PLANO DE ENSINO 1. DADOS DE IDENTIFICAÇÃO Instituição: Universidade Alto Vale do Rio do Peixe Curso: Matemática Professor(a): Eda Drehmer [email protected] Semestre: 2º Período/ Fase: 2 Disciplina: Geometria II 2. EMENTA Geometria espacial – Ano: 2011 Carga Horária: 60 h/aulas Figuras espaciais: axiomas no espaço;diedros, triedros poliedros;prismas;pirâmides; tronco de pirâmide; cilindro, cone, tronco de cone; cilindro de rotação, cone de rotação; cálculo das superfícies e cálculo do volume, esfera- volume e área da superfície 3. OBJETIVO GERAL DA DISCIPLINA Introduzir a geometria euclidiana e geometrias não-euclidianas, como estudos da forma ou das transformações do espaço, como disciplinas de pensamento e como modelos geométricos fundamentais que interagem com outras áreas. 4. OBJETIVOS ESPECÍFICOS DA DISCIPLINA - ampliar os conhecimentos dos futuros professores de Matemática no que tange estudos, pesquisas e contexto dentro do ensino da geometria; - considerar a natureza do conhecimento matemático e as dimensões sócias - culturais psicológicas e metodológicas do ensino e aprendizagem. - criar um espaço de reflexão, discussão e problematização de temas e questões fundamentais da Educação Matemática & Geometria; - caracterizar e analisar a situação atual do ensino de Matemática no que tange o ensino de geometria na Educação Básica, recorrendo ao histórico do ensino dessa área do conhecimento nas escolas brasileiras e discutindo na sala de aula eventos e aulas presenciadas na trajetória escolar; - Contribuir para o desenvolvimento de processos de pensamento e aquisição de atitudes cuja utilidade e alcance transcendam o âmbito da própria Matemática; - Compreender a importância da construção da geometria na evolução da humanidade e da própria Matemática; - Reconhecer a importância de postulados e teoremas na compreensão e resolução de vários tópicos no estudo da geometria; - Utilizar o conceito de volume para descrever e estudar, através da leitura, interpretação e construção de figuras geométricas espaciais os fenômenos do cotidiano em diversas áreas do conhecimento; 5. RELAÇÕES INTERDISCIPLINARES Didática da Matemática, Geometria Analítica , História da Matemática e Estágio Supervisionado – Prática de Ensino. 6. HABILIDADES REQUERIDAS E COMPORTAMENTO ESPERADO A apropriação dos conhecimentos científicos matemáticos geométricos apresentados resultando em: - capacidade de resolver e criar soluções com flexibilidade e adaptabilidade focando metodologias para o ensino de geometria com inovação. - Resolver as situações-problemas através do raciocínio dedutivo; - Relacionar os conceitos estudados com as outras disciplinas do curso, sempre que necessário; - Relacionar este estudo com o ensino de geometria no Ensino Fundamental e Médio; - Ler e compreender uma demonstração matemática; - Conhecer a linguagem matemática utilizada na geometria. 7. CONTEÚDO PROGRAMÁTICO Ângulos no espaço: diedro; ângulos formados por dois planos secantes;triedros. Poliedros: região poligonal convexa; poliedro convexo; relação de Euler; soma dos ângulos das faces de um poliedro convexo. Poliedros notáveis: Poliedros de Platão; poliedros regulares; Prismas: conceitos Princípio de Cavalieri ( ou Postulado de Cavalieri). Elementos de um prisma: secção transversal de um prisma; nomenclatura prisma reto e prisma obliquo; Paralelepípedo: área lateral e total, estudo do paralelepípedo-retângulo;volume do paralelepípedo. Cubo: Medida da diagonal ; área total do cubo; volume do cubo Pirâmides:natureza das Pirâmides; secção transversal; pirâmides regulares; secção paralela à base de pirâmide regular; razão entre a área da secção transversal e a área da base de uma pirâmide triangular. Volume de uma pirâmide qualquer. Tronco de pirâmide regular de bases paralelas; volume do tronco de pirâmide; área lateral e total Cilindro de rotação: secções do cilindro de rotação., tronco de cilindro circular reto Volume do cilindro; área lateral e total do cilindro. Cubagem . Cone de rotação: secção do cone de rotação. Volume do cone circular. Tronco de cone: volume , área lateral e total. Esfera: conceituação. Posições relativas entre um plano e uma esfera. Volume da esfera; área da superfície esférica. Inscrição e circunscrição. 8. ESTRATÉGIAS DE ENSINO A metodologia a ser utilizada durante o desenvolvimento da disciplina será aulas ministradas através de exposições dialogadas, debate e discussões em grupo, produção de algum material, trabalhos individuais e em duplas ou equipes, leituras, resolução de problemas e exercícios, e reflexões sobre a metodologia de ensino para geometria. Para tais recursos metodológicos, pensa-se em recursos didáticos de materiais impressos: livros, textos, guias de estudos, cadernos de exercícios, unidades didáticas, etc. Materiais instrumentais: seja para utilização em aulas práticas ou de laboratório. 9. SISTEMA DE AVALIAÇÃO A verificação do rendimento pessoal compreenderá para fins de aprovação o disposto na Resolução CONSUN Nº 13, que prevê especificamente em seu art. 6º, que o aluno que obtiver na disciplina média igual ou superior a seis durante o período letivo e assiduidade não inferior a 75% será considerado aprovado. No decorrer do semestre, os alunos terão três momentos para que os conhecimentos adquiridos possam ser analisados (M1, M2 e M3). Esta análise de aprendizagem será feita em grupo e de forma individual, com pesos diferenciados, conforme especificação a seguir: Assim a verificação se dará da seguinte forma: a constatação de pelo menos 75% de freqüência nas atividades em sala de aula e no aproveitamento de três médias parciais (M1, M2 e M3), conforme dispõe a referida Resolução, nos seguintes termos: 1ª Média – M1: - Prova de conhecimento parcial, individual, sem consulta = Peso 7,0(70%) - Trabalhos em grupo = Peso 2,0 (20%) - Nota de participação, freqüência e produção em sala = Peso 1,0 (10%) 2ª Média – M2: - Prova de conhecimento parcial, individual, sem consulta = Peso 7,0 (70%) - Trabalhos em grupo = Peso 1,0 (10%) - Nota de participação, freqüência e produção em sala = Peso 1,0 (10%) 3ª Média – M3: - Prova de conhecimento parcial, individual, sem consulta = Peso 70,0 (70%) - Trabalhos em grupo = Peso 3,0 (30%) Observações Importantes: As análises de aprendizagem individuais (provas) serão escritas, constituídas de pelo menos 50% de questões discursivas, e aplicadas em data previamente marcada; O aluno que se ausentar no dia da realização da prova só terá direito à prova substitutiva mediante processo administrativo devidamente protocolado e autorizado pela Secretaria do Aluno, limitando-se a apenas 01 (uma) prova substitutiva no semestre; Os trabalhos devem ser entregues em sala de aula, em documento impresso; Os trabalhos entregues com atraso terão a redução de 30% do valor e poderão ser recebidos até a aula da semana seguinte, a partir da data de entrega determinada. Não cabem formas substitutivas para os mesmos; Receberão nota 0 (zero) os trabalhos que apresentarem sinais de cópias de outros trabalhos, contiverem evidências de material literalmente copiado ou traduzido de livros ou Internet; Sobre os trabalhos escritos: a avaliação tem como critérios de análise: 1. Qualidade das idéias: fundamento das idéias, correlação de conceitos e inferências, riqueza na argumentação, profundidade dos pontos de vista; 2. Uso de convenções: normas técnicas, gramaticais e de digitação. Serão descontados os erros gramaticais das avaliações e trabalhos entregues. O aluno terá direito a reaver os pontos perdidos desde que apresente a avaliação ou trabalho corrigido na aula posterior à entrega do mesmo. 3. Sempre, criatividade. Sobre as apresentações: A apresentação oral é avaliada individualmente e será observado o domínio do aluno sobre o assunto bem como sua capacidade de fazer correlações, além de se valorizar formas criativas de exposição do conteúdo. Caso haja interesse, será fornecido feedback particular quanto à postura e apresentação do(a) acadêmico(a). Sobre a originalidade: Os trabalhos e provas que apresentarem qualquer sinal de cópia serão desconsiderados e receberão nota zero e não têm direito à recuperação. 10. BIBLIOGRAFIA 10.1 BIBLIOGRAFIA BÁSICA BARBOSA, João Lucas Marques, Geometria Euclidiana Plana, Rio de Janeiro , 1985, Sociedade Brasileira de Matemática. MACHADO, Nilson José, Matemática por Assunto: Geometria plana e Espacial, Ed Scipione, São Paulo DOLCE, Osvaldo POMPEU,José Nicolau Fundamentos da Matemática Elementar; Geometria Plana, e espacial, Editora Atual – S.Paulo. 10.2 BIBLIOGRAFIA COMPLEMENTAR BORIN, J. Jogos e Resoluções de Problemas: Uma Estratégia para Aula de Matemática. São Paulo: USP, 1995. CARAÇA, Bento de Jesus. Conceitos fundamentais da Matemática. Livraria Sá da Costa . Ed. Lisboa, 1984. DANTE, Luiz Roberto. Didática da resolução de Problemas de matemática. São Paulo: Ática, 1989. GONÇALVES, Oscar: Matemática por assunto: geometria plana e espacial, ed. Scipione. LINDQUIST, M. M. & SHULTE, A. P. Aprendendo e Ensinando Geometria. São Paulo: Atual,1994 PLANO DE ENSINO 11. DADOS DE IDENTIFICAÇÃO Instituição: Universidade Alto Vale do Rio do Peixe Curso: Matemática Professor(a): Eda Drehmer [email protected] Semestre: 2º Período/ Fase: 4 Disciplina: Geometria II 12. EMENTA Geometria espacial – Figuras Ano: 2011 Carga Horária: 60 h/aulas espaciais: axiomas no espaço;diedros, triedros poliedros;prismas;pirâmides; tronco de pirâmide; cilindro, cone, tronco de cone; cilindro de rotação, cone de rotação; cálculo das superfícies e cálculo do volume, esfera- volume e área da superfície 13. OBJETIVO GERAL DA DISCIPLINA Introduzir a geometria euclidiana e geometrias não-euclidianas, como estudos da forma ou das transformações do espaço, como disciplinas de pensamento e como modelos geométricos fundamentais que interagem com outras áreas. 14. OBJETIVOS ESPECÍFICOS DA DISCIPLINA - ampliar os conhecimentos dos futuros professores de Matemática no que tange estudos, pesquisas e contexto dentro do ensino da geometria; - considerar a natureza do conhecimento matemático e as dimensões sócias - culturais psicológicas e metodológicas do ensino e aprendizagem. - criar um espaço de reflexão, discussão e problematização de temas e questões fundamentais da Educação Matemática & Geometria; - caracterizar e analisar a situação atual do ensino de Matemática no que tange o ensino de geometria na Educação Básica, recorrendo ao histórico do ensino dessa área do conhecimento nas escolas brasileiras e discutindo na sala de aula eventos e aulas presenciadas na trajetória escolar; - Contribuir para o desenvolvimento de processos de pensamento e aquisição de atitudes cuja utilidade e alcance transcendam o âmbito da própria Matemática; - Compreender a importância da construção da geometria na evolução da humanidade e da própria Matemática; - Reconhecer a importância de postulados e teoremas na compreensão e resolução de vários tópicos no estudo da geometria; - Utilizar o conceito de volume para descrever e estudar, através da leitura, interpretação e construção de figuras geométricas espaciais os fenômenos do cotidiano em diversas áreas do conhecimento; 15. RELAÇÕES INTERDISCIPLINARES Didática da Matemática, Geometria Analítica , História da Matemática e Estágio Supervisionado – Prática de Ensino. 16. HABILIDADES REQUERIDAS E COMPORTAMENTO ESPERADO A apropriação dos conhecimentos científicos matemáticos geométricos apresentados resultando em: - capacidade de resolver e criar soluções com flexibilidade e adaptabilidade focando metodologias para o ensino de geometria com inovação. - Resolver as situações-problemas através do raciocínio dedutivo; - Relacionar os conceitos estudados com as outras disciplinas do curso, sempre que necessário; - Relacionar este estudo com o ensino de geometria no Ensino Fundamental e Médio; - Ler e compreender uma demonstração matemática; - Conhecer a linguagem matemática utilizada na geometria. 17. CONTEÚDO PROGRAMÁTICO Ângulos no espaço: diedro; ângulos formados por dois planos secantes;triedros. Poliedros: região poligonal convexa; poliedro convexo; relação de Euler; soma dos ângulos das faces de um poliedro convexo. Poliedros notáveis: Poliedros de Platão; poliedros regulares; Prismas: conceitos Princípio de Cavalieri ( ou Postulado de Cavalieri). Elementos de um prisma: secção transversal de um prisma; nomenclatura prisma reto e prisma obliquo; Paralelepípedo: área lateral e total, estudo do paralelepípedo-retângulo;volume do paralelepípedo. Cubo: Medida da diagonal ; área total do cubo; volume do cubo Pirâmides:natureza das Pirâmides; secção transversal; pirâmides regulares; secção paralela à base de pirâmide regular; razão entre a área da secção transversal e a área da base de uma pirâmide triangular. Volume de uma pirâmide qualquer. Tronco de pirâmide regular de bases paralelas; volume do tronco de pirâmide; área lateral e total Cilindro de rotação: secções do cilindro de rotação., tronco de cilindro circular reto Volume do cilindro; área lateral e total do cilindro. Cubagem . Cone de rotação: secção do cone de rotação. Volume do cone circular. Tronco de cone: volume , área lateral e total. Esfera: conceituação. Posições relativas entre um plano e uma esfera. Volume da esfera; área da superfície esférica. Inscrição e circunscrição. 18. ESTRATÉGIAS DE ENSINO A metodologia a ser utilizada durante o desenvolvimento da disciplina será aulas ministradas através de exposições dialogadas, debate e discussões em grupo, produção de algum material, trabalhos individuais e em duplas ou equipes, leituras, resolução de problemas e exercícios, e reflexões sobre a metodologia de ensino para geometria. Para tais recursos metodológicos, pensa-se em recursos didáticos de materiais impressos: livros, textos, guias de estudos, cadernos de exercícios, unidades didáticas, etc. Materiais instrumentais: seja para utilização em aulas práticas ou de laboratório. 19. SISTEMA DE AVALIAÇÃO A verificação do rendimento pessoal compreenderá para fins de aprovação o disposto na Resolução CONSUN Nº 13, que prevê especificamente em seu art. 6º, que o aluno que obtiver na disciplina média igual ou superior a seis durante o período letivo e assiduidade não inferior a 75% será considerado aprovado. No decorrer do semestre, os alunos terão três momentos para que os conhecimentos adquiridos possam ser analisados (M1, M2 e M3). Esta análise de aprendizagem será feita em grupo e de forma individual, com pesos diferenciados, conforme especificação a seguir: Assim a verificação se dará da seguinte forma: a constatação de pelo menos 75% de freqüência nas atividades em sala de aula e no aproveitamento de três médias parciais (M1, M2 e M3), conforme dispõe a referida Resolução, nos seguintes termos: 1ª Média – M1: - Prova de conhecimento parcial, individual, sem consulta = Peso 7,0(70%) - Trabalhos em grupo = Peso 2,0 (20%) - Nota de participação, freqüência e produção em sala = Peso 1,0 (10%) 2ª Média – M2: - Prova de conhecimento parcial, individual, sem consulta = Peso 7,0 (70%) - Trabalhos em grupo = Peso 1,0 (10%) - Nota de participação, freqüência e produção em sala = Peso 1,0 (10%) 3ª Média – M3: - Prova de conhecimento parcial, individual, sem consulta = Peso 70,0 (70%) - Trabalhos em grupo = Peso 3,0 (30%) Observações Importantes: As análises de aprendizagem individuais (provas) serão escritas, constituídas de pelo menos 50% de questões discursivas, e aplicadas em data previamente marcada; O aluno que se ausentar no dia da realização da prova só terá direito à prova substitutiva mediante processo administrativo devidamente protocolado e autorizado pela Secretaria do Aluno, limitando-se a apenas 01 (uma) prova substitutiva no semestre; Os trabalhos devem ser entregues em sala de aula, em documento impresso; Os trabalhos entregues com atraso terão a redução de 30% do valor e poderão ser recebidos até a aula da semana seguinte, a partir da data de entrega determinada. Não cabem formas substitutivas para os mesmos; Receberão nota 0 (zero) os trabalhos que apresentarem sinais de cópias de outros trabalhos, contiverem evidências de material literalmente copiado ou traduzido de livros ou Internet; Sobre os trabalhos escritos: a avaliação tem como critérios de análise: 1. Qualidade das idéias: fundamento das idéias, correlação de conceitos e inferências, riqueza na argumentação, profundidade dos pontos de vista; 2. Uso de convenções: normas técnicas, gramaticais e de digitação. Serão descontados os erros gramaticais das avaliações e trabalhos entregues. O aluno terá direito a reaver os pontos perdidos desde que apresente a avaliação ou trabalho corrigido na aula posterior à entrega do mesmo. 3. Sempre, criatividade. Sobre as apresentações: A apresentação oral é avaliada individualmente e será observado o domínio do aluno sobre o assunto bem como sua capacidade de fazer correlações, além de se valorizar formas criativas de exposição do conteúdo. Caso haja interesse, será fornecido feedback particular quanto à postura e apresentação do(a) acadêmico(a). Sobre a originalidade: Os trabalhos e provas que apresentarem qualquer sinal de cópia serão desconsiderados e receberão nota zero e não têm direito à recuperação. 20. BIBLIOGRAFIA 10.1 BIBLIOGRAFIA BÁSICA BARBOSA, João Lucas Marques, Geometria Euclidiana Plana, Rio de Janeiro , 1985, Sociedade Brasileira de Matemática. MACHADO, Nilson José, Matemática por Assunto: Geometria plana e Espacial, Ed Scipione, São Paulo DOLCE, Osvaldo POMPEU,José Nicolau Fundamentos da Matemática Elementar; Geometria Plana, e espacial, Editora Atual – S.Paulo. 10.2 BIBLIOGRAFIA COMPLEMENTAR BORIN, J. Jogos e Resoluções de Problemas: Uma Estratégia para Aula de Matemática. São Paulo: USP, 1995. CARAÇA, Bento de Jesus. Conceitos fundamentais da Matemática. Livraria Sá da Costa . Ed. Lisboa, 1984. DANTE, Luiz Roberto. Didática da resolução de Problemas de matemática. São Paulo: Ática, 1989. GONÇALVES, Oscar: Matemática por assunto: geometria plana e espacial, ed. Scipione. LINDQUIST, M. M. & SHULTE, A. P. Aprendendo e Ensinando Geometria. São Paulo: Atual,1994