Escola Superior de Ciências da Saúde
Clube de revista: Associação
entre defeitos cardíacos
congênitos e pequeno para a
idade gestacional
Internos: Eduardo Campos
Guilherme Aroeira
Jorge Alberto
Coordenação: Paulo R. Margotto
www.paulomargotto.com.br
Introdução
• Prevalência: 8-11/1000 nascidos vivos
• EUA:
~32000-44000
Cardiopatias
congênitas (CHDs)/ano
• Elevados custos (cirurgias;hospitalizações)
• Fatores prognósticos: complexidade da
lesão cardíaca, peso ao nascer,
graus de maturidade pulmonar e de
prematuridade
Introdução
• Pós-correção/paliação cirúrgica: limitação
do crescimento
– Desordens metabólicas
– Ventilação mecânica prolongada
– Alto risco de infecções
– Hospitalizações prolongadas
Introdução
• Revisão bibliográfica
– Associação positiva entre CHDs e PIG/Baixo
peso ao nascer (risco ~1,8-3,6)
– Ausência de ajuste dos fatores maternos e
fetais determinantes do crescimento
– Etiologia multifatorial (PIGxCHDs)
Objetivo
Investigar a associação entre CHDs e RN-PIG
em uma grande amostra populacional
ajustando os fatores maternos e fetais
envolvidos
Materiais e métodos
• Seleção da amostra
– Nascidos entre outubro de 1997 e dezembro
de 2002 e cadastrados no National Birth
Defects Prevention Study (NBDPS)
– Registros de vigilância (8 estados)
Materiais e métodos
• Seleção de casos
– Criança sem doenças genéticas
– CHDs:
<1
ano;
Ecocardiograma,cirúrgico,cateterismo
ou
autópsia
– Mãe fluente em inglês ou espanhol
– Criança não foi colocada para adoção ou
cuidados adotivos
Materiais e métodos
• Seleção de casos
– Gestações únicas
– Sem doenças extracardíacas
Materiais e métodos
• Seleção controles
– Crianças saudáveis nascidas no mesmo
período e nos mesmos estados
– Selecionadas através das certidões de
nascimento ou registros de alta
Materiais e métodos
• ~ 482000 nascidos/ano no período
• 18% das mães dos casos e 21% das mães
dos controles recusaram-se a participar do
NBDPS
Materiais e métodos
• Classificação das CHDs
– Lesões de grandes vasos
– Defeitos septais
– Lesões obstrutivas direita
– Lesões obstrutivas esquerdas
Materiais e métodos
• CHDs excluídas
– Dupla saída de ventrículo direito (VD)
– Lesões cardíacas com três ou mais defeitos
– Defeito venoso pulmonar parcial ou total
Materiais e métodos
• Variáveis maternas e infantis:
–
–
–
–
–
–
–
–
–
–
–
–
Idade
Raça/etnia
Nível sócio-econômico
Ganho de peso gestacional
Paridade
Diabetes Mellitus prévia
Hipertensão Arterial
Infecções (CMV,Rubeóla etc...)
Tabagismo
Etilismo
Drogas Ilícitas
Sexo da criança
Materiais e métodos
• Parâmetros de crescimento:
– PIG: Peso de nascimento < que percentil 10
– Idade gestacional: exame clínico/DPP
Materiais e métodos
• Análise estatística:
– Comparação entre CHDs e controles: MannWhitney/Wilcoxon rank sum test
– Ajuste de variáveis: regressão linear, Odds
Ratios e IC de 95%
Resultados
Discussão
• Relação CHDs x PIGs
– Crianças com CHDs apresentam maior risco
de prematuridade e de serem PIG
– Concordância com a literatura internacional
• Relação Controles x PIGs
– Discordância com a literatura internacional
Discussão
• Etiologia: CHDs e PIGs
– Fatores de risco comuns
– Fatores de risco independentes
– CHDsPIGs
Discussão
• Repercussões pré e pós-natais do estudo
– Nutrição adequada
– Monitorização cuidadosa do crescimento fetal
e neonatal
– Manejo dependente do tipo de lesão cardíaca
Discussão
• Limitações do estudo
– Dificuldade em classificar os prematuros
Discussão
• Novos
estudos buscando avaliar
relações etiológicas PIGsxCHDs
– Implementar medidas pré e pós-natais
• Diagnóstico precoce
• Monitorização cuidadosa
as
Conclusão
• Crianças
com
cardiopatias
congênitas
apresentam um risco duas vezes maior,
aproximadamente, de serem PIGs. Pigs com
CHDs tem suas condutas clínicas, resposta
terapêutica
e
prognóstico
neonatal
afetados.Embora a etiologia do retardo do
crescimento entre crianças com CHDs seja
incerto, novos estudos podem descobrir uma
patogênese comum ou uma relação causal entre
PIG e CHD.
ABSTRACT:
• OBJECTIVES. Infants with congenital heart defects may experience inhibited growth
•
•
•
•
•
during fetal life. In a large case-control study, we addressed the hypothesis that
infants with congenital heart defects are more likely to be small for gestational age
than infants without congenital heart defects after controlling for selected maternal
and infant characteristics.
METHODS. Using data from population-based birth defect registries, the National
Birth Defects Prevention Study enrolled infants with nonsyndromic congenital heart
defects (case subjects) and infants without congenital heart defects or any other
birth defect (control subjects). Small for gestational age was defined as birth weight
below the 10th percentile for gestational age and gender. Association between
congenital heart defects and small for gestational age was examined by conditional
logistic regression adjusting for maternal covariates related to fetal growth.
RESULTS. Live-born singleton infants with congenital heart defects (case subjects, n
= 3395) and live-born singleton infants with no birth defect (control subjects, n =
3924) were included in this study. Case subjects had lower birth weights compared
with control subjects. Small for gestational age was observed among 15.2% of case
subjects and among only 7.8% of control subjects. Congenital heart defect infants
were significantly more likely to be small for gestational age than control infants.
CONCLUSIONS. Infants with congenital heart defects are approximately twice as
likely to be small for gestational age as control subjects. Small for gestational age
status may affect clinical management decisions, therapeutic response, and
prognosis of neonates with congenital heart defects. Although the etiology of growth
retardation among infants with congenital heart defects is uncertain, further
exploration may uncover a common pathogenesis or causal relationship between
congenital heart defects and small for gestational age.
Key Words: small for gestational age • cardiac disease • congenital anomalies
Abbreviations: CHD—congenital heart defect • NBDPS—National Birth Defects
Prevention Study • OR—odds ratio • CI—confidence interval
Referências do artigo:
• Boneva RS, Botto LD, Moore CA, Yang Q, Correa A, Erickson JD. Mortality associated
•
•
•
•
•
•
•
•
•
with congenital heart defects in the United States: trends and racial disparities, 1979–
1997. Circulation. 2001;103 :2376 –2381[Abstract/Free Full Text]
Cleves MA, Ghaffar S, Zhao W, Mosley BS, Hobbs CA. First-year survival of infants
born with congenital heart defects in Arkansas (1993–1998): a survival analysis using
registry data. Birth Defects Res. Part A Clin Mol Teratol. 2003;67 :662 –668[CrossRef]
Tilford JM, Robbins JM, Hobbs CA. Improving estimates of caregiver time cost and
family impact associated with birth defects. Teratology. 2001;64(suppl 1) :S37 –S41
Waitzman NJ, Romano PS, Scheffler RM. Estimates of the economic costs of birth
defects. Inquiry. 1994;31 :188 –205[ISI][Medline]
Ades A, Johnson BA, Berger S. Management of low birth weight infants with
congenital heart disease. Clin Perinatol. 2005;32 :999 –xi[CrossRef][ISI][Medline]
Peterson RE, Wetzel GT. Growth failure in congenital heart disease: where are we
now? Curr Opin Cardiol. 2004;19 :81 –83[CrossRef][ISI][Medline]
Castaneda AR, Jonas RA, Mayer JE Jr, Hanley FL. Cardiac Surgery of the Neonate and
Infant. Philadelphia, PA: Elsevier; 2004
Bove T, Francois K, DeGroote K, et al. Outcome analysis of major cardiac operations
in low weight neonates. Ann Thorac Surg. 2004;78 :181 –187[Abstract/Free Full Text]
Rossi AF, Seiden HS, Sadeghi AM, et al. The outcome of cardiac operations in infants
weighing two kilograms or less. J Thorac Cardiovasc Surg. 1998;116 :28 –
35[Abstract/Free Full Text]
Rosenthal GL, Wilson PD, Permutt T, Boughman JA, Ferencz C. Birth weight and
cardiovascular malformations: a population-based study. The Baltimore-Washington
Infant Study. Am J Epidemiol. 1991;133 :1273 –1281[Abstract/Free Full Text]
• Khoury MJ, Erickson JD, Cordero JF, McCarthy BJ. Congenital malformations and intrauterine
•
•
•
•
•
•
•
•
•
growth retardation: a population study. Pediatrics. 1988;82 :83 –90[Abstract/Free Full Text]
Kramer HH, Trampisch HJ, Rammos S, Giese A. Birth weight of children with congenital heart
disease. Eur J Pediatr. 1990;149 :752 –757[CrossRef][ISI][Medline]
Levin DL, Stranger P, Kitterman JA, Heymann MA. Congenital heart disease in low birth
weight infants. Circulation. 1975;52 :500 –503[Abstract/Free Full Text]
Cedergren MI, Kallen BA. Obstetric outcome of 6346 pregnancies with infants affected by
congenital heart defects. Eur J Obstet Gynecol Reprod Biol. 2006;125 :211 –
216[CrossRef][ISI][Medline]
Jacobs EG, Leung MP, Karlberg J. Birthweight distribution in southern Chinese infants with
symptomatic congenital heart disease. J Paediatr Child Health. 2003;39 :191 –
196[ISI][Medline]
Ferencz C, Loffredo CA, Correa A, Wilson PD. Genetic and Environmental Risk Factors of
Major Cardiovascular Malformations: The Baltimore-Washington Infant Study 1981–1989.
Armonk, NY: Futura Publishing Co, Inc; 1997
Dejin-Karlsson E, Hanson BS, Ostegren PO, Sjoberg WO, Marsal K. Does passive smoking in
early pregnancy increase the risk of small-for-gestational-age infants? Am J Public Health.
1998;88 :1523 –1527[Abstract/Free Full Text]
Infante-Rivard C, Weinberg CR, Guiguet M. Xenobiotic-metabolizing genes and small-forgestational-age births: interaction with maternal smoking. Epidemiology. 2006;17 :38 –
46[CrossRef][ISI][Medline]
Salihu HM, Shumpert MN, Aliyu MH, Kirby RS, Alexander GR. Smoking-associated fetal
morbidity among older gravidas: a population study. Acta Obstet Gynecol Scand. 2005;84
:329 –334[CrossRef][ISI][Medline]
Mitchell EA, Thompson JA, Robinson E, et al. Smoking, nicotine and tar and risk of small for
gestational age babies. Acta Paediatr. 2002;91 :323 –328[CrossRef][ISI][Medline]
• Chiolero A, Bovet P, Paccaud F. Association between maternal smoking and low birth weight in
•
•
•
•
•
•
•
•
•
•
Switzerland: the EDEN study. Swiss Med Wkly. 2005;135 :525 –530[ISI][Medline]
Hobbs CA, James SJ, Jernigan S, et al. Congenital heart defects, maternal homocysteine,
smoking, and the 677 C>T polymorphism in the methylenetetrahydrofolate reductase gene:
evaluating gene-environment interactions. Am J Obstet Gynecol. 2006;194 :218 –
224[CrossRef][ISI][Medline]
Woods SE, Raju U. Maternal smoking and the risk of congenital birth defects: a cohort study. J
Am Board Fam Pract. 2001;14 :330 –334[Medline]
Kallen K. Maternal smoking and congenital heart defects. Eur J Epidemiol. 1999;15 :731 –
737[CrossRef][ISI][Medline]
Hobbs CA, Malik S, Zhao, W, James SJ, Melnyk S, Cleves MA. Maternal homocysteine and
congenital heart defects. J Am Coll Cardiol. 2006;47 :683 –685[Free Full Text]
Yajnik CS, Deshpande SS, Panchanadiker AV, et al. Maternal total homocysteine concentration
and neonatal size in India. Asia Pac J Clin Nutr. 2005;14 :179 –181[ISI][Medline]
Hobbs CA, Cleves MA, Melnyk S, Zhao W, James SJ. Congenital heart defects and abnormal
maternal biomarkers of methionine and homocysteine metabolism. Am J Clin Nutr. 2005;81
:147 –153[Abstract/Free Full Text]
Leiva MC, Tolosa JE, Binotto CN, et al. Fetal cardiac development and hemodynamics in the first
trimester. Ultrasound Obstet Gynecol. 1999;14 :169 –174[CrossRef][ISI][Medline]
Clapp JF, III. The clinical significance of asymmetric intrauterine growth retardation. Pediatr
Ann. 1996;25 :223 –227[ISI][Medline]
Yoon PW, Rasmussen SA, Lynberg MC, et al. The National Birth Defects Prevention Study. Public
Health Rep. 2001;116(suppl 1) :32 –40
Lin A, Botto L, Ghaffar S, Cosper C, Correa A. The National Birth Defects Prevention Study.
Classification of cardiovascular malformations in the National Birth Defects Prevention Study
[abstract]. Am J Hum Genet.
• Cogswell ME, Yip R. The influence of fetal and maternal factors on the distribution of
•
•
•
•
•
•
•
•
birth weight. Semin Perinatol. 1995;19 :222 –240[CrossRef][ISI][Medline]
Martikainen MA. Effects of intrauterine growth retardation and its subtypes on the
development of the preterm infant. Early Hum Dev. 1992;28 :7 –
17[CrossRef][ISI][Medline]
Ashworth A. Effects of intrauterine growth retardation on mortality and morbidity in
infants and young children. Eur J Clin Nutr. 1998;52(suppl 1) :S34– S41[CrossRef]
Alexander GR, Kogan M, Bader D, Carlo W, Allen M, Mor J. US birth
weight/gestational age-specific neonatal mortality: 1995–1997 rates for whites,
Hispanics, and blacks. Pediatrics. 2003;111 (1). Available at:
www.pediatrics.org/cgi/content/full/111/1/e61
Zhang J, Bowes WA Jr. Birth-weight-for-gestational-age patterns by race, sex, and
parity in the United States population. Obstet Gynecol. 1995;86 :200 –208[Abstract]
Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A United States national
reference for fetal growth. Obstet Gynecol. 1996;87 :163 –168[Abstract]
Clausson B, Cnattingius S, Axelsson O. Preterm and term births of small for
gestational age infants: a population-based study of risk factors among nulliparous
women. Br J Obstet Gynaecol. 1998;105 :1011 –1017[ISI][Medline]
Tanner K, Sabrine N, Wren C. Cardiovascular malformations among preterm infants.
Pediatrics. 2005;116 (6). Available at:
www.pediatrics.org/cgi/content/full/116/6/e833
Snijders RJ, Abbas A, Melby O, Ireland RM, Nicolaides KH. Fetal plasma erythropoietin
concentration in severe growth retardation. Am J Obstet Gynecol. 1993;168 :615 –
619[ISI][Medline]
• Villar J, Merialdi M, Gulmezoglu AM, et al. Characteristics of randomized controlled
•
•
•
•
•
•
trials included in systematic reviews of nutritional interventions reporting maternal
morbidity, mortality, preterm delivery, intrauterine growth restriction and small for
gestational age and birth weight outcomes. J Nutr. 2003;133 :1632S –
1639S[Free Full Text]
Hobbins J. Morphometry of fetal growth. Acta Paediatr. 1997;423(suppl) :165 –168
Soothill PW, Bobrow CS, Holmes R. Small for gestational age is not a diagnosis.
Ultrasound Obstet Gynecol. 1999;13 :225 –228[CrossRef][ISI][Medline]
Schuurmans FM, Pulles-Heintzberger CF, Gerver WJ, Kester AD, Forget PP. Long-term
growth of children with congenital heart disease: a retrospective study. Acta Paediatr.
1998;87 :1250 –1255[CrossRef][ISI][Medline]
Chatelain P. Children born with intra-uterine growth retardation (IUGR) or small for
gestational age (SGA): long term growth and metabolic consequences. Endocr Regul.
2000;34 :33 –36[Medline]
Strauss RS, Dietz WH. Effects of intrauterine growth retardation in premature infants
on early childhood growth. J Pediatr. 1997;130 :95 –102[CrossRef][ISI][Medline]
Albertsson-Wikland K, Karlberg J. Postnatal growth of children born small for
gestational age. Acta Paediatr. 1997;423(suppl) :193 –195
Ddo Eduardo
Ddo Jorge
Obrigado.
Ddo Guilherme
Download

Escola Superior de Ciências da Saúde HMIB – Internato em