------------------------------b ( 1) 1 0.209277003 0.20927700 21.8608 0.0055 --------------------------------------------------------------------------Análise de variância parcial (Tipo II) --------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc --------------------------------------------------------------------------b ( 1) 1 0.209277003 0.20927700 21.8608 0.0055 ---------------------------------------------------------------------------------------------------------------------------------------------------Estimativas dos parâmetros --------------------------------------------------------------------------Estimativa dos t para H0: Variável GL parâmetros EP parâmetro = 0 Pr>|t| --------------------------------------------------------------------------b ( 0) 1 1.42469512195 0.150446428 9.469783625 0.0002 b ( 1) 1 -0.47256097561 0.101070637 -4.675551575 0.0055 --------------------------------------------------------------------------Obs Valor observado Valor predito valor predito Resíduos --------------------------------------------------------------------------1 2 3 4 5 1.00000 0.90000 0.80000 0.90000 0.60000 0.99939 0.90488 0.85762 0.71585 0.66860 38 0.06617 0.05068 0.04439 0.03743 0.04025 0.00061 -0.00488 -0.05762 0.18415 -0.06860 6 7 0.50000 0.57409 0.05168 -0.07409 0.50000 0.47957 0.06737 0.02043 LI 95% para LS 95% para Erro padrão Resíduos Obs o valor predito o valor predito dos resíduos estudentizados --------------------------------------------------------------------------1 0.8292904 1.16949 0.07208 0.00846 2 0.7745915 1.03516 0.08369 -0.05828 3 0.7435155 0.97173 0.08720 -0.66084 4 0.6196306 0.81208 0.09040 2.03701 5 0.5651298 0.77207 0.08918 -0.76919 6 0.4412331 0.70694 0.08308 -0.89171 7 0.3063829 0.65276 0.07096 0.28788 -------------------------------------------------------------------------- APRESENTAÇÃO DOS RESULTADOS Produtividade (t/ha) 1.2 1 0.8 0.6 0.4 0.2 Y=1,4247-0,472x R2=0,7766 0 0.9 1.1 1.2 1.5 1.6 1.8 2 Teores de Alumínio (mE/100cc de solo) valores de observados valores preditos Figura 1. Produtividade, em t/ha, em função dos teores de Al+ + +, em mE/100cc, no solo. Interpretação dos resultados A equação de regressão apresentada nos mostra que podemos esperar, em média, um decréscimo de 0,4726 t/ha na produtividade da cultura para cada aumento de 1 mE/100cc no teor de Al+ + + do solo. Regressão por Polinômios Ortogonais Muitos experimentos são planejados com o objetivo de descobrir uma curva de regressão que se ajuste aos dados e usar esta curva para fins de estimativa e predição. Isto pode ser feito quando os tratamentos em estudo são níveis crescentes de um fator. Para os casos mais simples (experimentos sem repetições com caráter de levantamento), a análise anteriormente estudada pode ser utilizada. Contudo, nos casos mais complexos, o método do polinômio ortogonal desenvolvido por Fisher parece ser mais conveniente. 39 Um exemplo de regressão por Polinômios Ortogonais O Uso de polinômios ortogonais na análise de variância será ilustrado com um experimento conduzido para avaliar o efeito de 5 idades de corte, sobre a produtividade de massa verde de determinado capim. O delineamento experimental foi em blocos casualizados com 4 repetições e as produções em t/ha, estão apresentadas no quadro que se segue. Tabela 17. Produtividade de massa verde de determinado capim, em t/ha. Idade de Corte (dias) Blocos 30 60 90 120 150 1 12,4 45,0 23,4 45,0 31,5 2 13,0 28,0 38,0 28,0 22,9 3 10,0 32,0 32,0 32,0 19,0 4 11,0 34,0 63,0 35,0 11,0 RESULTADOS Arquivo analisado: C:\Documents and Settings\Bessa\Meus documentos\Roberta\Curso de estatística experimental\exemplo reg. por polinomios ortog.DB -------------------------------------------------------------------------------Variável analisada: produção Opção de transformação: Variável sem transformação ( Y ) -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Idade de Corte 4 2135.448000 533.862000 5.138 0.0120 blocos 3 162.538000 54.179333 0.521 0.6756 erro 12 1246.872000 103.906000 -------------------------------------------------------------------------------Total corrigido 19 3544.858000 -------------------------------------------------------------------------------CV (%) = 36.01 Média geral: 28.3100000 Número de observações: 20 --------------------------------------------------------------------------------------------------------------------------------------------------------------Regressão para a FV Idade de Corte -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 5.0967146280717 -------------------------------------------------------------------------------b1 : X b2 : X^2 b3 : X^3 -------------------------------------------------------------------------------Modelos reduzidos sequenciais -------------------------------------------------------------------------------- 40 t para Parâmetro Estimativa SE H0: Par=0 Pr>|t| -------------------------------------------------------------------------------b0 22.535000 5.34547940 4.216 0.0012 b1 0.064167 0.05372409 1.194 0.2554 -------------------------------------------------------------------------------R^2 = 6.94% --------------------------------------------------------------------------------------------------------------------------------------------------------------Valores da variável independente Médias observadas Médias estimadas -------------------------------------------------------------------------------30.000000 11.600000 24.460000 60.000000 34.750000 26.385000 90.000000 39.100000 28.310000 120.000000 35.000000 30.235000 150.000000 21.100000 32.160000 --------------------------------------------------------------------------------------------------------------------------------------------------------------t para Parâmetro Estimativa SE H0: Par=0 Pr>|t| -------------------------------------------------------------------------------b0 -18.740000 10.93123506 -1.714 0.1122 b1 1.243452 0.27767760 4.478 0.0008 b2 -0.006552 0.00151350 -4.329 0.0010 -------------------------------------------------------------------------------R^2 = 98.12% --------------------------------------------------------------------------------------------------------------------------------------------------------------Valores da variável independente Médias observadas Médias estimadas -------------------------------------------------------------------------------30.000000 11.600000 12.667143 60.000000 34.750000 32.281429 90.000000 39.100000 40.102857 120.000000 35.000000 36.131429 150.000000 21.100000 20.367143 --------------------------------------------------------------------------------------------------------------------------------------------------------------t para Parâmetro Estimativa SE H0: Par=0 Pr>|t| -------------------------------------------------------------------------------b0 -31.340000 25.07252081 -1.250 0.2351 b1 1.833452 1.09245272 1.678 0.1191 b2 -0.014052 0.01351603 -1.040 0.3190 b3 0.000028 0.00004974 0.558 0.5868 -------------------------------------------------------------------------------R^2 = 99.63% --------------------------------------------------------------------------------------------------------------------------------------------------------------Valores da variável independente Médias observadas Médias estimadas -------------------------------------------------------------------------------30.000000 11.600000 11.767143 60.000000 34.750000 34.081429 90.000000 39.100000 40.102857 120.000000 35.000000 34.331429 150.000000 21.100000 21.267143 -------------------------------------------------------------------------------Somas de quadrados seqüenciais - Tipo I (Type I) -------------------------------------------------------------------------------Causas de Variação G.L. S.Q. Q.M. Fc Prob.<F -------------------------------------------------------------------------------b1 1 148.225000 148.225000 1.427 0.255 b2 1 1947.000714 1947.000714 18.738 0.001 b3 1 32.400000 32.400000 0.312 0.587 Desvio 1 7.822286 7.822286 0.075 0.788 Resíduo 12 1246.872000 103.906000 ------------------------------------------------------------------------------------------------------ 41 APRESENTAÇÃO DOS RESULTADOS Em primeiro lugar, devemos observar os graus de liberdade referentes a tratamentos (idade de corte) que serão decompostos em componentes individuais a fim de estudar separadamente os efeitos da regressão de 10 grau (linear), de 20 grau (quadrática), 30 grau (cúbica) e Desvios de Regressão que é o teste de ajustamento da equação de regressão. O quadro de Análise da Variância pode ser reescrito da seguinte maneira: Fonte de Variação Idade de Corte gl Soma de Quadrados Quadrado Médio (p-valor) (4) 2135,4480 533,8620 (p=0,0120) Regressão Linear 1 148,2250 148,2250 (p=0,2550) Regressão quadrática 1 1947,0007 1947,0007 (p=0,0010) Regressão cúbica 1 32,4000 32,4000 (p=0,5870) Desvio de Regressão 1 7,8222 7,8222 (0,7880) Bloco 3 162,5380 54,1793 (p=0,6756) Erro 12 1246,8720 103,9060 Os resultados experimentais nos mostram que existe um efeito significativo das idades de corte do capim (p=0,0120) sobre a sua produtividade. Verificamos também que uma Produtividade (t/ha) regressão quadrática (p=0,0010) é a que melhor se ajusta aos dados de produtividade. 45 40 35 30 25 20 15 10 5 0 30 60 90 120 150 Idades de Corte Médias observadas Médias estimadas Figura 2. Produtividade média do capim, em t/ha, em função das idades de corte estudadas. Os resultados na Figura 2 indicam que o incremento nas produções do capim ocorre até o corte aos 90 dias, onde atingem um máximo e a partir desta idade tendem a diminuir. 42 O coeficiente de determinação (R2) mostra a qualidade do ajustamento do modelo de regressão aos valores médios dos tratamentos. Quanto mais próximos os valores observados estiverem da curva de ajustamento, mais alto será o coeficiente de determinação (R2). 10. EXPERIMENTOS FATORIAIS CARACTERÍSTICAS São experimentos em que são estudados, ao mesmo tempo, os efeitos de dois ou mais tipos de tratamentos ou fatores. Estes fatores podem ser quantitativos (doses, épocas, temperaturas etc.) ou qualitativos (variedades, métodos, equipamentos etc.). Por exemplo, em um fatorial 4 × 3, quatro tempos de armazenamento (T1, T2, T3 e T4) e três cultivares de laranja (C1, C2 e C3), teremos 12 combinações ou tratamentos possíveis: T1 C1 T2 C1 T3 C1 T4 C1 T1 C2 T2 C2 T3 C2 T4 C2 T1 C3 T2 C3 T3 C3 T4 C3 Vale lembrar que os experimentos fatoriais não são delineamentos e sim um esquema de desdobramento dos graus de liberdade de tratamentos e, podem ser instalados em quaisquer dos delineamentos experimentais, delineamento inteiramente casualizado ou no delineamento em blocos casualizados. VANTAGEM Permite estudar os efeitos principais dos fatores e os efeitos das interações entre eles. DESVANTAGEM Como os tratamentos correspondem a todas as combinações possíveis entre os níveis dos fatores, o número de tratamentos a serem avaliados pode aumentar muito, não podendo ser distribuídos em blocos completos casualizados devido a exigência de homogeneidade das parcelas dentro de cada bloco. Isso pode levar a complicações na análise, sendo preciso lançar mão de algumas técnicas alternativas (como por exemplo, o uso de blocos incompletos). A análise estatística e a interpretação dos resultados podem tornar-se um pouco mais complicadas que nos experimentos simples. 43 Nos experimentos fatoriais o modelo estatístico varia de um experimento para outro por causa do número de fatores testados. Para um experimento fatorial no delineamento inteiramente casualizado com dois fatores α i e τ i , o modelo estatístico é dado por: yijk = µ + α i + τ j + ατ ij + ε ijk em que: é o valor observado na parcela experimental que recebeu o nível i do fator α e o nível j do fator τ na repetição k ; representa uma constante geral; é o efeito do nível i do fator α ( i = 1, 2,..., a ) ; yijk : µ αi ατ ij é o efeito do nível j do fator τ ( j = 1, 2,..., g ) ; é o efeito da interação entre o nível i do fator α e o nível j do fator τ ; ε ijk é o erro experimental. τj O esquema da análise de variância para um experimento fatorial instalado no delineamento inteiramente casualizado é apresentado na Tabela 18. Tabela 18. Esquema da análise de variância para experimento fatorial instalado no delineamento inteiramente casualizado. FV GL SQ QM F Fator A SQ A QM A QM A / QM Erro a −1 Fator G SQ G QM G QM G / QM Erro g −1 A×G QM A × G QM A × G / QM Erro ( a − 1) × ( g − 1) SQ A × G Erro ag ( r − 1) SQ Erro Total agr − 1 SQ Total QM Erro Para um experimento fatorial em blocos casualizados com dois fatores α i e τ i , o modelo estatístico é dado por: yijk = µ + β k + α i + τ j + ατ ij + ε ijk em que: yijk µ βk é o valor observado na parcela experimental que recebeu o nível i do fator α e o nível j do fator τ no bloco k ; representa uma constante geral; É o efeito do bloco k ( k = 1, 2,..., b ) ; αi É o efeito do nível i do fator α ( i = 1, 2,..., a ) ; τj ατ ij É o efeito do nível j do fator τ ( j = 1, 2,..., g ) ; É o efeito da interação entre o nível i do fator α e o nível j do fator τ ; ε ijk É o erro experimental. 44 O esquema da análise de variância para um experimento fatorial instalado no delineamento em blocos casualizados é apresentado na Tabela 19. Tabela 19. Esquema da análise de variância para experimento fatorial instalado no delineamento em blocos casualizados. FV GL SQ QM F Bloco SQ Bloco QM Bloco QM Bloco / QM Erro b −1 Fator A SQ A QM A QM A / QM Erro a −1 SQ G QM G QM G / QM Erro Fator G g −1 A×G QM A × G QM A × G / QM Erro ( a − 1) × ( g − 1) SQ A ×GC Erro ( ag − 1) × ( b − 1) SQ Erro QM Erro Total abg − 1 SQ Total Um exemplo de Ensaio Fatorial Vamos considerar os dados de um experimento inteiramente casualizado, no esquema fatorial 3 x 2, para testar os efeitos de 3 recipientes para produção de mudas e 2 espécies de eucaliptos, quanto ao desenvolvimento das mudas. Os recipientes e as espécies testadas foram: - R1 = saco plástico pequeno - R2 = saco plástico grande - R3 = laminado - E1 = Eucaliptos citriodora - E2 = Eucaliptos grandis As alturas médias das mudas, em cm, aos 80 dias de idade, são apresentadas na tabela 17. Tabela 20. Alturas médias das mudas, em cm, aos 80 dias de idade. Repetições Tratamentos 1 2 3 4 Totais 1 – R1E1 26,2 26,0 25,0 25,4 102,6 2 – R1E2 24,8 24,6 26,7 25,2 101,3 3 – R2E1 25,7 26,3 25,1 26,4 103,5 4 – R2E2 19,6 21,1 19,0 18,6 78,3 5 – R3E1 22,8 19,4 18,8 19,2 80,2 6 – R3E2 19,8 21,4 22,8 21,3 85,3 45 Experimentos Fatoriais no SISVAR Sejam os dados da Tabela 20 referentes a um delineamento inteiramente casualizado num esquema fatorial 3 x 2, para avaliar as alturas médias, em cm, de mudas. a.1) Criar arquivo de dados no excel (exemplo ensaio fatorial em dic.xls); a.2) Salvar arquivo excel (exemplo Fatorial.xls) como arquivo tipo DBF 4 - dbase IV (exemplo2.dbf); a.3) Efetuar a análise de variância • Ir para Análise\Anava; • Abrir arquivo; • Digitar as Fontes de Variação (ver Tabela 17); • Clicar em recipientes, espécies, recipientes*espécies e Fim; • Clicar em Ok. • Escolher a opção contraste para a variável recipientes e teste T de Student para espécies com a finalidade de mostrar as médias, caso a interação (recipientes*espécies) seja significativa. Caso contrário, interação não significativa, deve-se pedir cada teste individualmente para estudar os efeitos principais. Clicar em recipientes e escolher a opção contrastes, clicar em Ok e para espécies, teste t de Student, Ok; • No quadro “Variáveis a serem analisadas”, selecionar variável para analisar, no nosso exemplo “altura”; • Clicar em Finalizar\Finalizar; • Na aba “coeficientes” digitar os coeficientes dos contrastes e se houver mais de um contraste de interesse pedir novo contraste. Algumas observações sobre a estrutura dos tratamentos: Recipientes (sacos plásticos, 1 e 2) ou laminado (3)? 1 e 2 3 versus Saco plástico grande ou pequeno? 1 versus 46 2 Quando os tratamentos são estruturados o ideal é que sejam comparados grupos de médias ao invés de comparações duas a duas. Este procedimento pode ser realizado pelo teste de Scheffé. RESULTADOS Arquivo analisado: C:\Documents and Settings\Bessa\Meus documentos\Roberta\Curso de estatística experimental\exemplo ensaio fatorial em DIC.DB -------------------------------------------------------------------------------Variável analisada: ALTURAS Opção de transformação: Variável sem transformação ( Y ) -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------RECIPIENTE 2 92.860833 46.430417 36.195 0.0000 ESPECIES 1 19.081667 19.081667 14.875 0.0012 RECIPIENTE*ESPECIES 2 63.760833 31.880417 24.853 0.0000 erro 18 23.090000 1.282778 -------------------------------------------------------------------------------Total corrigido 23 198.793333 -------------------------------------------------------------------------------CV (%) = 4.93 Média geral: 22.9666667 Número de observações: 24 --------------------------------------------------------------------------------------------------------------------------------------------------------------- Análise do desdobramento de RECIPIENTE dentro de cada nível de: ESPECIES -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------RECIPIENTE /1 2 87.121667 43.560833 33.958 0.0000 RECIPIENTE /2 2 69.500000 34.750000 27.090 0.0000 Resíduo 18 23.090000 1.282778 -------------------------------------------------------------------------------Codificação usada para o desdobramento cod. ESPECIES 1 = 1 2 = 2 Contraste entre médias para o desdobramento de RECIPIENTE dentro da codificação: 1 Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Contraste para a FV RECIPIENTE -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.566298900267734 CONTRASTE NÚMERO 1 -------------------------------------------------------------------------------O contraste testado está apresentado a seguir: -------------------------------------------------------------------------------- 47 Nível dessa Fonte de Variação Coeficientes -------------------------------------------------------------------------------1 1.0000 2 1.0000 3 -2.0000 -------------------------------------------------------------------------------Obs. Valores dos coeficientes positivos foram divididos por 2 e os negativos por 2 -------------------------------------------------------------------------------Estimativa : 5.71250000 DMS Scheffé : 1.84926477 NMS Scheffé : 0.05 Variância : 0.48104167 Erro padrão : 0.69357167 t para H0: Y = 0 : 8.236 Pr>|t| : 0.000 F para H0: Y = 0 : 67.837 Pr>F : 0.000 Pr exata Scheffé : 0.000 --------------------------------------------------------------------------------------------------------------------------------------------------------------Contraste para a FV RECIPIENTE -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.566298900267734 CONTRASTE NÚMERO 2 --------------------------------------------------------------------------------------------------------------------------------------------------------------O contraste testado está apresentado a seguir: -------------------------------------------------------------------------------Nível dessa Fonte de Variação Coeficientes -------------------------------------------------------------------------------1 1.0000 2 -1.0000 -------------------------------------------------------------------------------Obs. Valores dos coeficientes positivos foram divididos por 1 e os negativos por 1 -------------------------------------------------------------------------------Estimativa : -0.22500000 DMS Scheffé : 2.13534702 NMS Scheffé : 0.05 Variância : 0.64138889 Erro padrão : 0.80086759 t para H0: Y = 0 : -0.281 Pr>|t| : 0.782 F para H0: Y = 0 : 0.079 Pr>F : 0.782 Pr exata Scheffé : 0.962 -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA DOS CONTRASTES -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Contraste 1 1 87.020417 87.020417 67.837 0.0000 Contraste 2 1 0.101250 0.101250 0.079 0.7820 Resíduo 18 23.090000 1.282778 -------------------------------------------------------------------------------- Contraste entre médias para o desdobramento de RECIPIENTE dentro da codificação: 2 Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Contraste para a FV RECIPIENTE -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.566298900267734 CONTRASTE NÚMERO 1 --------------------------------------------------------------------------------------------------------------------------------------------------------------O contraste testado está apresentado a seguir: -------------------------------------------------------------------------------- 48 Nível dessa Fonte de Variação Coeficientes -------------------------------------------------------------------------------1 1.0000 2 1.0000 3 -2.0000 -------------------------------------------------------------------------------Obs. Valores dos coeficientes positivos foram divididos por 2 e os negativos por 2 -------------------------------------------------------------------------------Estimativa : 1.12500000 DMS Scheffé : 1.84926477 NMS Scheffé : 0.05 Variância : 0.48104167 Erro padrão : 0.69357167 t para H0: Y = 0 : 1.622 Pr>|t| : 0.122 F para H0: Y = 0 : 2.631 Pr>F : 0.122 Pr exata Scheffé : 0.293 -------------------------------------------------------------------------------Contraste para a FV RECIPIENTE -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão de cada média dessa FV: 0.566298900267734 CONTRASTE NÚMERO 2 --------------------------------------------------------------------------------------------------------------------------------------------------------------O contraste testado está apresentado a seguir: -------------------------------------------------------------------------------Nível dessa Fonte de Variação Coeficientes -------------------------------------------------------------------------------1 1.0000 2 -1.0000 -------------------------------------------------------------------------------Obs. Valores dos coeficientes positivos foram divididos por 1 e os negativos por 1 -------------------------------------------------------------------------------Estimativa : 5.75000000 DMS Scheffé : 2.13534702 NMS Scheffé : 0.05 Variância : 0.64138889 Erro padrão : 0.80086759 t para H0: Y = 0 : 7.180 Pr>|t| : 0.000 F para H0: Y = 0 : 51.548 Pr>F : 0.000 Pr exata Scheffé : 0.000 -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA DOS CONTRASTES -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------Contraste 1 1 3.375000 3.375000 2.631 0.1222 Contraste 2 1 66.125000 66.125000 51.548 0.0000 Resíduo 18 23.090000 1.282778 --------------------------------------------------------------------------------------------------------------------------------------------------------------- Análise do desdobramento de ESPECIES dentro de cada nível de: RECIPIENTE -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------ESPECIES /1 1 0.211250 0.211250 0.165 0.6897 ESPECIES /2 1 79.380000 79.380000 61.881 0.0000 ESPECIES /3 1 3.251250 3.251250 2.535 0.1288 Resíduo 18 23.090000 1.282778 -------------------------------------------------------------------------------- 49 Codificação usada para o desdobramento cod. RECIPIENTE 1 = 1 2 = 2 3 = 3 Teste de t de Student (LSD) para o desdobramento de ESPECIES dentro da codificação: 1 Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste t (LSD) para a FV ESPECIES -------------------------------------------------------------------------------DMS: 1.68256037747996 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão: 0.566298900267734 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------2 25.325000 a1 1 25.650000 a1 -------------------------------------------------------------------------------- Teste de t de Student (LSD) para o desdobramento de ESPECIES dentro da codificação: 2 Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste t (LSD) para a FV ESPECIES -------------------------------------------------------------------------------DMS: 1.68256037747996 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão: 0.566298900267734 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------2 19.575000 a1 1 25.875000 a2 -------------------------------------------------------------------------------- Teste de t de Student (LSD) para o desdobramento de ESPECIES dentro da codificação: 3 Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste t (LSD) para a FV ESPECIES -------------------------------------------------------------------------------DMS: 1.68256037747996 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 4 Erro padrão: 0.566298900267734 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------1 20.050000 a1 2 21.325000 a1 -------------------------------------------------------------------------------- 50 APRESENTAÇÃO DE RESULTADOS Tabela 21. Coeficientes e estimativa dos contrastes com suas respectivas significativas. Tratamentos (médias) Contrastes R1 R2 R3 (25,49) (22,72) (20,69) Estimativa do Contraste Coeficientes dos contrastes Sacos plásticos ou laminado (E1) 1 1 -2 11,4 Saco plástico grande ou pequeno (E1) 1 -1 0 5,7 Sacos plásticos ou laminado (E2) 1 1 -2 2,2 Saco plástico grande ou pequeno (E2) 1 -1 0 11,5 Interpretação dos resultados Desdobramento de recipientes dentro de cada espécie: (contrastes) Na análise de contrastes entre as médias, é necessário chamar a atenção para a estimativa resultante do SISVAR quando o teste escolhido para a comparação das médias é o de Scheffé. Essa estimativa obtida é baseada em contrastes formulados com coeficientes fracionários, logo quando esses coeficientes são números inteiros (pela facilidade de cálculo) deve-se multiplicá-los pela estimativa do SISVAR. A soma de quadrados dos contrastes não é alterada ao considerar coeficientes inteiros ou fracionários (observar as estimativas na Tabela 19). O primeiro contraste testado refere-se à comparação dos recipientes de sacos plásticos com o laminado. Logo, o contraste de interesse é Y1 = m1 + m2 − 2m3 . A hipótese nula é H 0 : Y = 0 contra a hipótese alternativa que é aquela que afirma o contrário. Verificamos que o contraste é significativo considerando o valor de 1% de probabilidade e concluímos que os recipientes (saco plástico pequeno e saco plástico grande) apresentam em média, uma altura de 11,4 cm superior à média do laminado para a espécie Eucaliptos citriodora (E1). Ao considerar o contraste Y2 = m1 − m2 para a (E1) não existe diferença significativa entre os sacos plásticos com o valor nominal de 5% probabilidade. Para a espécie Eucaliptos grandis (E2), o contraste Y1 , não foi significativo considerando o valor nominal de 5% de probabilidade e concluímos que os recipientes, saco plástico pequeno e saco plástico grande não diferem do laminado quanto a altura dessa 51 espécie. O contraste Y2 para essa mesma espécie foi significativo considerando o valor nominal de 1% de significância, ou seja, o recipiente de saco plástico pequeno proporciona, em média, 11,5 cm de altura a mais do que plantada no saco plástico grande. Desdobramento de espécies dentro de cada recipiente: (teste de t Student) a) quando se utiliza o recipiente: saco plástico pequeno (R1), não há diferença significativa (P>0,05) para o desenvolvimento das mudas das 2 espécies; b) quando se utiliza o recipiente: saco plástico grande (R2), há diferença significativa (P<0,01) no desenvolvimento das mudas das 2 espécies, sendo a melhor para Eucaliptos citriodora (E1). c) quando se utiliza o recipiente: laminado (R3) não há diferença significativa (P>0,05) para o desenvolvimento das mudas das 2 espécies; 11. EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS CARACTERÍSTICAS Estes experimentos, também conhecidos por "split plot", são utilizados quando se têm dois ou três fatores e há um grau de importância de um sobre o outro, ou sobre os outros. Neste tipo de experimento aparecem dois resíduos em sua análise da variância: o primeiro, denominado erro a, servirá para testar o fator que se encontra na parcela maior e de menor importância; e o segundo, erro b, que testará o fator da parcela menor (subparcela) e de maior importância. Após a decisão do fator das parcelas, estas poderão ser dispostas no delineamento inteiramente casualizado ou de blocos casualizados. O outro fator será sorteado nas subparcelas. Há experimentos em que esta subparcela ainda é dividida, testando-se um terceiro fator; neste caso, o experimento é em parcela subsubdividida, com três resíduos distintos: erro a, relacionado às parcelas; erro b, às subparcelas; e erro c, às subsubparcelas. Em algumas situações, o pesquisador utilizará o esquema de parcela subdividida, em detrimento ao esquema fatorial, pela facilidade de instalação do experimento na área experimental em função dos tipos de tratamentos a serem estudados. Por exemplo, em um estudo com dois tipos de tratamentos químicos (T1 e T2) e com três cultivares de citros (C1, C2 e C3), instalado no delineamento em blocos casualizados, no esquema fatorial, um provável sorteio para um bloco pode resultar em: T1 C3 T2 C3 T2 C1 T1 C2 52 T2 C2 T1 C1 Nesse caso, uma determinada parcela deve receber o tratamento químico T1 e uma parcela vizinha o tratamento químico T2, situação, às vezes, inviável em termos práticos. Dessa forma, ao se utilizar o esquema de parcela subdividida, deve-se dividir o bloco em duas parcelas, onde serão sorteados os tratamentos químicos, sendo que dentro de cada parcela, há uma subdivisão em subparcelas, com sorteio das cultivares. Um provável sorteio pode ser visualizado a seguir: C3 C1 C2 C2 T2 C3 C1 T1 Observa-se que, nesse estudo, em função do tipo de tratamento, o esquema de parcela subdividida é mais adequado que o esquema fatorial, por propiciar uma maior facilidade prática na instalação do experimento na área experimental. VANTAGENS Os experimentos em parcelas subdivididas apresentam uma grande utilidade na pesquisa agropecuária, além de outras diversas áreas. Tais experimentos são úteis em situações como: a) Quando os níveis dos fatores exigem grandes quantidades de material experimental (por exemplo, níveis de irrigação), devendo ser casualizados nas parcelas; b) Quando informações prévias asseguram que as diferenças entre os níveis de um dos fatores são maiores que as do outro fator; c) Quando se deseja maior precisão para comparações entre os níveis de um dos fatores; d) Quando existe um fator de maior importância (que deverá se casualizado na subparcela) e outro de importância secundária, sendo este incluído para aumentar a extensão dos resultados; e) Nas situações práticas, onde é difícil a instalação do experimento no esquema fatorial. 53 DESVANTAGEM Há uma redução do número de graus de liberdade do erro, comparativamente ao esquema fatorial, redução esta decorrente da existência de dois erros, o erro (a) referente às parcelas e o erro (b), correspondente às subparcelas dentro das parcelas O modelo estatístico para o experimento em parcela subdividida, com dois fatores α e τ , no delineamento inteiramente casualizado é o seguinte: yijk = µ + α i + ε (i ) j + τ j + (ατ )ij + ε ijk em que: yijk µ αi é o valor observado na parcela experimental que recebeu o nível i do fator a e o nível j do fator g na repetição k ; representa uma constante geral associada a variável aleatória; é o efeito do nível i do fator α ( i = 1, 2,.., a ) ; ε (i) j é o efeito do nível i do fator α na repetição k (erro a); τj (ατ )ij é o efeito do nível j do fator τ ( j = 1, 2,..., g ) ; é o efeito da interação entre o nível i do fator a e o nível j do fator g ; ε ijk é o erro experimental (erro b). O esquema da análise de variância para experimento no esquema de parcela subdividida, instalado no delineamento inteiramente casualizado, é apresentado na Tabela 22. Tabela 22. Esquema da análise de variância para experimento em parcela subdividida instalado no delineamento inteiramente casualizado. FV GL SQ QM F SQ A QM A QM A / QM Erro a Fator A a −1 Erro a = rep (Fator A) SQ Erro a QM Erro a a ( r − 1) Fator G A×G Erro b Total g −1 ( a − 1) × ( g − 1) a ( g − 1) × ( r − 1) SQ G SQ A × G QM G QM G / QM Erro b QM A × G QM A×G / QM Erro b SQ Erro b QM Erro b SQ Total agr − 1 O modelo estatístico para o experimento em parcela subdividida, com dois fatores α e τ , no delineamento em blocos casualizados é o seguinte: yijk = µ + β k + α i + (αβ )ik + τ j + (ατ )ij + ε ijk em que: yijk µ βk é o valor observado na parcela experimental que recebeu o nível i do fator α e o nível j do fator τ no bloco k ; representa uma constante geral; é o efeito do bloco k ( k = 1, 2,..., b ) ; 54 é o efeito do nível i do fator α ( i = 1, 2,..., a ) ; é o efeito da interação entre o nível i do fator α e o bloco k (erro a); αi (αβ )ik é o efeito do nível j do fator τ ( j = 1, 2,..., g ) ; é o efeito da interação entre o nível i do fator α e o nível j do fator τ ; τj (ατ )ij é o erro experimental (erro b). ε ijk O esquema da análise de variância para experimento no esquema de parcela subdividida, instalado no delineamento em blocos casualizados, é apresentado na Tabela 23. Tabela 23. Esquema da análise de variância para experimento em parcela subdividida instalado no delineamento em blocos casualizados. FV GL SQ QM F Bloco SQ Bloco QM Bloco QM Bloc / QM Erro a b −1 Fator A SQ A QM A QM A / QM Erro a a −1 Erro a = Bloco x A SQ Erro a QM Erro a ( b − 1) × ( a − 1) SQ G SQ A × G Fator G A×G ( a − 1) × ( g − 1) Erro b a ( b − 1) × ( g − 1 SQ Erro b Total g −1 abg − 1 QM G QM G / QM Erro b QM A × G QM A×G / QM Erro b QM Erro b SQ Total Diretrizes para análise de variância As instruções apresentadas nos delineamentos básicos prevalecem. As comparações entre médias são feitas para os tratamentos das parcelas, das subparcelas e para os efeitos da interação. Existem 4 casos a serem considerados: os 2 primeiros são indicados para as interações não significativas e os 2 últimos, para as interações significativas. 1) Interações não significativas 10 caso: Comparação das médias de tratamentos das parcelas. A DMS pelo teste de Tukey é: QME ( a ) DMS(Tukey) = q( a ,n1 ) br em que: a é o número de tratamentos da parcela; n1 é o número de graus de liberdade do erro (a) da análise de variância; b é o número de tratamentos da subparcela e r é o número de repetições. 55 20 caso: Comparação de médias de tratamentos das subparcelas. A DMS pelo teste de Tukey é: QME ( b ) DMS(Tukey) = q(b ,n2 ) ar 2) Interações significativas 30 caso: Comparação das médias de tratamentos das subparcelas em cada nível dos tratamentos da parcela. A DMS pelo teste de Tukey é: QME ( b ) DMS(Tukey) = q(b ,n2 ) r em que: b é o número de tratamentos da subparcela; n2 é o número de graus de liberdade do erro (b) da análise de variância; r é o número de repetições. 40 caso: Comparação das médias de tratamentos das parcelas em cada nível dos tratamentos das subparcelas. Será necessária a composição de um novo quadrado médio do erro, composto dos erros a e b da análise de variância da seguinte maneira: QME * = QME ( a ) + ( b − 1) QME ( b ) b Os graus de liberdade correspondente são dados por: 2 QME ( a ) + ( b − 1) QME ( b ) n = 2 2 QME ( a ) ( b − 1) QME ( b ) + n1 n2 * A DMS pelo teste de Tukey é: DMS(Tukey) = q a ,n* ( QME * ) r em que: a é o número de tratamentos da parcela; n* é o números de graus de liberdade e r é o número de repetições. 56 Um exemplo de Parcela Subdividida Em um experimento em blocos casualizados, foram testadas 5 espécies de Eucaliptos ssp. (tratamento de subparcela) plantadas cada uma em três espaçamentos (2mx2m; 2,5mx2,5m e 3mx3m – tratamento de parcela), repetidas 3 vezes. Os dados que seguem são referentes às produções volumétricas, em m3, aos 7 anos de idade. Espaçamentos Espécies A B C D E Blocos 2x2 2,5 x 2,5 3x3 1 80 75 68 2 66 70 68 3 65 80 78 1 110 100 120 2 115 110 120 3 98 100 99 1 76 78 110 2 66 90 110 3 70 98 110 1 82 86 100 2 70 98 110 3 76 90 105 1 80 84 103 2 73 94 108 3 69 88 103 Experimentos em parcelas subdivididas no Sisvar Sejam os dados acima referentes a um experimento instalado no delineamento em blocos casualizados num esquema de parcela subdividida para avaliar as produções volumétricas, em m3, de cinco espécies de Eucaliptos ssp. a.1) Criar arquivo de dados no excel (exemplo PARCSUB.xls) a.2) Salvar arquivo excel (exemplo PARCSUB.xls) como arquivo tipo DBF 4 - dbase IV (exemplo PARCSUB.dbf) 57 a.3) Efetuar a análise de variância • Ir para Análise\Anava • Abrir arquivo • Digitar as Fonte de Variação (ver Tabela 23) • Clicar em BLOCO e adicionar • Clicar em ESPAÇAMENTO e adicionar • Clicar em Erro = BLOCO * ESPAÇAMENTO e adicionar (No caso do delineamento inteiramente casualizado clicar em REP (ESPAÇAMENTO) – ver Tabela 22) • Clicar em ESPÉCIES e adicionar • Clicar em ESPÉCIES * ESPAÇAMENTOS e adicionar • Clicar em Fim. a.4) Testes de comparações de médias • Escolher a opção Teste de Tukey para ESPÉCIES e ESPAÇAMENTOS caso a interação não seja significativa; • Caso a interação seja significativa escolher Teste de Tukey para ESPECIES (ESPAÇAMENTO) e Teste de Tukey para ESPAÇAMENTO (ESPÉCIES); • Para o desdobramento de ESPÉCIES (ESPAÇAMENTOS) utilizar variância complexa ( b = k − 1 ; k é o número de níveis do fator da subparcela (ESPÉCIES), no nosso exemplo k =5, os quadrados QMEa = 1; QMEb = 2 . 58 médios dos erros a e b são: Tabela 24. Dados de um experimento instalado no delineamento em blocos casualizados em esquema de parcela subdividida para avaliar o efeito de 5 espécies de Eucaliptos ssp (subparcelas) plantadas cada uma em três espaçamentos (parcela) em 3 blocos, em que se avaliou as produções pluviométricas, em m3. ESPECIES A A A A A A A A A B B B B B B B B B C C C C C C C C C D D D D D D D D D E E E E E E E E E ESPAÇAMENTOS 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 BLOCO 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 PRODUÇÕES 80 66 65 75 70 80 68 68 78 110 115 98 100 110 100 120 120 99 76 66 70 78 90 98 110 110 110 82 70 76 86 98 90 100 110 105 80 73 69 84 94 88 103 108 103 RESULTADOS Arquivo analisado: C:\Documents and Settings\Bessa\Meus documentos\Roberta\Curso de estatística experimental\exemplo PARCSUB.DB 59 -------------------------------------------------------------------------------Variável analisada: PRODUÇÕES Opção de transformação: Variável sem transformação ( Y ) TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------BLOCO 2 51.244444 25.622222 0.231 0.8039 ESPAÇAMENTO 2 3336.044444 1668.022222 15.011 0.0138 erro 1 4 444.488889 111.122222 ESPECIES 4 5773.422222 1443.355556 40.550 0.0000 ESPECIES*ESPAÇAMENTO 8 1841.511111 230.188889 6.467 0.0002 erro 2 24 854.266667 35.594444 -------------------------------------------------------------------------------Total corrigido 44 12300.977778 -------------------------------------------------------------------------------CV 1 (%) = 11.72 CV 2 (%) = 6.63 Média geral: 89.9777778 Número de observações: 45 --------------------------------------------------------------------------------------------------------------------------------------------------------------- Análise do desdobramento de ESPECIES dentro de cada nível de: ESPAÇAMENTO -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------ESPECIES /1 4 2992.933333 748.233333 21.021 0.0000 ESPECIES /2 4 1218.933333 304.733333 8.561 0.0002 ESPECIES /3 4 3403.066667 850.766667 23.902 0.0000 Resíduo 24 854.266667 35.594444 -------------------------------------------------------------------------------Codificação usada para o desdobramento cod. ESPAÇAMENTO 1 = 1 2 = 2 3 = 3 Teste de Tukey para o desdobramento de ESPECIES dentro da codificação: 1 (2 x 2) Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste Tukey para a FV ESPECIES -------------------------------------------------------------------------------DMS: 14.355597926012 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 3.44453404901371 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------A 70.333333 a1 C 70.666667 a1 E 74.000000 a1 D 76.000000 a1 B 107.666667 a2 -------------------------------------------------------------------------------- Teste de Tukey para o desdobramento de ESPECIES dentro da codificação: 2 (2,5 x 2,5) Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste Tukey para a FV ESPECIES -------------------------------------------------------------------------------- 60 DMS: 14.355597926012 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 3.44453404901371 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------A 75.000000 a1 E 88.666667 a1 a2 C 88.666667 a1 a2 D 91.333333 a2 a3 B 103.333333 a3 -------------------------------------------------------------------------------Teste de Scott-Knott (1974) para o desdobramento de ESPECIES dentro da codificação: 2 Obs. Identifique a codificação conforme valores apresentados anteriormente NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 4.11096095821889 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------A 75.000000 a1 E 88.666667 a2 C 88.666667 a2 D 91.333333 a2 B 103.333333 a3 -------------------------------------------------------------------------------- Teste de Tukey para o desdobramento de ESPECIES dentro da codificação: 3 (3 x 3) Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste Tukey para a FV ESPECIES -------------------------------------------------------------------------------DMS: 14.355597926012 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 3.44453404901371 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------A 71.333333 a1 E 104.666667 a2 D 105.000000 a2 C 110.000000 a2 B 113.000000 a2 --------------------------------------------------------------------------------------------------------------------------------------------------------------- Análise do desdobramento de ESPAÇAMENTO dentro de cada nível de: ESPECIES -------------------------------------------------------------------------------TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------ESPAÇAMENTO /1 2 36.222222 18.111111 0.357 0.7029 ESPAÇAMENTO /2 2 140.666667 70.333333 1.387 0.2736 61 ESPAÇAMENTO /3 2 2326.222222 1163.111111 22.941 0.0000 ESPAÇAMENTO /4 2 1262.888889 631.444444 12.455 0.0005 ESPAÇAMENTO /5 2 1411.555556 705.777778 13.921 0.0003 Resíduo 16 811.200000 50.700000 -------------------------------------------------------------------------------Codificação usada para o desdobramento cod. ESPECIES 1 = A 2 = B 3 = C 4 = D 5 = E Teste de Tukey para o desdobramento de ESPAÇAMENTO dentro da codificação: 1 (A) Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste Tukey para a FV ESPAÇAMENTO -------------------------------------------------------------------------------DMS: 15.0091086260254 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 4.11096095821889 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------1 70.333333 a1 3 71.333333 a1 2 75.000000 a1 -------------------------------------------------------------------------------- Teste de Tukey para o desdobramento de ESPAÇAMENTO dentro da codificação: 2 (B) Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste Tukey para a FV ESPAÇAMENTO -------------------------------------------------------------------------------DMS: 15.0091086260254 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 4.11096095821889 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------2 103.333333 a1 1 107.666667 a1 3 113.000000 a1 -------------------------------------------------------------------------------- Teste de Tukey para o desdobramento de ESPAÇAMENTO dentro da codificação: 3 (C) Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste Tukey para a FV ESPAÇAMENTO -------------------------------------------------------------------------------DMS: 15.0091086260254 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 4.11096095821889 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------1 70.666667 a1 2 88.666667 a2 3 110.000000 a3 -------------------------------------------------------------------------------- 62 Teste de Tukey para o desdobramento de ESPAÇAMENTO dentro da codificação: 4 (D) Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste Tukey para a FV ESPAÇAMENTO -------------------------------------------------------------------------------DMS: 15.0091086260254 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 4.11096095821889 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------1 76.000000 a1 2 91.333333 a2 3 105.000000 a2 -------------------------------------------------------------------------------- Teste de Tukey para o desdobramento de ESPAÇAMENTO dentro da codificação: 5 (E) Obs. Identifique a codificação conforme valores apresentados anteriormente -------------------------------------------------------------------------------Teste Tukey para a FV ESPAÇAMENTO -------------------------------------------------------------------------------DMS: 15.0091086260254 NMS: 0.05 -------------------------------------------------------------------------------Média harmonica do número de repetições (r): 3 Erro padrão: 4.11096095821889 -------------------------------------------------------------------------------Tratamentos Médias Resultados do teste -------------------------------------------------------------------------------1 74.000000 a1 2 88.666667 a1 3 104.666667 a2 -------------------------------------------------------------------------------- APRESENTAÇÃO DOS RESULTADOS 30 caso: Comparação das médias de tratamentos das subparcelas (espécies) em cada nível dos tratamentos da parcela (espaçamentos) – usou o erro (b) da análise de variância na comparação. Análise do desdobramento de ESPECIES dentro de cada nível de: ESPAÇAMENTOS TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------ESPECIES /1 4 2992.933333 748.233333 21.021 0.0000 ESPECIES /2 4 1218.933333 304.733333 8.561 0.0002 ESPECIES /3 4 3403.066667 850.766667 23.902 0.0000 Resíduo 24 854.266667 35.594444 -------------------------------------------------------------------------------Codificação usada para o desdobramento cod. ESPAÇAMENTO 1 = 1 2 = 2 3 = 3 63 40 caso: Comparação das médias de tratamentos das parcelas (espaçamentos) em cada nível dos tratamentos da subparcela (espécies) – usou o erro * e gl *. Análise do desdobramento de ESPAÇAMENTOS dentro de cada nível de: ESPÉCIES TABELA DE ANÁLISE DE VARIÂNCIA -------------------------------------------------------------------------------FV GL SQ QM Fc Pr>Fc -------------------------------------------------------------------------------ESPAÇAMENTO /1 2 36.222222 18.111111 0.357 0.7029 ESPAÇAMENTO /2 2 140.666667 70.333333 1.387 0.2736 ESPAÇAMENTO /3 2 2326.222222 1163.111111 22.941 0.0000 ESPAÇAMENTO /4 2 1262.888889 631.444444 12.455 0.0005 ESPAÇAMENTO /5 2 1411.555556 705.777778 13.921 0.0003 Resíduo 16 811.200000 50.700000 -------------------------------------------------------------------------------Codificação usada para o desdobramento cod. ESPECIES 1 = A 2 = B 3 = C 4 = D 5 = E Tabela 25. Valores médios (erro padrão) de produção de madeira, em m3, de 5 espécies de Eucaliptos ssp. Espaçamentos1 Espécies2 2m x 2m 2,5m x 2,5m 3m x 3m Médias A 70 (3,4) b A 75 (3,4) c A 71 (3,4) b A 72 (2,0) c B 108 (3,4) a A 103 (3,4) a A 113 (3,4) a A 108 (2,0) a C 71 (3,4) b C 89 (3,4) bc B 110 (3,4) b A 90 (2,0) b D 76 (3,4) b B 91 (3,4) ab A 105 (3,4) b A 91 (2,0) b E 74 (3,4) b B 89 (3,4) bc B 105 (3,4) b A 89 (2,0) b 80 (2,7) B 89 (2,7) AB 101 (2,7) A Médias 1 Médias seguidas de mesma letra maiúscula, na linha não diferem entre si pelo teste de Tukey considerando o valor nominal de significância de 5%; 2 – Médias seguidas de mesma letra minúscula, na coluna, não diferem entre si pelo teste de Tukey com o valor nominal de 5% de probabilidade. Interpretação dos resultados Os resultados experimentais mostram que a produção de madeira, em m3, para as espécies A e B foram estatisticamente iguais sob os diferentes espaçamentos estudados. Para as espécies C e E a produção de madeira foi estatisticamente superior as demais quando cultivada sob espaçamento 3m x 3m. Para a espécie D, o volume de madeira produzido sob os espaçamentos 3m x 3m e 2,5m x 2,5m não diferiram entre si pelo teste de Tukey considerando o valor nominal de 5% de significância. Para os espaçamentos 2m x 2m e 3m x 3m, a espécie B superou as demais em produção de madeira, sendo as demais estatisticamente 64 iguais entre si pelo teste de Tukey com o valor nominal de 5% de significância. Para o espaçamento 2,5m x 2,5m as espécies B e D foram estatisticamente semelhantes quanto à produção de madeira, em m3, e superiores as demais espécies em estudo, sendo que a espécie D não diferiu estatisticamente das espécies C e E pelo teste de Tukey considerando o valor nominal de 5% de significância. 12. REFERÊNCIAS BIBLIOGRÁFICAS ALTHAUS, R.A., CANTERI, M.G., GIGLIOTI, E.A. Tecnologia da informação aplicada ao agronegócio e ciências ambientais: sistema para análise e separação de médias pelos métodos de Duncan, Tukey e Scott-Knott. Anais do X Encontro Anual de Iniciação Científica, Parte 1, Ponta Grossa, p.280-281, 2001. BANZATTO, D. V.; KRONKA, S. do N. Experimentação agrícola. Jaboticabal: FCAV/UNESP, 1995. 247 p. CRUZ, C. D. Programa Genes: versão Windows; aplicativo computacional em genética e estatística. Viçosa: UFV. 2001. 648 p. FERREIRA, D. F. Análises estatísticas por meio do Sisvar para Windows versão 4.0. In: Reunião Anual da Região Brasileira da Sociedade internacional de Biometria, 45., 2000a, São Carlos, Programa e resumos... São Carlos: UFSCar, 2000a, p. 255-258. FERREIRA, P. V. Estatística experimental aplicada à agronomia. 3. ed. Maceió: EDUFAL, 2000b. 422 p. PIMENTEL GOMES, F. Curso de estatística experimental. 14. ed., Piracicaba: Nobel, 2000. 477 p. PIMENTEL GOMES, F.; GARCIA, C.H. Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. Piracicaba: FEALQ, 2002. RIBEIRO JÚNIOR, J. I. Análises estatísticas no SAEG. Viçosa: UFV, 2001. 301 p. STATGRAPHICS. Statgraphics Plus for Windows v. 4.0: User manual. Illinois: Manugistics Inc., 1999. STATISTICA. Statistica for Windows v. 6.0: Computer program manual. Tulsa, OK: StatSoft Inc., 2002. ZONTA, E. P.; MACHADO, A. A. Manual do SANEST: Sistema de análise estatística para microcomputadores. Pelotas: UFPEL, 1991. 102 p. 65 13. CONTATOS Roberta Bessa Veloso Silva Doutoramento em Estatística e Experimentação Agropecuária Universidade Federal de Lavras/UFLA Departamento de Ciências Exatas/DEX Tel: (35) 3829 1369 e-mail: [email protected] Cep: 37200-000 Lavras, MG 66