PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
PROVAS DISCURSIVAS ESPECÍFICAS DA 2ª ETAPA DO PROCESSO SELETIVO 2007/2
FÍSICA
1ª QUESTÃO
No circuito representado na figura, a chave S pode ser ligada nas posições 1 ou 2.
A) Com a chave S ligada na posição 1, determine a corrente elétrica que atravessa a resistência de 2Ω.
B) Com a chave S ligada na posição 2, determine a corrente elétrica que atravessa a resistência de 2Ω.
C) Com a chave S ligada na posição 2, determine a potência elétrica dissipada em cada uma das resistências de 3Ω.
2ª QUESTÃO
Um cilindro, de densidade 0,90 g/cm3 e altura 5 cm, flutua na vertical no interior de um recipiente contendo água (densidade
1,00 g/cm3).
A) Determine o comprimento da parte submersa do cilindro.
B) Derrama-se muito lentamente óleo de densidade 0,80 g/cm3 no recipiente até enchê-lo completamente e o cilindro ficar
totalmente submerso. O óleo é não-miscível com a água. Determine o comprimento da parte do cilindro submersa no óleo.
3ª QUESTÃO
Um gás ideal realiza o ciclo reversível ABCA representado no digrama PxV. O processo B C é isotérmico de temperatura T0 .
O trabalho realizado pelo gás no processo isotérmico é P0V0 ln(3) .
Considerando a constante universal dos gases igual a R, determine
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
A) a temperatura do gás no estado A;
B) o trabalho realizado pelo gás no processo C A;
C) o calor trocado no processo isotérmico.
4ª QUESTÃO
Um bloco é abandonado de uma plataforma preso a um cabo elástico de massa desprezível. O cabo está preso à extremidade
da plataforma. A plataforma está a uma altura h do solo. O cabo elástico obedece à lei de Hook (análogo a uma mola) e seu
comprimento relaxado é L (L < h). A massa do bloco é m e suas dimensões são desprezíveis. Determine
A) a velocidade do bloco quando ele se encontra a uma distância L da plataforma;
B) o valor limite da constante elástica do cabo para que o bloco não toque o solo.
5ª QUESTÃO
Duas fontes de luz monocromáticas emitem luz com a mesma potência P. A fonte A emite luz de comprimento de onda 0,45 µm
e a fonte B de 0,75 µm. Determine
A) a razão entre a energia de um fóton emitido pela fonte A e a energia de um fóton emitido pela fonte B (EA/EB).
B) a razão entre o número de fótons emitidos por unidade de tempo pelas fontes A e B (NA/NB).
QUÍMICA
1ª QUESTÃO
Considere que sejam adicionados 100,0 mL de solução de HCl 0,5 mol/L a 200,0 mL de solução de NaOH, de concentração 0,2
mol/L.
A) A solução resultante será ácida, básica ou neutra? Justifique sua resposta.
B) Determine a concentração, em mol/L, do reagente em excesso.
C) Determine o pH final da solução.
2ª QUESTÃO
A produção industrial de ácido sulfúrico ocorre da seguinte forma:
(I) - queima do enxofre elementar na presença do oxigênio, dando origem ao dióxido de enxofre;
(II) - o dióxido de enxofre formado reage com oxigênio para formar o trióxido de enxofre;
(III) - o trióxido de enxofre formado reage com a água formando, finalmente, o ácido sulfúrico.
Pede-se:
A) Escreva a reação química balanceada que ocorre nos processos (I), (II) e (III), respectivamente.
B) O SO2 formado na queima de 6,4 gramas de enxofre, ao reagir com Ba(OH)2, em excesso, produziu um sal, que se
precipitou. Determine a massa do sal formado na reação.
3ª QUESTÃO
O quadro a seguir apresenta dados cinéticos sobre a reação de combustão do dissulfeto de carbono (CS2) para produzir gás
carbônico e dióxido de enxofre.
[CS2]0
1,44
1,44
2,88
[O2]0
0,35
0,70
0,35
Velocidade Inicial (mol.L-1.s-1)
5,37.10-3
2,15.10-2
5,37.10-3
Observação: concentrações iniciais em mol.L-1
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
A) Escreva a equação química balanceada da reação.
B) Determine as ordens de reação em relação ao dissulfeto e ao oxigênio.
C) Determine o valor da constante de velocidade.
4ª QUESTÃO
O etano (componente do gás natural) e o n-hexano (componente da gasolina) possuem calores de combustão iguais ∆Hco = 1560 kJmol-1 e ∆Hco = -4163 kJmol-1, respectivamente.
A) Escreva as equações químicas balanceadas das reações de combustão do etano e do n-hexano.
B) O que irá produzir mais CO2 na combustão: 1,0 kg de etano ou 1,0 kg de n-hexano? Justifique sua resposta.
C) O que irá produzir mais calor na combustão: 1,0 kg de etano ou 1,0 kg de n-hexano? Justifique sua resposta.
D) Para as mesmas quantidades de energia liberada na combustão, qual composto irá produzir mais CO2? Justifique sua
resposta.
5ª QUESTÃO
Considere as reações apresentadas no esquema abaixo:
C7H14
A
H2
Pd
Br2
CH3
O
KMnO4
H2SO4
C7H12O4
NaOH
-
+
Na O
B
-
C
*
C
C
O Na+
O
C7H12Br2
D
A) Escreva os nomes sistemáticos dos compostos A, B, C e D.
B) Escreva as fórmulas estruturais dos compostos A, B e D.
C) Calcule o número de oxidação para o átomo de carbono assinalado com asterisco no composto C.
D) Calcule o número de estereoisômeros possíveis para o composto D.
MATEMÁTICA
1ª QUESTÃO
O dono de uma peixaria comprou um total de 1.100 quilos de lagosta e de camarão. Ele os comprou pelo preço de R$25,00 e
R$30,00 o quilo, respectivamente, e gastou um total de R$30.000,00.
A) Determine quantos quilos o dono da peixaria comprou de lagosta e quantos de camarão.
B) O dono da peixaria precisa vender os 1.100 quilos de lagosta e de camarão por um valor 80% maior do que o total que
havia gasto. Sabendo que a razão entre o preço de venda do quilo de lagosta e do quilo de camarão é, respectivamente,
2/3, determine esses preços.
2ª QUESTÃO
João quer comprar um computador cujo preço à vista é de R$1.000,00. O vendedor lhe ofereceu duas formas de pagamento,
ambas com taxa de juros compostos de 10% ao mês.
A) Na primeira forma de pagamento, ele pagaria o computador em uma única parcela 90 dias após a data da compra.
Determine o valor dessa parcela.
B) Na segunda forma, ele pagaria o computador em duas parcelas, a primeira com vencimento em 60 dias e a segunda em 90
dias, ambas após a data da compra. Sabendo que a primeira parcela é de R$500,00, determine o valor da segunda parcela.
3ª QUESTÃO
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
A venda do Seu Carlos tem uma balança de dois pratos. Ele pesa objetos
utilizando apenas dois pesos de 1 kg, dois de 5 kg, e dois de 25 kg,
colocando alguns desses pesos, ou todos, e o objeto a ser pesado em
quaisquer dos pratos dessa balança. Nessas condições,
A) qual o peso do objeto mais pesado que ele pode pesar? Justifique sua
resposta.
B) é possível pesar um objeto de 27 kg e outro de 53 kg? Descreva como
podem ser feitas essas pesagens.
C) determine todos os possíveis pesos de objetos que podem ser pesados.
Justifique sua resposta.
4ª QUESTÃO
Um cilindro circular reto de altura h cm e raio da base r cm está inscrito em um cone circular reto de altura 20 cm e raio da
base 5 cm, ambos com o mesmo eixo. Determine
A) uma expressão de h em função de r.
B) uma expressão da área total do cilindro em função de r.
C) o valor de r para o qual a área total do cilindro seja máxima, e o valor dessa área máxima. Justifique sua resposta.
5ª QUESTÃO
Num sistema de coordenadas cartesianas ortogonais, considere as circunferências que passam pelo ponto
P = ( 2, 2 ) e são
tangentes aos eixos X e Y. Determine
A) os raios e as coordenadas cartesianas dos centros dessas circunferências.
B) a equação da reta que tangencia essas circunferências no ponto P.
BIOLOGIA
1ª QUESTÃO
“Não há exceção à regra de que todo ser orgânico cresce numa taxa tão alta que, se não destruído, a Terra seria rapidamente
coberta pelos filhos de um único casal”.
(DARWIN, Charles. On the Origin of Species.)
No ambiente natural, existem diversos fatores que regulam o tamanho das populações biológicas. Essas populações variam ao
longo do tempo, como mostrado nos gráficos abaixo.
Considerando essas informações, faça o que se pede.
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-22
PROFESSOR PAULO ROBERTO
A) Explique o que é densidade populacional.
B) Descreva os fatores ambientais que limitam o crescimento de uma população.
C) Descreva os fatores que contribuem
buem para o aumento da densidade populacional.
2ª QUESTÃO
O corpo da planta começa a se diferenciar durante a formação da semente, logo após a fecundação. Nesta fase embrionária,
surgem células poliédricas com parede celular fina e bastante flexível, e citoplasma
citoplasma denso com pequenos vacúolos. São as
chamadas células meristemáticas.. Descreva os meristemas primários das angiospermas, evidenciando os tecidos
primários formados diretamente por eles.
3ª QUESTÃO
A formação da cavidade
dade digestória nos animais pluricelulares está intimamente relacionada com o desenvolvimento da fase de
gástrula e dos folhetos germinativos na embriogênese. Esponjas (Porifera), anêmonas (Cnidaria) e tubarões (Vertebrata)
apresentam diferenças marcantes quanto ao tipo de desenvolvimento embrionário e, também, quanto às cavidades digestórias.
Descreva as diferenças existentes entre esses três grupos de metazoários quanto
A) ao tipo de desenvolvimento embrionário que eles têm.
B) à presença, à ausência e ao tipo de cavidade digestória que eles têm.
4ª QUESTÃO
As comunidades Dunker consistem em comunidades religiosas que migraram da
Alemanha para os Estados Unidos, durante o século XVII, e que, devido aos
seus costumes, se mantiveram isolados geneticamente da população
po
americana. Estudos sobre a freqüência de alguns alelos nos membros dessas
comunidades mostram diferenças significativas tanto em relação à população
norte-americana, quanto à população alemã.
A. Como as diferenças na freqüência gênica dessa população
popula
podem ser explicadas?
B. Suponha que a freqüência dos alelos nos membros dessas comunidades não tenha apresentado diferenças significativas em
relação à população alemã. Como esse fato poderia ser explicado?
5ª QUESTÃO
Em um experimento genético com Drosophila
ophila, foram descobertos dois genes (vg e pt) que apresentam entre si 19,5% de
recombinação, sendo considerados ligados. Nesse mesmo experimento, foi encontrado um outro gene (mn) que apresenta
segregação independente em relação aos dois primeiros genes citados.
c
A) Explique por que se considera que os genes em questão estão ligados.
B) Descreva a relação entre ligação e recombinação.
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
C) Determine a distância entre os genes vg e pt. Explique o fato de os dois genes (vg e pt) se segregarem independentemente
do gene mn.
AS BANCAS ELABORADORAS ESPERAM OBTER DA MAIORIA DOS CANDIDATOS RESPOSTAS COMO AS
QUE SEGUEM:
FÍSICA
1ª QUESTÃO
a)
i=
ε
R
=
12
,
2
i = 6 A.
b) Como as resistências de 3 Ω estão em paralelo, temos
1
1 1 1
= + + ,
′
Req
3 3 3
′ = 1 Ω.
Req
Agora a resistência de 2 Ω está em série com a equivalente em paralelo, 1 Ω, assim
Req = 2 + 1 ,
Req = 3 Ω.
Desta forma para o circuito equivalente temos
i′ =
12
,
3
i ′ = 4 A.
c) A diferença de potencial a qual está submetida qualquer uma das três resistência de 3 Ω é
′ i ′ = 1x 4 ,
V = Req
V = 4 V.
A potência dissipada em qualquer uma das três resistência de 3 Ω é, então,
Pot =
www.algebra.cjb.net
V 2 42
=
,
R
3
Pot =
[email protected]
16
≈ 5,3 W.
3
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
2ª QUESTÃO
a) Aplicando a 2a Lei de Newton no cilindro obtemos
r
r r
FR = E + P .
Como o cilindro está em equilíbrio temos
ρ a g h ′ A kˆ − ρ c g h A kˆ = 0 ,
h′ =
ρ c h 0,9 x5
=
,
ρa
1,0
h ′ = 4,5 cm.
b) Aplicando novamente a 2a Lei de Newton no cilindro obtemos
r
r
r
r
FR = E a + E o + P.
Como o cilindro está em equilíbrio temos
ρ a g ha A kˆ + ρ o g ho A kˆ − ρ c g h A kˆ = 0 ,
ρ a ha + ρ o h0 = ρ c h .
Como o cilindro está todo submerso temos
ha + ho = h . (2)
Substituindo a equação (2) na equação (1) obtemos
ho =
(ρ a − ρ c )
h,
(ρ a − ρ o )
h0 =
(1 − 0,9 ) x5 ,
(1 − 0,8)
ho = 2,5 cm
3ª QUESTÃO
a) Como o processo reversível A → B é isocórico temos
PA PB
=
,
T A TB
P0 3P0
=
,
TA
T0
www.algebra.cjb.net
[email protected]
(1)
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
TA =
T0
.
3
b) Como o processo reversível C → A é isobárico temos
V A VC
=
,
T A TC
V0
T0
=
3
VC
,
T0
VC = 3V0 .
Sendo o processo reversível
C → A é isobárico, o trabalho pode ser calculado como
W = P0 (V A − VC ) .
W = −2 P0V0 .
c) Da 1a Lei da termodinâmica temos
∆U BC = QBC − WBC .
Uma vez que a energia interna de um gás ideal depende somente da temperatura, em um processo isotérmico sua variação é
nula, assim
QBC = WBC ,
QBC = P0V0 ln (3) .
4ª QUESTÃO
a) Pela lei da conservação da energia mecânica temos
E a = E0 .
Tomando a energia potencial gravitacional nula na plataforma obtemos
1
mV A2 − mgl = 0 ,
2
V A = 2 gl .
b) Novamente aplicado a lei da conservação de energia a ponto B cuja distância da plataforma é
1
1
2
mV B2 + k (hB − l ) − mghB = 0 .
2
2
A condição para que a distância à plataforma seja máxima é que
www.algebra.cjb.net
[email protected]
VB = 0 , assim
hB ( hB > l ) temos
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
1
2
k (hmax − l ) − mghmax = 0 .
2
A condição para que o bloco não atinja o chão é que
h < hmax . Desta forma no limite temos
kL =
2mgh
(h − l )2
.
5ª QUESTÃO
a) A energia de um fóton é dada por
E = hν =
hc
λ
.
Assim,
E A λ B 0,75
=
=
,
E B λ A 0,45
EA 5
= .
EB 3
b)
PotA = PotB ,
εA
∆t
=
εB
∆t
,
εA = εB,
N A EA = N B EB ,
N A EB
=
,
NB EA
NA 3
= .
NB 5
QUÍMICA
1a QUESTÃO
HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)
(100,0 x 0,5mol/L) + (200,0 x 0,2mol/L)
50,0mmol – 40,0mmol = 10,0mmol de HCl em excesso
a) A solução resultante será ácida.
b) A concentração, em mol/L, do reagente em excesso será:
HCl(aq) → H+ + Cl-
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
[H+] = 10,0mmol de HCl / 300,0mL
[H+] = 0,0333 mol/L
c) O pH final da solução será:
[H+] = 0,0333 mol/L
pH = -log [H+]
pH = -log (0,0333)
2a QUESTÃO
a) A reação química balanceada que ocorre no processo (i), (ii) e (iii):
(i)
S(s) + O2(g)→ SO2(g)
(ii)
SO2(g) + ½O2(g)→ SO3(g)
(iii)
SO2(g) + H2O(l)→ H2SO4(aq)
b) A massa do sal formadoserá:
S(s) + O2(g)→ SO2(g)
32,0 gramas → 64,0 gramas
6,4 gramas
→ X .: X = 12,8 gramas
SO2(g) + Ba(OH)2(aq)
BaSO3(aq) + H2O(l)
64,0 gramas → 217,4 gramas
12,8 gramas → y .: y = 43,5 gramas
3a QUESTÃO
A) A equação química balanceada será: CS2(g) + 3 O2(g) → CO2(g) + 2 SO2(g)
B) Análise da tabela mostra que, ao se dobrar a [CS2]o, a velocidade inicial permanece inalterada, enquanto que ao se
dobrar a [O2]o, a velocidade quadruplica. Assim, pode-se concluir que as ordens de reação são: 0(zero) em relação ao
dissulfeto e 2(dois) em relação ao oxigênio.
C) A lei de velocidade da reação será v = k.[O2]2. Assim, pelo experimento 1, por exemplo, tem-se: 5,37.10-3mol.L-1.s-1 =
k.(0,35 mol.L-1)2 => k = (5,37.10-3/0,12)mol-1.L.s-1 =>
K = 4,5. 10-2 mol-1.L.s-1 .
4a QUESTÃO
A) Equações químicas balanceadas
∆Hco= -1560 kJ/mol
C2H6(g) + 7/2 O2(g) → 2CO2(g) + 3 H2O(g)
C6H14(g) + 19/2 O2(g) → 6CO2(g) + 7 H2O(g) ∆Hco= -4163 kJ/mol
B) Cálculo de CO2 produzido para 1,0 kg queimados
- Para o etano:
30 g – 1,0 mol
1000 g – x => x = 33,3mols que irão, pela estequiometria, produzir 66,6 mols de CO2.
- Para o n-hexano: 86 g – 1,0 mol
1000 g – x => x = 11,6 mols que irão, pela estequiometria, produzir 69,6 mols de CO2. Portanto um
pouco mais que o etano.
C) 1,0 kg de etano (33,3 mols), produzirão aproximadamente 33,3x 1560 kJ = 51948 kJ.
1,0 kg de n-hexano (11,6 mols), produzirão aproximadamente 11,6x4163 kJ = 48291 kJ. Liberando um pouco
menos que o etano.
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
D) Considere 1 mol de etano como referência (-1.560 kJ). Para o n-hexano liberar tal energia, deve-se queimar
aproximadamente 0,37 mol do mesmo. A cada 1,0 mol de n-hexano queimado, 6,0 mols de CO2 são produzidos, assim,
0,37 produzirão aproximadamente 2,2 mols de CO2, um pouco acima do etano.
5a QUESTÃO:
A) A – Metilcicloexano.
B - Ácido 3-metilexanodióico.
C - 3-metilexanodioato de sódio.
D – 1,2-dibromo-4-metilcicloexano.
B)
CH3
CH3
O
HO
C
C
OH
O
A
Br
B
Br
D
C) X-3 = 0, logo número de oxidação do átomo de carbono assinalado é -3.
D) Composto D apresenta 03 carbonos assimétricos, logo possui 2n = 23 = 08 estereoisômeros.
MATEMÁTICA
1ª QUESTÃO
a) Denotando por l e c a quantidade de quilos comprada de lagosta e camarão, respectivamente, tem-se que
25l + 30c = 30000 e l + c = 1100 . Substituindo c = 1100 − l na primeira dessas equações obtém-se c = 500 , donde
l = 1100 − c = 600 .
b) Como ele gastou 30.000 reais na compra dos 1.100 quilos de lagosta e camarão e precisa vender por um valor 80% maior,
então deverá vender por 30.000 × 1,8 = 54.000 reais. Denotando agora por l e c o preço de venda, em reais, do quilo de
600l + 500c = 54000 e l c = 2 3 . Substituindo c = 3l 2 em
600l + 500c = 54000 , obtém-se l = 40 e, portanto, c = 3l 2 = 3 × 40 2 = 60 .
lagosta e camarão, respectivamente, tem-se que
2ª QUESTÃO
a) O valor da parcela é
1000 × 1,13 = 1331 reais.
b) O valor da segunda parcela é
(1000 ×1,1
2
− 500 ) ×1,1 = 781 reais.
3ª QUESTÃO
a) O objeto mais pesado que pode ser pesado é de 2 ×1 + 2 × 5 + 2 × 25 = 62 kg, o que corresponde a colocar todos os pesos
que dispomos em um dos pratos da balança e no outro prato o objeto de 62 kg a ser pesado.
b) Para pesar um objeto de 27 kg, basta colocá-lo em um dos pratos da balança e no outro prato um dos pesos de 25 kg e
dois pesos de 1 kg.
Para pesar um objeto de 53 kg, basta colocá-lo em um dos pratos da balança juntamente com dois pesos de 1 kg
(formando um total de 55 kg), e no outro prato colocam-se dois pesos de 25 kg e um peso de 5 kg.
Observe que a primeira pesagem corresponde a escrever
53 + 2 × 1 = 1× 5 + 2 × 52 , isto é, 53 = ( −2 ) × 1 + 1× 5 + 2 × 52 .
27 = 2 × 1 + 1× 52 e a segunda pesagem corresponde a escrever
c) PRIMEIRA SOLUÇÃO:
Exatamente todos os objetos com pesos inteiros de 1 kg a 62 kg podem ser pesados com os pesos disponíveis.
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
x um número inteiro, pode ser pesado
usando os pesos disponíveis é equivalente a dizer que existem números inteiros q1 , r1 e r0 , com −2 ≤ q1 , r0 , r1 ≤ 2 , tais que
De fato, observaremos inicialmente que, dizer que um objeto pesando x kg, sendo
x = q1 × 52 + r1 × 5 + r0 . Nesse caso, a pesagem é feita do seguinte modo: se r1 é negativo, coloca-se r1 pesos de 5 kg junto
r1 é positivo, coloca-se r1 pesos de 5 kg em um dos pratos, com o objeto de x kg no
ao objeto de x kg no mesmo prato. Se
outro prato, respectivamente. Se
r1 é zero não se usam pesos de 5 kg na pesagem. Procedimento análogo é utilizado com os
pesos de 1 kg e 25 kg relativamente a
r0 e q1 , respectivamente. É evidente que apenas objetos cujos pesos são números
inteiros podem ser pesados com os pesos disponíveis.
Em seguida observaremos que todo número inteiro a pode ser expresso na forma
a = 5q + r , com q e r inteiros e
−2 ≤ r ≤ 2 . De fato, sendo a um número inteiro então a divisão euclidiana nos diz que existem inteiros q’ e r’ tais que
a = 5q '+ r ' , com 0 ≤ r ' ≤ 4 . Se for 0 ≤ r ' ≤ 2 , tomamos q = q ' e r = r ' . Se for r ' = 3 , escrevemos
a = 5q '+ 3 = 5q '+ ( 5 − 2 ) = 5 ( q '+ 1) + ( −2 ) ,
e
tomamos
q = q '+ 1
e
r = −2 .
Se
for
r ' = 4,
escrevemos
a = 5q '+ 4 = 5q '+ ( 5 − 1) = 5 ( q '+ 1) + ( −1) , e tomamos q = q '+ 1 e r = −1 . Isso justifica a afirmação feita.
Agora, considere um objeto pesando x kg, com x inteiro e 1 ≤ x ≤ 62 . Então, pelo que feito dito anteriormente, existem
inteiros q0 e r0 , com −2 ≤ r0 ≤ 2 , tais que x = 5q0 + r0 . Também existem inteiros q1 e r1 , com −2 ≤ r1 ≤ 2 , tais que
q0 = 5q1 + r1 . Logo, x = 5q0 + r0 = 5 ( 5q1 + r1 ) + r0 , isto é, x = q1 × 52 + r1 × 5 + r0 . Como x ≤ 62 , então q1 ≤ 2 , pois se fosse
q1 ≥ 3 , como r0 , r1 ≥ −2 , então teríamos x = q1 × 52 + r1 × 5 + r0 ≥ 3 × 52 + ( −2 ) × 5 + ( −2 ) ≥ 63 , o que não é verdade. Por
último,
como
x ≥1
então
q1 ≥ 0 ,
pois
se
fosse
q1 ≤ −1 ,
como
x = q1 × 52 + r1 × 5 + r0 ≤ ( −1) × 52 + 2 × 5 + 2 ≤ −13 , o que também não é verdade.
r0 , r1 ≤ 2 ,
então
teríamos
Assim podemos escrever x = q1 × 5 + r1 × 5 + r0 ×1 , com q1 ≥ 0 e −2 ≤ r0 , r1 ≤ 2 , o que nos permite concluir que o objeto
2
de x kg considerado pode ser pesado utilizando-se os pesos disponíveis de acordo com o procedimento descrito anteriormente.
SEGUNDA SOLUÇÃO:
Inicialmente, vê-se que com os dois pesos de 1 kg podem-se pesar objetos de 1 kg e de 2 kg. Um objeto que pesa 3 kg
juntado a dois pesos de 1 kg pesa 5 kg. Portanto, para pesá-lo basta colocar o peso de 5 kg num dos pratos e os 2 pesos de 1
kg no prato onde está o objeto. Para pesar um objeto de 4 kg, o procedimento é análogo, bastando deixar apenas um dos
pesos de 1 kg no prato onde está o objeto. Para objetos de 6 kg e de 7 kg, os pesos de 1 kg ficam juntos ao peso de 5 kg. E
assim por diante, para objetos até 12 kg, como é mostrado na tabela abaixo, sendo que o sinal de – indica que o peso está no
prato onde está o objeto e o sinal de + indica que o peso está no outro prato.
Peso do objeto em kg
1
2
3
4
5
6
7
8
9
10
11
12
Pesagem em kg
+1
+1 + 1
+5 – 1 – 1
+5 – 1
+5
+5 + 1
+5 + 1 + 1
+5 + 5 – 1 – 1
+5 + 5 – 1
+5 + 5
+5 + 5 + 1
+5 + 5 + 1 +1
Agora, observe que 13 = 25 – 12 e todos os números de 13 a 24 são iguais a diferenças entre 25 e um número que vai de
12 até 1. Por exemplo, 14 = 25 – 11, 15 = 25 – 10, etc. Acrescentamos à tabela linhas que correspondem à pesagem de
objetos de 13 kg a 24 kg, trocando os sinais nas linhas de 1 kg a 12 kg de + por – e de – por + no sentido inverso das linhas, e
em seguida, somando 25 kg a cada elemento da segunda coluna. Dessa forma, a última linha da tabela passa a ser:
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
24
+25 – 1
Agora, acrescentamos à tabela a linha que corresponde à pesagem de objetos de 25 kg, a saber:
25
+25
Acrescentamos à tabela linhas que correspondem à pesagem de objetos de 26 kg a 50 kg, somando 25 kg aos elementos
da segunda coluna.
Por último, acrescentamos à tabela linhas que correspondem à pesagem de objetos de 51 kg a 62 kg, somando 25 kg ao
elemento da segunda coluna de cada uma das linhas que correspondem à pesagem de objetos de 26 kg a 37 kg.
4ª QUESTÃO
a) Considerando a secção do cone por um plano contendo o seu eixo e usando semelhança de triângulos obtém-se que
20 ( 20 − h ) = 5 r , isto é, h = 20 − 4r .
S = 2π r 2 + 2π rh = 2π r ( r + h ) . Entretanto, de acordo com o item (a), h e r estão
relacionados por h = 20 − 4r , logo a área total S é uma função apenas de r e tem a expressão S = S ( r ) = 2π r ( 20 − 3r )
b) A área total S do cilindro é
.
c) De acordo com a expressão de
coeficiente
r
de
2
igual
S (r ) obtida no item (b), a área total do cilindro é uma função quadrática de r, sendo o
−6π , que é negativo. Logo, a função
a
S (r )
atinge
valor
máximo
quando
r = ( −40π ) ( 2 × ( −6π ) ) , isto é, quando r = 10 3 , e nesse caso o valor correspondente de S é máximo e é igual a
S = 2π (10 3) ( 20 − 3 (10 3) ) , ou seja, S = 200π 3 .
5ª QUESTÃO
a) Uma circunferência de raio r que tangencia os eixos coordenados determina um quadrado cujos vértices são a origem do
sistema de coordenadas, o centro, e os pontos de tangência. Logo, o centro dessa circunferência tem ambas as
coordenadas iguais a ± r .
Se uma das coordenadas do centro dessa circunferência é r e a outra é − r , então a distância do centro ao ponto
P = ( 2, 2 ) é
pelo ponto
( r − 2 ) + ( −r − 2 ) = ( r − 2 ) + ( r + 2 ) ≥ r + 2 = r + 2 > r , e logo essa circunferência não pode passar
P = ( 2, 2 ) . Se ambas as coordenadas do centro são iguais a − r , então a distância do centro ao ponto P = ( 2, 2 )
2
( −r − 2 ) + ( −r − 2 )
ponto P = ( 2, 2 ) .
2
é
2
2
2
2
= 2 ( r + 2 ) = 2 r + 2 = 2 ( r + 2 ) > r , e também nesse caso a circunferência não passa pelo
2
Conseqüentemente, uma circunferência que tangencia os eixos coordenados e passa pelo ponto
necessariamente
( r − 2) + ( r − 2)
2
(
tem
)
2
ambas
as
= 2 ( r − 2 ) = r , isto é,
2
(
2 − 1 r = 2 2 , isto é, r = 2 2
, isto é,
(
r= 2 2
coordenada
)(
)
)(
)
do
centro
2 r − 2 = r , ou seja,
iguais
a
r.
Nesse
2 ( r − 2 ) = ± r . Para
2 − 1 , ou seja, r = 4 + 2 2 . Para
caso
P = ( 2, 2 )
tem-se
que
2 ( r − 2 ) = r , tem-se que
2 ( r − 2 ) = − r , tem-se que
(
)
2 +1 r = 2 2
2 + 1 , ou seja, r = 4 − 2 2 .
Assim, ambas as circunferências pedidas têm centro com ambas as coordenadas iguais a r, sendo que uma delas tem raio
r = 4 + 2 2 e a outra tem raio r = 4 − 2 2 .
b) A reta tangente às circunferências no ponto
nesse ponto. Por outro lado, a inclinação
P = ( 2, 2 ) deve ser perpendicular ao raio de qualquer uma das circunferências
mr desse raio é mr = ( r − 2 ) ( r − 2 ) = 1 , então a inclinação da reta tangente é
−1 mr = −1 1 = −1 . Assim, a equação da reta tangente é y − 2 = ( −1)( x − 2 ) , isto é, x + y = 4 .
BIOLOGIA
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
1ª QUESTÃO
a) Densidade Populacional = é o número de indivíduos, de uma mesma espécie, que vivem em uma determinada área
ou volume.
b) Os principais fatores que afetam o crescimento de uma população são: densidade populacional, disponibilidade de
alimentos, competição entre os indivíduos da própria espécie, competição entre indivíduos de espécies diferentes,
predatismo e parasitismo.
c) A taxa de natalidade e a taxa de imigração.
2º QUESTÃO
Meristemas Primários do corpo vegetal formarão o Protoderma, o Meristema Fundamental e o Procâmbio.
Protoderma é a camada de células que reveste externamente o embrião e que dará origem à epiderme.
Meristema Fundamental é o meristema que forma um cilindro abaixo do protoderma e que dará origem ao córtex. É
constituído por parênquima e tecidos de sustentação.
Procâmbio é o tecido que formará os tecidos vasculares (xilema primário e floema primário), os parênquimas e os tecidos de
sustentação da região central da planta.
3º QUESTÃO
C. Diferentemente dos cnidários e vertebrados, os poríferos não apresentam a fase de gástrula. Na fase de gástrula são
formados o arquêntero (gastrocela), que dará origem à cavidade digestória, e os folhetos germinativos. Nos
cnidários há formação de dois folhetos germinativos (condição diploblástica ou diblástica), a ecto e a endoderme,
enquanto que nos vertebrados há a formação de um terceiro folheto (condição triploblástica ou triblástica), a
mesoderme.
D. Os poríferos não apresentam cavidade digestória, pois não apresentam gastrulação. A cavidade digestória dos cnidários
é incompleta, pois não apresenta ânus, e se apresenta na forma de uma cavidade gastrovascular. Nos
vertebrados, a cavidade digestória é completa, apresenta boca e ânus, e se apresenta na forma de um intestino
verdadeiro, já que o desenvolvimento da mesoderme permite a formação da cavidade corpórea.
4º QUESTÃO
A. A diferença para com a população americana é explicada pelo isolamento. Já a diferença para com a população alemã
pode ser explicada pelo Princípio Fundador, que é um caso extremo de Deriva Gênica. Segundo esse princípio,
quando um pequeno número de indivíduos funda uma nova população, a freqüência gênica da população original
não está representada, e assim, a freqüência gênica dessa nova população poderá ser diferente daquela original.
B. Os indivíduos que fundaram a comunidade na América constituiriam uma amostra representativa da freqüência
gênica da população alemã, que foi mantida ao longo do tempo.
5º QUESTÃO
A) Considera-se que os genes estão ligados, pois apresentam uma taxa de recombinação abaixo de 50%, o que demonstra que
se localizam em um mesmo cromossomo e tendem a ir juntos para o mesmo gameta, ou seja, apresentam ligação gênica ou
fatorial.
B) Há uma relação direta entre a ligação e freqüência de recombinação e, conseqüentemente, entre a última e a distância entre
os loci gênicos, pois os genes estão distribuídos linearmente nos cromossomos.
C) A distância entre os genes vg e pt é de 19,5 unidades de mapa, uma vez que apresentam essa freqüência de recombinação
entre eles. O gene mn segrega-se independentemente dos outros dois genes, devido ao fato de estar localizado em um outro
par de cromossomos. Logo, sempre que ocorre a meiose não haverá permuta entre esses cromossomos e conseqüentemente, a
segregação será independente.
www.algebra.cjb.net
[email protected]
PROVAS DISCURSIVAS UFES 2007-2
PROFESSOR PAULO ROBERTO
www.algebra.cjb.net
[email protected]
Download

provas discursivas ufes 2007-2 professor paulo roberto