Aula 3
Estrutura Atômica – cont…
Tabela Periódica
Mecânica quântica e
orbitais atômicos
• Schrödinger propôs uma equação que contém os termos onda e
partícula.
• A resolução da equação leva às funções de onda.
• A função de onda fornece o contorno do orbital eletrônico.
• O quadrado da função de onda fornece a probabilidade de se
encontrar o elétron, isto é, dá a densidade eletrônica para o átomo.
Mecânica quântica e
orbitais atômicos
Distribuiۥo da densidade eletronica no estado
fundamental do ‚tomo de hidrogƒnio.
Mecânica quântica e
orbitais atômicos
Orbitais e números quânticos
•
•
•
Se resolvermos a equação de Schrödinger, teremos as funções de
onda e as energias para as funções de onda.
Chamamos as funções de onda de orbitais.
A equação de Schrödinger necessita de três números quânticos:
1. Número quântico principal, n. Este é o mesmo n de Bohr.
À medida que n aumenta, o orbital torna-se maior e o elétron
passa mais tempo mais distante do núcleo.
Mecânica quântica e
orbitais atômicos
Orbitais e números quânticos
2. O número quântico azimuthal, l. Esse número quântico
depende do valor de n. Os valores de l começam de 0 e
aumentam até n -1. Normalmente utilizamos letras para l (s,
p, d e f para l = 0, 1, 2, e 3). Geralmente nos referimos aos
orbitais s, p, d e f.
3. O número quântico magnético, ml. Esse número quântico
depende de l. O número quântico magnético tem valores
inteiros entre -l e +l. Fornecem a orientação do orbital no
espaço.
Mecânica quântica e
orbitais atômicos
Orbitais e números quânticos
Representações orbitias
Orbitais s
•
•
•
•
•
•
Todos os orbitais s são esféricos.
À medida que n aumenta, os orbitais s ficam maiores.
À medida que n aumenta, aumenta o número de nós.
Um nó é uma região no espaço onde a probabilidade de se
encontrar um elétron é zero.
Em um nó, Ψ2 = 0
Para um orbital s, o número de nós é n-1.
Representações orbitias
Representações orbitias
Orbitais s
Representações orbitias
Orbitais p
•
•
•
•
•
•
Existem três orbitais p, px, py, e pz.
Os três orbitais p localizam-se ao longo dos eixos x-, y- e z- de um
sistema cartesiano.
As letras correspondem aos valores permitidos de ml, -1, 0, e +1.
Os orbitais têm a forma de halteres.
À medida que n aumenta, os orbitais p ficam maiores.
Todos os orbitais p têm um nó no núcleo.
Representações orbitias
Orbitais p
Representações orbit a i s
Orbitais d e f
•
•
•
•
•
Existem cinco orbitais d e sete orbitais f.
Três dos orbitais d encontram-se em um plano bissecante aos eixos
x-, y- e z.
Dois dos orbitais d se encontram em um plano alinhado ao longo
dos eixos x-, y- e z.
Quatro dos orbitais d têm quatro lóbulos cada.
Um orbital d tem dois lóbulos e um anel.
Representações orbitias
Representações orbitias
Átomos polieletrônicos
Orbitais e suas energias
•
•
•
Orbitais de mesma energia são conhecidos como degenerados.
Para n ≥ 2, os orbitais s e p não são mais degenerados porque os
elétrons interagem entre si.
Portanto, o diagrama de Aufbau apresenta-se ligeiramente
diferente para sistemas com muitos elétrons.
Átomos polieletrônicos
Orbitais e suas energias
Átomos polieletrônicos
Spin eletrônico e o princípio
da exclusão de Pauli
•
•
•
•
O espectro de linhas de átomos polieletrônicos mostra cada linha
como um par de linhas minimamente espaçado.
Stern e Gerlach planejaram um experimento para determinar o
porquê.
Um feixe de átomos passou através de uma fenda e por um campo
magnético e os átomos foram então detectados.
Duas marcas foram encontradas: uma com os elétrons girando em
um sentido e uma com os elétrons girando no sentido oposto.
Átomos polieletrônicos
Spin eletrônico e o princípio
da exclusão de Pauli
Átomos polieletrônicos
Spin eletrônico e o princípio
da exclusão de Pauli
•
Já que o spin eletrônico é quantizado, definimos s = número
quântico de rotação = ± ½.
•
O princípio da exclusão de Pauli: dois elétrons não podem ter a
mesma série de 4 números quânticos. Portanto, dois elétrons no
mesmo orbital devem ter spins opostos.
•
Portanto, cada orbital de um mesmo átomo, definido por três
números quânticos iguais, poderá ter no máximo dois elétrons.
Configurações eletrônicas
Regra de Hund
•
•
As configurações eletrônicas nos dizem em quais orbitais os
elétrons de um elemento estão localizados.
Três regras:
- Os orbitais são preenchidos em ordem crescente de n.
- Dois elétrons com o mesmo spin não podem ocupar o mesmo
orbital (Pauli).
- Para os orbitais degenerados, os elétrons preenchem cada orbital
isoladamente antes de qualquer orbital receber um segundo
elétron (regra de Hund).
O desenvolvimento
da tabela periódica
• Em 2002, havia 115 elementos conhecidos.
• A maior parte dos elementos foi descoberta entre 1735 e 1843.
• Como organizar 115 elementos diferentes de forma que possamos
fazer previsões sobre elementos não descobertos?
Tabela Periódica
Dmitri Ivanovich Mendeleyev
Henry Moseley
O desenvolvimento
da tabela periódica
• Ordenar os elementos de modo que reflitam as tendências nas
propriedades químicas e físicas.
• A primeira tentativa (Mendeleyev e Meyer) ordenou os elementos
em ordem crescente de massa atômica.
• Faltaram alguns elementos nesse esquema.
Exemplo: em 1871, Mendeleyev observou que a posição mais
adequada para o As seria abaixo do P, e não do Si, o que deixou
um elemento faltando abaixo do Si. Ele previu um número de
propriedades para este elemento. Em 1886 o Ge foi descoberto. As
propriedades do Ge se equiparam bem à previsão de Mendeleev.
Configurações eletrônicas
e a tabela periódica
•
•
•
•
•
•
A tabela periódica pode ser utilizada como um guia para as
configurações eletrônicas.
O número do periodo é o valor de n.
Os grupos 1A e 2A têm o orbital s preenchido.
Os grupos 3A -8A têm o orbital p preenchido.
Os grupos 3B -2B têm o orbital d preenchido.
Os lantanídeos e os actinídeos têm o orbital f preenchido.
Configurações eletrônicas
e a tabela periódica
Configurações eletrônicas
Configurações eletrônica condensadas
•
•
•
O neônio tem o subnível 2p completo.
O sódio marca o início de um novo período.
Logo, escrevemos a configuração eletrônica condensada para o
sódio como
Na: [Ne] 3s1
•
•
•
[Ne] representa a configuração eletrônica do neônio.
Elétrons mais internos: os elétrons no [Gás Nobre].
Elétrons de valência: os elétrons fora do [Gás Nobre].
Download

Q.Geral-P1_Aula c1-Niveis Subniveis