METABOLISMODE CARBOIDRATOS • A maioria dos microrganismos oxida carboidratos como sua fonte primária de energia celular. • A glicose é a fonte mais comum de energia de carboidrato utilizada pelas células. • Produção de energia a partir da glicose: RESPIRAÇÃOCELULAR e FERMENTAÇÃO. Fonte de energia • A principal função dos carboidratos, consiste em funcionar como combustível energético, particularmente durante o exercicio. A energia que deriva da desintegração da glicose carreada pelo sangue e do glicogênio hepático e muscular acaba sendo utilizado para adicionar os elementos contrateis do musculo, assim como outras formas de trabalho biologico O combustível mais utilizado é a glicose,substância altamente energética cuja quebra no interior das células libera a energia armazenada nas ligações químicas e produz resíduos, entre eles gás carbônico e água. Energia sob a forma de ATP Cada vez que ocorre a desmontagem da molécula de glicose, a energia não é simplesmente liberada para o meio. A energia é transferida para outras moléculas (chamadas de ATP Adenosina Trifosfato), que servirão de reservatórios temporários de energia, “bateriazinhas” que poderão liberar “pílulas” de energia nos locais onde estiverem. No citoplasma das células é comum a existência de uma substância solúvel conhecida como adenosina difosfato, ADP. É comum também a existência de radicais solúveis livres de fosfato inorgânico (que vamos simbolizar por Pi), ânions monovalentes do ácido ortofosfórico. Cada vez que ocorre a liberção de energia na respiração aeróbica, essa energia liga o fosfato inorgânico (Pi) ao ADP, gerando ATP. Como o ATP também é solúvel ele se difunde por toda a célula. A estrutura do ATP O ATP é um composto derivado de nucleotídeo em que a adenina é a base e o açúcar é a ribose. O conjunto adenina mais ribose é chamado de adenosina. A união de adenosina com três radicais fosfato leva ao composto adenosina trifosfato, ATP. As ligações que mantêm o segundo e o terceiro radicais fosfato presos no ATP são altamente energéticas (liberam cerca de 7 Kcal/mol de substância). Assim, cada vez que o terceiro fosfato se desliga do conjunto, ocorre a liberação de energia que o mantinha unido ao ATP. É esta energia que é utilizada quando andamos, falamos, pensamos ou realizamos qualquer trabalho celular. • Fermentação Liberação de energia através da fermentação A fermentação é um processo de liberação de energia que ocorre sem a participação do oxigênio(processo anaeróbio). A fermentação compreende um conjunto de reações enzimaticamente controladas, através das quais uma molécula orgânica é degradada em compostos mais simples, liberando energia. A glicose é uma das substâncias mais empregadas pelos microorganismos como ponto de partida na fermentação. O rendimento energético da respiração aeróbica O processo de respiração aeróbica, é muito mais eficiente que a da fermentação: para cada molécula de glicose degradada, são produzida na respiração, 38 moléculas de ATP, a partir de 38 moléculas de ADP e 38 grupos de fosfatos. Na fermentação, apenas duas moléculas de ATP são produzidas para cada molécula de glicose utilizada. A eficiência da respiração em termos energéticos é, portanto, dezenove vezes maior do que a da fermentação. A respiração aeróbica é um processo muito mais complexo que a fermentação. São necessários cerca de 60 passos metabólicos a mais, além dos nove que compõe a glicólise, para que uma molécula de glicose seja totalmente degradada a CO2 e H2O, em presença de O2. Etapas da respiração aeróbica A degradação da glicose na respiração celular se dá em três etapas fundamentais: glicólise, ciclo de Krebs e cadeia respiração. A glicólise ocorre no hialoplasma da célula, enquanto o ciclo de Krebs e a cadeia respiratória ocorrem no interior das mitocôndrias. Glicólise ou via glicolítica • Na glicólise, cada molécula de glicose é desdobrada em duas moléculas de piruvato (ácido pirúvico), com liberação de hidrogênio e energia, por meio de várias reações químicas. O hidrogênio combina-se com moléculas transportadores de hidrogênio (NAD), formando NADH + H+, ou seja NADH2. • 1 glicose------ 2 atps----- 2 piruvatos-- + 2 NaDH + 4 ATP ( 6 carbonos) ( 3 carbonos) Oxidação do Ácido Pirúvico As moléculas de ácido pirúvico resultantes da degradação da glicose penetram no interior das mitocôndrias, onde ocorrerá a respiração propriamente dita. Cada ácido pirúvico reage com uma molécula da substância conhecida como coenzima A, originando três tipos de produtos: acetil-coenzima A, gás carbônico e hidrogênios. O CO2 é liberado e os hidrogênios são capturados por uma molécula de NADH2 formadas nessa reação. Em seguida, cada molécula de acetil-CoA reage com uma molécula de ácido oxalacético, resultando em citrato (ácido cítrico) e coenzima A, 1 acetil-CoA + 1 ácido oxalacético (2 carbonos) (4 carbonos) 1 ácido cítrico + 1 CoA (6 carbonos) Analisando a participação da coenzima A na reação acima, vemos que ela reaparece intacta no final. Tudo se passa, portanto, como se a CoA tivesse contribuído para anexar um grupo acetil ao ácido oxalacético, sintetizando o ácido cítrico. Cada ácido cítrico passará, em seguida, por uma via metabólica cíclica, denominada ciclo do ácido cítrico ou ciclo de Krebs, durante o qual se transforma sucessivamente em outros compostos. Aceptores de hidrogênio da cadeia respiratória As moléculas de NAD, de FAD e de citocromos que participam da cadeia respiratória captam hidrogênios e os transferem, através de reações que liberam energia, para um aceptor seguinte. Os aceptores de hidrogênio que fazem parte da cadeia respiratória estão dispostos em seqüência na parede interna da mitocôndria. O ultimo aceptor de hidrogênios na cadeia respiratória é a formação de moléculas de ATP, processo chamado de fosforilação oxidativa. Cada molécula de NADH2 que inicia a cadeia respiratória leva à formação de três moléculas de ATP a partir de três moléculas de ADP e três grupos fosfatos como pode ser visto na equação a seguir: 1 NADH2 + ½ O2 + 3 ADP + 3P 1 H2O + 3 ATP + 1 NAD Já a FADH2 formado no ciclo de Krebs leva à formação de apenas 2 ATP. 1 FADH2 + ½ O2 + 2 ADP + 2P 1 H2O + 2 ATP + 1 FAD