Escola Superior de Ciências da Saúde (ESCS)/SES/DF A concentração de angiopoetina 2 em crianças desenvolvendo displasia broncopulmonar: uma atenuação pela dexametasona Clube de Revista Brenda Carla Lima Silva Janayana Oliveira Almeida Pablo Almeida Rocha Orientação: Dr Paulo R. Margotto www.paulomargotto.com.br 26/2//2008 – Hospital Regional da Asa Sul/SES/DF 1 Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone ZH Aghai1, S Faqiri1, JG Saslow1, T Nakhla1, S Farhath1, A Kumar1, R Eydelman2, L Strande2, G Stahl1, P Leone2 and V Bhandari3 1Department of Pediatrics, Cooper University Hospital Robert Wood Johnson Medical School, UMDNJ Camden, NJ, USA; 2Department of Surgery, Cooper University Hospital Robert Wood Johnson Medical School, UMDNJ Camden, NJ, USA and 3Division of Perinatal Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA J Perinatol 2008; 28: 149-155 2 Introdução DBP: importante causa de morbimortalidade em prematuros Importante sequela: hiperreatividade de vias aéreas e asma Incidência sem mudanças significativas na ultima década Patogenia complexa: injúrias (infecção intraútero, por ventilação mecânica, hiperoxia) desencadeiam cascata inflamatória, que age em células imaturas do pulmão 3 Introdução Angiopoetina2: – Regulariza angiogênese e integridade vascular – Na inflamação: citocinas induzem a expressão de Ang2 nos sítios de ativação endotelial – Sua liberação: rápida desestabilização do endotélio, disparando a resposta inflamatória 4 Incrementa resposta inflamatória e desencadeia morte de células pulmonares expostas à hiperoxia!!! 5 Objetivo Medir Ang2 na amostra de Aspirado Traqueal (TA) e associar ao desenvolvimento de DBP ou morte em prematuros ventilados Avaliar o efeito do uso de dexametasona na concentração de Ang2 6 Métodos População: – 39 leitos de UTI Neo do Cooper University Hospital in Camden, NJ – Março/2003 a outubro/2006 – Aprovado por comitê de ética; consentimento livre e esclarecido – Eleitos: IG< 32 sem e necessidade de VM – DBP = O2 por IGPC>=36 sem 7 Métodos Coleta da amostra: – Dias 1, 3, 5 e 7, na vigência de VM – Amostra adicional: antes e 48h a 72h depois de iniciar corticoterapia – Corticóide: 9 dias (0,3/0,2/0,1 mg/kg/dia) – Instilação de 0,5ml de SF no tubo, e sucção de resíduo após 3 ventilações – Processamento em 30 min em laboratório: centrifugação 8 Métodos Teste de ang2 – Medido por Kit ELISA – Detecção de 1,2 a 21,3 pg/ml (média:8,3) – Sem reatividade cruzada com Ang1, Tie2 ou fator de crescimento endotelial Teste de proteína: – Concentração de proteína foi medida em cada amostra para correção da diluição durante a lavagem 9 Métodos Análise estatística – SigmaStat 3,1 (pacote estatístico do Windows) – Valor mínimo de significância = 12 (alfa=0,05) – Dados continuos:Teste de T-Student, Mann-Witney, U-test, – Dados categóricos: X2 ou Fisher – Análise da curva: MedCalc – Significância: P<= 0,05 10 Resultados • Foram coletados 151 amostras de 60 prematuros ventilados; • 12 crianças não apresentaram DBP ( IG: 26,5 +/- 2,1 semanas e peso ao nascer: 913 +/- 230g); • 32 crianças desenvolveram DBP ( IG: 25,8 +/-1,4 semanas e peso ao nascer: 768 +/- 157g); • 16 crianças foram a óbito antes de 36 semanas da IGpc ( IG: 24,5 +/- 1,1 semanas e peso ao nascer: 710 +/- 143g) 11 Resultados • Na primeira semana de vida, a concentração de angiopoetina 2 foi significativamente baixa nas crianças sem DBP (157, 16 e 218 pg/mg), quando comparada aos que desenvolveram DBP (234, 138 e 338pg/mg, P= 0,03) ou aos que morreram (234, 157 e 347 pg/mg, P= 0,017); 12 Resultados • 26 crianças (Peso ao nascer: 719 +/- 136g e IG: 25,1 +/-1,3 semanas) , receberam terapia com corticóide – 27 doses de Dexametasona; • a concentração de angiopoetina 2 antes de iniciar a corticoterapia foi 202, 137 e 278 pg/mg; • esta concentração foi significativamente diminuída após o fim da terapia : 144, 0 e 224 pg/mg (p=0,007); 13 Resultados Características dos grupos 14 Discussão Vários estudos utilizam vários marcadores para a identificação de DBP em aspirados traqueais (AT) de prematuros ventilados (TNFα, IL1, IL6, etc), com vários deles sendo propostos para o diagnóstico da DBP, mas os resultados foram inconclusivos por uso de diferentes metodologias e concentração-dependentes! 15 Discussão O que os estudos mostram: – IL1β, IL6, IL8, VEGF, fator de crescimento de queratinócitos, proteína quimiotáxica de monócitos estão relacionadas a injúria dos pulmões, in vitro 16 Discussão A maioria dos estudos teve um n diminuído, com coleta de AT em períodos diferentes, sem padronização, com definições variáveis de DBP -Aspirado traqueal X lavagem broncoalveolar -Padronização do aspirado traqueal 17 Discussão Neste estudo os valores de Ang2 foram padronizadas pela correção da diluição... Mas mesmo sem usar o método para corrigir a diluição, os resultados se mostraram significativos!! 18 Discussão Concentração de Ang2 (corrigida) em aspirados traqueais 19 Discussão Concentração de Ang2 (não-corrigida) em aspirados traqueais 20 Discussão Concentração de Ang2 em ATs nos dias 1, 3, 5 e 7 21 Discussão Pontos fortes do estudo: – Grande coorte – Múltiplas amostras em tempos clínicos relevantes – DBP definida a 36 semanas de IGpc 22 Discussão Dexametasona foi associada com decréscimo significativo das concentrações de Ang2 (com ou sem diluição), e com ou sem DBP – Pequeno n (apenas 5 sem DBP) 23 Discussão Concentração de Ang2 (corrigida) antes e depois da Dex 24 Conclusão Concentração de Ang2 está significativamente aumentada em bebês, na primeira semana de vida, que tiveram uma intercorrência (DBP e/ou morte) A terapia com dexametasona foi associada com uma diminuição nos valores de Ang2 nos aspirados traqueais 25 Abstract Objectives: To study the association between angiopoietin 2 (Ang2) concentrations in tracheal aspirates (TAs) and adverse outcome (bronchopulmonary dysplasia (BPD)/death) in ventilated premature infants (VPIs) and modulation of Ang2 concentrations with dexamethasone (Dex) use. Study Design: Serial TA samples were collected on days 1, 3, 5 and 7, and Ang2 concentrations were measured. Ang2 TA concentrations were compared prior to and after 48 to 72 h of using Dex. Result: A total of 151 TA samples were collected from 60 VPIs. BPD was defined as the oxygen requirement at 36 weeks postmenstrual age (PMA). Twelve infants (mean s.d.) (gestational age (GA) 26.5 2.1 weeks, birth weight (BW) 913 230 g) had no BPD, 32 infants (GA 25.8 1.4 weeks, BW 768 157 g) developed BPD and 16 infants (GA 24.5 1.1 weeks, BW 710 143 g) died before 36 weeks PMA. Ang2 concentrations were significantly lower in infants with no BPD (median, 25th and 75th percentile) (157, 16 and 218 pg mg-1) compared with those who developed BPD (234, 138 and 338 pg mg-1, P=0.03) or BPD and/or death (234, 157 and 347 pg mg-1, P=0.017), in the first week of life. Twenty-six VPIs (BW 719 136 g, GA 25.1 1.3 weeks) received 27 courses of Dex. Ang2 concentrations before starting Dex were 202, 137 and 278 pg mg-1 and significantly decreased to 144, 0 and 224 pg mg-1 after therapy (P=0.007). Conclusions: Higher Ang2 concentrations in TAs are associated with the development of BPD or death in VPIs.Dex use suppressed Ang2 concentrations. Keywords: cytokines, premature, newborns, lung, inflammation, hyperoxia, tracheal aspirates 26 Referências do artigo: Fanaroff AA, Hack M, Walsh MC. The NICHD neonatal research network: changes in practice and outcomes during the first 15 years. Semin Perinatol 2003; 27: 281– 287. | Article | PubMed | Bhandari A, Bhandari V. Pathogenesis, pathology and pathophysiology of pulmonary sequelae of bronchopulmonary dysplasia in premature infants. Front Biosci 2003; 8: e370–380. | Article | PubMed | ISI | ChemPort | Bhandari A, Bhandari V. Bronchopulmonary dysplasia: an update. Indian J Pediatr 2007; 74: 73–77. | Article | PubMed | Hamilton BE, Martin JA, Sutton PD. Births: preliminary data for 2003. Natl Vital Stat Rep 2004; 53: 1–17. | PubMed | Akram Khan M, Kuzma-O'Reilly B, Brodsky NL, Bhandari V. Site-specific characteristics of infants developing bronchopulmonary dysplasia. J Perinatol 2006; 26: 428– 435. | Article | PubMed | ChemPort | Bhandari V, Bizzarro MJ, Shetty A, Zhong X, Page GP, Zhang H et al. Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics 2006; 117: 1901–1906. | Article | PubMed | Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242– 248. | Article | PubMed | ISI | ChemPort | Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002; 3: 411– 423. | Article | PubMed | ISI | ChemPort | 27 Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G et al. Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 2006; 12: 235– 239. | Article | PubMed | ISI | ChemPort | Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA et al. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 2006; 3: e46. | Article | PubMed | ChemPort | Orfanos SE, Kotanidou A, Glynos C, Athanasiou C, Tsigkos S, Dimopoulou I et al. Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators. Crit Care Med 2007; 35: 199–206. | Article | PubMed | ChemPort | Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 2006; 12: 1286–1293. | Article | PubMed | ISI | ChemPort | Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 2006; 27: 552–558. | Article | PubMed | ISI | ChemPort | Roviezzo F, Tsigkos S, Kotanidou A, Bucci M, Brancaleone V, Cirino G et al. Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. J Pharmacol Exp Ther 2005; 314: 738–744. | Article | PubMed | ChemPort | Lemieux C, Maliba R, Favier J, Theoret JF, Merhi Y, Sirois MG. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood 2005; 105: 1523–1530. | Article | PubMed | ChemPort | Gupta GK, Cole CH, Abbasi S, Demissie S, Njinimbam C, Nielsen HC et al. Effects of early inhaled beclomethasone therapy on tracheal aspirate inflammatory mediators IL8 and IL-1ra in ventilated preterm infants at risk for bronchopulmonary dysplasia. Pediatr Pulmonol 2000; 30: 275–281. | Article | PubMed | ChemPort | Munshi UK, Niu JO, Siddiq MM, Parton LA. Elevation of interleukin-8 and interleukin-6 precedes the influx of neutrophils in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Pediatr Pulmonol 1997; 24: 331– 28 336. | Article | PubMed | ChemPort | Tullus K, Noack GW, Burman LG, Nilsson R, Wretlind B, Brauner A. Elevated cytokine levels in tracheobronchial aspirate fluids from ventilator treated neonates with bronchopulmonary dysplasia. Eur J Pediatr 1996; 155: 112– 116. | Article | PubMed | ISI | ChemPort | Kojima T, Sasai M, Kobayashi Y. Increased soluble ICAM-1 in tracheal aspirates of infants with bronchopulmonary dysplasia. Lancet 1993; 342: 1023– 1024. | Article | PubMed | ChemPort | Kotecha S, Chan B, Azam N, Silverman M, Shaw RJ. Increase in interleukin-8 and soluble intercellular adhesion molecule-1 in bronchoalveolar lavage fluid from premature infants who develop chronic lung disease. Arch Dis Child Fetal Neonatal Ed 1995; 72: F90– F96. | PubMed | ChemPort | Kotecha S, Silverman M, Shaw RJ, Klein N. Soluble L-selectin concentration in bronchoalveolar lavage fluid obtained from infants who develop chronic lung disease of prematurity. Arch Dis Child Fetal Neonatal Ed 1998; 78: F143– F147. | PubMed | ChemPort | Jonsson B, Tullus K, Brauner A, Lu Y, Noack G. Early increase of TNF alpha and IL-6 in tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm infants. Arch Dis Child Fetal Neonatal Ed 1997; 77: F198– F201. | PubMed | ChemPort | Kotecha S, Wilson L, Wangoo A, Silverman M, Shaw RJ. Increase in interleukin (IL)-1 beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity. Pediatr Res 1996; 40: 250– 256. | Article | PubMed | ISI | ChemPort | Niu JO, Munshi UK, Siddiq MM, Parton LA. Early increase in endothelin-1 in tracheal aspirates of preterm infants: correlation with bronchopulmonary dysplasia. J Pediatr 1998; 132: 965–970. | Article | PubMed | ChemPort | Choi CW, Kim BI, Kim HS, Park JD, Choi JH, Son DW. Increase of interleukin-6 in tracheal aspirate at birth: a predictor of subsequent bronchopulmonary dysplasia in preterm infants. Acta Paediatr 2006; 95: 38–43. | Article | PubMed | Oei J, Lui K, Wang H, Henry R. Decreased interleukin-10 in tracheal aspirates from preterm infants developing chronic lung disease. Acta Paediatr 2002; 91: 1194– 29 1199. | PubMed | ChemPort Takasaki J, Ogawa Y. Interleukin 8 and granulocyte elastase alpha 1 proteinase inhibitor complex in the tracheobronchial aspirate of infants with chronic lung disease following inter-uterine infection. Acta Paediatr Jpn 1996; 38: 132– 136. | PubMed | ChemPort | Baier RJ, Loggins J, Kruger TE. Monocyte chemoattractant protein-1 and interleukin-8 are increased in bronchopulmonary dysplasia: relation to isolation of Ureaplasma urealyticum. J Investig Med 2001; 49: 362–369. | Article | PubMed | ChemPort | Baier RJ, Majid A, Parupia H, Loggins J, Kruger TE. CC chemokine concentrations increase in respiratory distress syndrome and correlate with development of bronchopulmonary dysplasia. Pediatr Pulmonol 2004; 37: 137– 148. | Article | PubMed | Kotecha S, Wangoo A, Silverman M, Shaw RJ. Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr 1996; 128: 464– 469. | Article | PubMed | ISI | ChemPort | Ambalavanan N, Novak ZE. Peptide growth factors in tracheal aspirates of mechanically ventilated preterm neonates. Pediatr Res 2003; 53: 240– 244. | PubMed | ISI | ChemPort | Kazzi SN, Romero R, McLaughlin K, Ager J, Janisse J. Serial changes in levels of IL-6 and IL-1beta in premature infants at risk for bronchopulmonary dysplasia. Pediatr Pulmonol 2001; 31: 220–226. | Article | PubMed | ChemPort | Lassus P, Nupponen I, Kari A, Pohjavuori M, Andersson S. Early postnatal dexamethasone decreases hepatocyte growth factor in tracheal aspirate fluid from premature infants. Pediatrics 2002; 110: 768–771. | Article | PubMed | Danan C, Franco ML, Jarreau PH, Dassieu G, Chailley-Heu B, Bourbon J et al. High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 2002; 165: 1384–1387. | Article | PubMed | ISI | Rehan VK, Torday JS. Lower parathyroid hormone-related protein content of tracheal aspirates in very low birth weight infants who develop bronchopulmonary dysplasia. 30 Pediatr Res 2006; 60: 216–220. | Article | PubMed | ChemPort | Lassus P, Ristimaki A, Ylikorkala O, Viinikka L, Andersson S. Vascular endothelial growth factor in human preterm lung. Am J Respir Crit Care Med 1999; 159: 1429–1433. | PubMed | ISI | ChemPort | D'Angio CT, Basavegowda K, Avissar NE, Finkelstein JN, Sinkin RA. Comparison of tracheal aspirate and bronchoalveolar lavage specimens from premature infants. Biol Neonate 2002; 82: 145–149. | Article | PubMed | Nedrelow JH, Bhandari V. Interleukin (IL)-6 to vascular endothelial growth factor (VEGF) ratio predicts the development of Bronchopulmonary Dysplasia (BPD)/death in premature infants. Pediatr Res 2004; 55: 496A. Watts CL, Bruce MC. Comparison of secretory component for immunoglobulin A with albumin as reference proteins in tracheal aspirate from preterm infants. J Pediatr 1995; 127: 113–122. | Article | PubMed | ChemPort | Cederqvist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P et al. Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics 2001; 108: 686– 692. | Article | PubMed | ChemPort | Watts CL, Fanaroff AA, Bruce MC. Elevation of fibronectin levels in lung secretions of infants with respiratory distress syndrome and development of bronchopulmonary dysplasia. J Pediatr 1992; 120: 614–620. | Article | PubMed | ChemPort | Lassus P, Heikkila P, Andersson LC, von Boguslawski K, Andersson S. Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. J Pediatr 2003; 143: 199– 202. | Article | PubMed | ISI | ChemPort | Ekekezie II, Thibeault DW, Simon SD, Norberg M, Merrill JD, Ballard RA et al. Low levels of tissue inhibitors of metalloproteinases with a high matrix metalloproteinase9/tissue inhibitor of metalloproteinase-1 ratio are present in tracheal aspirate fluids of infants who develop chronic lung disease. Pediatrics 2004; 113: 1709– 1714. | Article | PubMed | de Blic J, Midulla F, Barbato A, Clement A, Dab I, Eber E et al. Bronchoalveolar lavage in children. ERS Task Force on bronchoalveolar lavage in children. European Respiratory Society. Eur Respir J 2000; 15: 217–231. | PubMed | ChemPort | 31 Cayabyab RG, Jones CA, Kwong KY, Hendershott C, Lecart C, Minoo P et al. Interleukin-1beta in the bronchoalveolar lavage fluid of premature neonates: a marker for maternal chorioamnionitis and predictor of adverse neonatal outcome. J Matern Fetal Neonatal Med 2003; 14: 205– 211. | Article | PubMed | ChemPort | Mahieu LM, De Dooy JJ, Ieven MM, Bridts CH, Stevens WJ. Increased levels of tumor necrosis factor-alpha and decreased levels of interleukin-12 p 70 in tracheal aspirates, within 2 h after birth, are associated with mortality among ventilated preterm infants. Pediatr Crit Care Med 2005; 6: 682– 689. | Article | PubMed | Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med 2006; 41: 4– 18. | Article | PubMed | ChemPort | D'Angio CT, Maniscalco WM, Ryan RM, Avissar NE, Basavegowda K, Sinkin RA. Vascular endothelial growth factor in pulmonary lavage fluid from premature infants: effects of age and postnatal dexamethasone. Biol Neonate 1999; 76: 266–273. | Article | PubMed | ChemPort | Yoder Jr MC, Chua R, Tepper R. Effect of dexamethasone on pulmonary inflammation and pulmonary function of ventilator-dependent infants with bronchopulmonary dysplasia. Am Rev Respir Dis 1991; 143: 1044– 1048. | PubMed | Wang JY, Yeh TF, Lin YJ, Chen WY, Lin CH. Early postnatal dexamethasone therapy may lessen lung inflammation in premature infants with respiratory distress syndrome on mechanical ventilation. Pediatr Pulmonol 1997; 23: 193–197. | Article | PubMed | ChemPort | 32 MORE ARTICLES LIKE THIS These links to content published by NPG are automatically generated RESEARCH Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone Journal of Perinatology Original Article Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone Journal of Perinatology Original Article Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone Journal of Perinatology Original Article Pulmonary inflammation and bronchopulmonary dysplasia Journal of Perinatology Original Article Hyperoxia causes angiopoietin 2?mediated acute lung injury and necrotic cell death Nature Medicine Article See all 93 matches for Research 33 Obrigado! Ddos Pablo, Brenda e Janayana e Dr. Paulo R. Margotto 34