Escola Superior de Ciências da Saúde (ESCS)/SES/DF
A concentração de angiopoetina 2 em
crianças desenvolvendo displasia
broncopulmonar: uma atenuação pela
dexametasona
Clube de Revista
Brenda Carla Lima Silva
Janayana Oliveira Almeida
Pablo Almeida Rocha
Orientação: Dr Paulo R. Margotto
www.paulomargotto.com.br
26/2//2008 – Hospital Regional da Asa Sul/SES/DF
1
Angiopoietin 2 concentrations in
infants developing bronchopulmonary
dysplasia: attenuation by
dexamethasone
ZH Aghai1, S Faqiri1, JG Saslow1, T Nakhla1, S
Farhath1, A Kumar1, R Eydelman2, L Strande2, G
Stahl1, P Leone2 and V Bhandari3
1Department
of Pediatrics, Cooper University Hospital Robert Wood Johnson Medical School,
UMDNJ Camden, NJ, USA; 2Department of Surgery, Cooper University Hospital Robert Wood
Johnson Medical School, UMDNJ Camden, NJ, USA and 3Division of Perinatal Medicine,
Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
J Perinatol 2008; 28: 149-155
2
Introdução




DBP: importante causa de morbimortalidade
em prematuros
Importante sequela: hiperreatividade de
vias aéreas e asma
Incidência sem mudanças significativas na
ultima década
Patogenia complexa: injúrias (infecção intraútero, por ventilação mecânica, hiperoxia)
desencadeiam cascata inflamatória, que age
em células imaturas do pulmão
3
Introdução

Angiopoetina2:
– Regulariza angiogênese e integridade
vascular
– Na inflamação: citocinas induzem a
expressão de Ang2 nos sítios de ativação
endotelial
– Sua liberação: rápida desestabilização do
endotélio, disparando a resposta
inflamatória
4
Incrementa resposta inflamatória e
desencadeia morte de células
pulmonares expostas à hiperoxia!!!
5
Objetivo


Medir Ang2 na amostra de Aspirado
Traqueal (TA) e associar ao
desenvolvimento de DBP ou morte em
prematuros ventilados
Avaliar o efeito do uso de
dexametasona na concentração de
Ang2
6
Métodos

População:
– 39 leitos de UTI Neo do Cooper
University Hospital in Camden, NJ
– Março/2003 a outubro/2006
– Aprovado por comitê de ética;
consentimento livre e esclarecido
– Eleitos: IG< 32 sem e necessidade de VM
– DBP = O2 por IGPC>=36 sem
7
Métodos

Coleta da amostra:
– Dias 1, 3, 5 e 7, na vigência de VM
– Amostra adicional: antes e 48h a 72h
depois de iniciar corticoterapia
– Corticóide: 9 dias (0,3/0,2/0,1 mg/kg/dia)
– Instilação de 0,5ml de SF no tubo, e
sucção de resíduo após 3 ventilações
– Processamento em 30 min em
laboratório: centrifugação
8
Métodos

Teste de ang2
– Medido por Kit ELISA
– Detecção de 1,2 a 21,3 pg/ml
(média:8,3)
– Sem reatividade cruzada com Ang1, Tie2
ou fator de crescimento endotelial

Teste de proteína:
– Concentração de proteína foi medida em
cada amostra para correção da diluição
durante a lavagem
9
Métodos

Análise estatística
– SigmaStat 3,1 (pacote estatístico do
Windows)
– Valor mínimo de significância = 12
(alfa=0,05)
– Dados continuos:Teste de T-Student,
Mann-Witney, U-test,
– Dados categóricos: X2 ou Fisher
– Análise da curva: MedCalc
– Significância: P<= 0,05
10
Resultados
• Foram coletados 151 amostras de 60 prematuros
ventilados;
• 12 crianças não apresentaram DBP ( IG: 26,5 +/- 2,1
semanas e peso ao nascer: 913 +/- 230g);
• 32 crianças desenvolveram DBP ( IG: 25,8 +/-1,4
semanas e peso ao nascer: 768 +/- 157g);
• 16 crianças foram a óbito antes de 36 semanas da
IGpc ( IG: 24,5 +/- 1,1 semanas e peso ao nascer:
710 +/- 143g)
11
Resultados
• Na primeira semana de vida, a concentração de
angiopoetina 2 foi significativamente baixa nas
crianças sem DBP (157, 16 e 218 pg/mg), quando
comparada aos que desenvolveram DBP (234, 138
e 338pg/mg, P= 0,03) ou aos que morreram
(234, 157 e 347 pg/mg, P= 0,017);
12
Resultados
• 26 crianças (Peso ao nascer: 719 +/- 136g e
IG: 25,1 +/-1,3 semanas) , receberam terapia
com corticóide – 27 doses de Dexametasona;
• a concentração de angiopoetina 2
antes de
iniciar a corticoterapia foi 202, 137 e 278
pg/mg;
• esta
concentração
foi
significativamente
diminuída após o fim da terapia : 144, 0 e 224
pg/mg (p=0,007);
13
Resultados
Características dos grupos
14
Discussão

Vários estudos utilizam vários marcadores
para a identificação de DBP em aspirados
traqueais (AT) de prematuros ventilados
(TNFα, IL1, IL6, etc), com vários deles
sendo propostos para o diagnóstico da DBP,
mas os resultados foram inconclusivos por
uso de diferentes metodologias e
concentração-dependentes!
15
Discussão

O que os estudos mostram:
– IL1β, IL6, IL8, VEGF, fator de crescimento
de queratinócitos, proteína quimiotáxica
de monócitos estão relacionadas a injúria
dos pulmões, in vitro
16
Discussão

A maioria dos estudos teve um n
diminuído, com coleta de AT em
períodos diferentes, sem
padronização, com definições variáveis
de DBP
-Aspirado traqueal X lavagem broncoalveolar
-Padronização do aspirado traqueal
17
Discussão

Neste estudo os valores de Ang2
foram padronizadas pela correção da
diluição...
Mas mesmo sem usar o método
para corrigir a diluição, os
resultados se mostraram
significativos!!
18
Discussão
Concentração de Ang2 (corrigida) em aspirados traqueais
19
Discussão
Concentração de Ang2 (não-corrigida) em aspirados traqueais
20
Discussão
Concentração de Ang2 em ATs nos dias 1, 3, 5 e 7
21
Discussão

Pontos fortes do estudo:
– Grande coorte
– Múltiplas amostras em tempos clínicos
relevantes
– DBP definida a 36 semanas de IGpc
22
Discussão

Dexametasona foi associada com
decréscimo significativo das
concentrações de Ang2 (com ou sem
diluição), e com ou sem DBP
– Pequeno n (apenas 5 sem DBP)
23
Discussão
Concentração de Ang2 (corrigida) antes e depois da Dex
24
Conclusão


Concentração de Ang2 está
significativamente aumentada em bebês, na
primeira semana de vida, que tiveram uma
intercorrência (DBP e/ou morte)
A terapia com dexametasona foi associada
com uma diminuição nos valores de Ang2
nos aspirados traqueais
25
Abstract
Objectives:
To study the association between angiopoietin 2 (Ang2) concentrations in tracheal aspirates
(TAs) and adverse outcome (bronchopulmonary dysplasia (BPD)/death) in ventilated premature
infants (VPIs) and modulation of Ang2 concentrations with dexamethasone (Dex) use.
Study Design:
Serial TA samples were collected on days 1, 3, 5 and 7, and Ang2 concentrations were
measured. Ang2 TA concentrations were compared prior to and after 48 to 72 h of using Dex.
Result:
A total of 151 TA samples were collected from 60 VPIs. BPD was defined as the oxygen
requirement at 36 weeks postmenstrual age (PMA). Twelve infants (mean s.d.) (gestational age
(GA) 26.5 2.1 weeks, birth weight (BW) 913 230 g) had no BPD, 32 infants (GA 25.8 1.4 weeks,
BW 768 157 g) developed BPD and 16 infants (GA 24.5 1.1 weeks, BW 710 143 g) died before
36 weeks PMA. Ang2 concentrations were significantly lower in infants with no BPD (median,
25th and 75th percentile) (157, 16 and 218 pg mg-1) compared with those who developed BPD
(234, 138 and 338 pg mg-1, P=0.03) or BPD and/or death (234, 157 and 347 pg mg-1,
P=0.017), in the first week of life. Twenty-six VPIs (BW 719 136 g, GA 25.1 1.3 weeks)
received 27 courses of Dex. Ang2 concentrations before starting Dex were 202, 137 and
278 pg mg-1 and significantly decreased to 144, 0 and 224 pg mg-1 after therapy (P=0.007).
Conclusions:
Higher Ang2 concentrations in TAs are associated with the development of BPD or death in
VPIs.Dex use suppressed Ang2 concentrations.
Keywords:
cytokines, premature, newborns, lung, inflammation, hyperoxia, tracheal aspirates
26
Referências do artigo:








Fanaroff AA, Hack M, Walsh MC. The NICHD neonatal research network: changes in
practice and outcomes during the first 15 years. Semin Perinatol 2003; 27: 281–
287. | Article | PubMed |
Bhandari A, Bhandari V. Pathogenesis, pathology and pathophysiology of pulmonary
sequelae of bronchopulmonary dysplasia in premature infants. Front Biosci 2003;
8: e370–380. | Article | PubMed | ISI | ChemPort |
Bhandari A, Bhandari V. Bronchopulmonary dysplasia: an update. Indian J Pediatr
2007; 74: 73–77. | Article | PubMed |
Hamilton BE, Martin JA, Sutton PD. Births: preliminary data for 2003. Natl Vital Stat
Rep 2004; 53: 1–17. | PubMed |
Akram Khan M, Kuzma-O'Reilly B, Brodsky NL, Bhandari V. Site-specific characteristics
of infants developing bronchopulmonary dysplasia. J Perinatol 2006; 26: 428–
435. | Article | PubMed | ChemPort |
Bhandari V, Bizzarro MJ, Shetty A, Zhong X, Page GP, Zhang H et al. Familial and
genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics
2006; 117: 1901–1906. | Article | PubMed |
Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific
growth factors and blood vessel formation. Nature 2000; 407: 242–
248. | Article | PubMed | ISI | ChemPort |
Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J et al. Angiopoietin-2
is required for postnatal angiogenesis and lymphatic patterning, and only the latter
role is rescued by Angiopoietin-1. Dev Cell 2002; 3: 411–
423. | Article | PubMed | ISI | ChemPort |
27









Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G et al.
Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the
induction of inflammation. Nat Med 2006; 12: 235–
239. | Article | PubMed | ISI | ChemPort |
Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA et al. Excess
circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in
humans. PLoS Med 2006; 3: e46. | Article | PubMed | ChemPort |
Orfanos SE, Kotanidou A, Glynos C, Athanasiou C, Tsigkos S, Dimopoulou I et al.
Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators.
Crit Care Med 2007; 35: 199–206. | Article | PubMed | ChemPort |
Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL et al. Hyperoxia
causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med
2006; 12: 1286–1293. | Article | PubMed | ISI | ChemPort |
Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation.
Trends Immunol 2006; 27: 552–558. | Article | PubMed | ISI | ChemPort |
Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G et al.
Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J
Pharmacol Exp Ther 2005; 314: 738–744. | Article | PubMed | ChemPort |
Lemieux C, Maliba R, Favier J, Theoret JF, Merhi Y, Sirois MG. Angiopoietins can directly
activate endothelial cells and neutrophils to promote proinflammatory responses.
Blood 2005; 105: 1523–1530. | Article | PubMed | ChemPort |
Gupta GK, Cole CH, Abbasi S, Demissie S, Njinimbam C, Nielsen HC et al. Effects of
early inhaled beclomethasone therapy on tracheal aspirate inflammatory mediators IL8 and IL-1ra in ventilated preterm infants at risk for bronchopulmonary dysplasia.
Pediatr Pulmonol 2000; 30: 275–281. | Article | PubMed | ChemPort |
Munshi UK, Niu JO, Siddiq MM, Parton LA. Elevation of interleukin-8 and interleukin-6
precedes the influx of neutrophils in tracheal aspirates from preterm infants who
develop bronchopulmonary dysplasia. Pediatr Pulmonol 1997; 24: 331–
28
336. | Article | PubMed | ChemPort |









Tullus K, Noack GW, Burman LG, Nilsson R, Wretlind B, Brauner A. Elevated cytokine
levels in tracheobronchial aspirate fluids from ventilator treated neonates with
bronchopulmonary dysplasia. Eur J Pediatr 1996; 155: 112–
116. | Article | PubMed | ISI | ChemPort |
Kojima T, Sasai M, Kobayashi Y. Increased soluble ICAM-1 in tracheal aspirates of infants
with bronchopulmonary dysplasia. Lancet 1993; 342: 1023–
1024. | Article | PubMed | ChemPort |
Kotecha S, Chan B, Azam N, Silverman M, Shaw RJ. Increase in interleukin-8 and soluble
intercellular adhesion molecule-1 in bronchoalveolar lavage fluid from premature infants
who develop chronic lung disease. Arch Dis Child Fetal Neonatal Ed 1995; 72: F90–
F96. | PubMed | ChemPort |
Kotecha S, Silverman M, Shaw RJ, Klein N. Soluble L-selectin concentration in
bronchoalveolar lavage fluid obtained from infants who develop chronic lung disease of
prematurity. Arch Dis Child Fetal Neonatal Ed 1998; 78: F143–
F147. | PubMed | ChemPort |
Jonsson B, Tullus K, Brauner A, Lu Y, Noack G. Early increase of TNF alpha and IL-6 in
tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm
infants. Arch Dis Child Fetal Neonatal Ed 1997; 77: F198–
F201. | PubMed | ChemPort |
Kotecha S, Wilson L, Wangoo A, Silverman M, Shaw RJ. Increase in interleukin (IL)-1
beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung
disease of prematurity. Pediatr Res 1996; 40: 250–
256. | Article | PubMed | ISI | ChemPort |
Niu JO, Munshi UK, Siddiq MM, Parton LA. Early increase in endothelin-1 in tracheal
aspirates of preterm infants: correlation with bronchopulmonary dysplasia. J Pediatr
1998; 132: 965–970. | Article | PubMed | ChemPort |
Choi CW, Kim BI, Kim HS, Park JD, Choi JH, Son DW. Increase of interleukin-6 in tracheal
aspirate at birth: a predictor of subsequent bronchopulmonary dysplasia in preterm
infants. Acta Paediatr 2006; 95: 38–43. | Article | PubMed |
Oei J, Lui K, Wang H, Henry R. Decreased interleukin-10 in tracheal aspirates from
preterm infants developing chronic lung disease. Acta Paediatr 2002; 91: 1194– 29
1199. | PubMed | ChemPort









Takasaki J, Ogawa Y. Interleukin 8 and granulocyte elastase alpha 1 proteinase inhibitor
complex in the tracheobronchial aspirate of infants with chronic lung disease following
inter-uterine infection. Acta Paediatr Jpn 1996; 38: 132–
136. | PubMed | ChemPort |
Baier RJ, Loggins J, Kruger TE. Monocyte chemoattractant protein-1 and interleukin-8
are increased in bronchopulmonary dysplasia: relation to isolation of Ureaplasma
urealyticum. J Investig Med 2001; 49: 362–369. | Article | PubMed | ChemPort |
Baier RJ, Majid A, Parupia H, Loggins J, Kruger TE. CC chemokine concentrations
increase in respiratory distress syndrome and correlate with development of
bronchopulmonary dysplasia. Pediatr Pulmonol 2004; 37: 137–
148. | Article | PubMed |
Kotecha S, Wangoo A, Silverman M, Shaw RJ. Increase in the concentration of
transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of
chronic lung disease of prematurity. J Pediatr 1996; 128: 464–
469. | Article | PubMed | ISI | ChemPort |
Ambalavanan N, Novak ZE. Peptide growth factors in tracheal aspirates of mechanically
ventilated preterm neonates. Pediatr Res 2003; 53: 240–
244. | PubMed | ISI | ChemPort |
Kazzi SN, Romero R, McLaughlin K, Ager J, Janisse J. Serial changes in levels of IL-6 and
IL-1beta in premature infants at risk for bronchopulmonary dysplasia. Pediatr
Pulmonol 2001; 31: 220–226. | Article | PubMed | ChemPort |
Lassus P, Nupponen I, Kari A, Pohjavuori M, Andersson S. Early postnatal
dexamethasone decreases hepatocyte growth factor in tracheal aspirate fluid from
premature infants. Pediatrics 2002; 110: 768–771. | Article | PubMed |
Danan C, Franco ML, Jarreau PH, Dassieu G, Chailley-Heu B, Bourbon J et al. High
concentrations of keratinocyte growth factor in airways of premature infants predicted
absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 2002; 165:
1384–1387. | Article | PubMed | ISI |
Rehan VK, Torday JS. Lower parathyroid hormone-related protein content of tracheal
aspirates in very low birth weight infants who develop bronchopulmonary dysplasia.
30
Pediatr Res 2006; 60: 216–220. | Article | PubMed | ChemPort |









Lassus P, Ristimaki A, Ylikorkala O, Viinikka L, Andersson S. Vascular endothelial
growth factor in human preterm lung. Am J Respir Crit Care Med 1999; 159:
1429–1433. | PubMed | ISI | ChemPort |
D'Angio CT, Basavegowda K, Avissar NE, Finkelstein JN, Sinkin RA. Comparison of
tracheal aspirate and bronchoalveolar lavage specimens from premature infants. Biol
Neonate 2002; 82: 145–149. | Article | PubMed |
Nedrelow JH, Bhandari V. Interleukin (IL)-6 to vascular endothelial growth factor
(VEGF) ratio predicts the development of Bronchopulmonary Dysplasia (BPD)/death in
premature infants. Pediatr Res 2004; 55: 496A.
Watts CL, Bruce MC. Comparison of secretory component for immunoglobulin A with
albumin as reference proteins in tracheal aspirate from preterm infants. J Pediatr
1995; 127: 113–122. | Article | PubMed | ChemPort |
Cederqvist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P et al. Matrix
metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm
infants with respiratory distress. Pediatrics 2001; 108: 686–
692. | Article | PubMed | ChemPort |
Watts CL, Fanaroff AA, Bruce MC. Elevation of fibronectin levels in lung secretions of
infants with respiratory distress syndrome and development of bronchopulmonary
dysplasia. J Pediatr 1992; 120: 614–620. | Article | PubMed | ChemPort |
Lassus P, Heikkila P, Andersson LC, von Boguslawski K, Andersson S. Lower
concentration of pulmonary hepatocyte growth factor is associated with more severe
lung disease in preterm infants. J Pediatr 2003; 143: 199–
202. | Article | PubMed | ISI | ChemPort |
Ekekezie II, Thibeault DW, Simon SD, Norberg M, Merrill JD, Ballard RA et al. Low
levels of tissue inhibitors of metalloproteinases with a high matrix metalloproteinase9/tissue inhibitor of metalloproteinase-1 ratio are present in tracheal aspirate fluids of
infants who develop chronic lung disease. Pediatrics 2004; 113: 1709–
1714. | Article | PubMed |
de Blic J, Midulla F, Barbato A, Clement A, Dab I, Eber E et al. Bronchoalveolar lavage
in children. ERS Task Force on bronchoalveolar lavage in children. European
Respiratory Society. Eur Respir J 2000; 15: 217–231. | PubMed | ChemPort | 31






Cayabyab RG, Jones CA, Kwong KY, Hendershott C, Lecart C, Minoo P et al.
Interleukin-1beta in the bronchoalveolar lavage fluid of premature neonates: a
marker for maternal chorioamnionitis and predictor of adverse neonatal
outcome. J Matern Fetal Neonatal Med 2003; 14: 205–
211. | Article | PubMed | ChemPort |
Mahieu LM, De Dooy JJ, Ieven MM, Bridts CH, Stevens WJ. Increased levels of
tumor necrosis factor-alpha and decreased levels of interleukin-12 p 70 in
tracheal aspirates, within 2 h after birth, are associated with mortality among
ventilated preterm infants. Pediatr Crit Care Med 2005; 6: 682–
689. | Article | PubMed |
Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the
developing and adult lung. Free Radic Biol Med 2006; 41: 4–
18. | Article | PubMed | ChemPort |
D'Angio CT, Maniscalco WM, Ryan RM, Avissar NE, Basavegowda K, Sinkin RA.
Vascular endothelial growth factor in pulmonary lavage fluid from premature
infants: effects of age and postnatal dexamethasone. Biol Neonate 1999; 76:
266–273. | Article | PubMed | ChemPort |
Yoder Jr MC, Chua R, Tepper R. Effect of dexamethasone on pulmonary
inflammation and pulmonary function of ventilator-dependent infants with
bronchopulmonary dysplasia. Am Rev Respir Dis 1991; 143: 1044–
1048. | PubMed |
Wang JY, Yeh TF, Lin YJ, Chen WY, Lin CH. Early postnatal dexamethasone
therapy may lessen lung inflammation in premature infants with respiratory
distress syndrome on mechanical ventilation. Pediatr Pulmonol 1997; 23:
193–197. | Article | PubMed | ChemPort |
32














MORE ARTICLES LIKE THIS
These links to content published by NPG are automatically generated
RESEARCH
Angiopoietin 2 concentrations in infants developing bronchopulmonary
dysplasia: attenuation by dexamethasone
Journal of Perinatology Original Article
Angiopoietin 2 concentrations in infants developing bronchopulmonary
dysplasia: attenuation by dexamethasone
Journal of Perinatology Original Article
Angiopoietin 2 concentrations in infants developing bronchopulmonary
dysplasia: attenuation by dexamethasone
Journal of Perinatology Original Article
Pulmonary inflammation and bronchopulmonary dysplasia
Journal of Perinatology Original Article
Hyperoxia causes angiopoietin 2?mediated acute lung injury and
necrotic cell death
Nature Medicine Article
See all 93 matches for Research
33
Obrigado!
Ddos Pablo, Brenda e Janayana e Dr. Paulo R. Margotto
34
Download

A concentração de angiopoetina 2 em crianças desenvolvendo