Otimização de trade-offs no gerenciamento de cadeias de suprimentos verdes Gabriel Alves Jr. [email protected] Orientador: Dr. Paulo Maciel Co-Orientador: Dr. Ricardo Massa Agenda • • • • • • • Contexto Métricas Modelos Estudo de Caso Conclusões Links Referências Contexto • Cadeia de suprimentos verdes – Mudanças para melhorar o processo podem impactar métricas ambientais Contexto • Classificação dos Indicadores de Sustentabilidade Indicador de Sustentabilidad e Social Objetivo Subjetivo Ambiente Objetivo Subjetivo Econômico Objetivo Subjetivo Métricas • Exergia – Eficiência da energia (depende da fonte e do sistema) – Permite comparar fontes diferentes – Pouco suporte/dados • Global Warming Potential (GWP) – Compara o impacto de diferentes recursos com os efeitos do CO2 – Considera a origem/destinação dos recursos – Bom suporte/apelo prático Métricas • Esquema gráfico para a definição dos rewards • Exergia – Consumo energético • GWP – Detritos – Consumo de energia em separado Tabela 5.8 Entradas e saídas dos elementos do componen Modelos Elemento • Componentes Saíd Entradas pMPRCi - - pPPRCi - - pRPRCi - - tiPRCi - - toPRCi - - t pPRCi insumos, água, energia água, d energéticas bastante utilizadas em processos de manufatura. Entre derar o trabalho humano e as matérias-primas utilizadas na produç Os detritos sólidos bastante comuns nos processos de ma – Logística de entrada e saída (puxada/empurrada), e sãoreversa dem ser decorrentes de sobras das matérias-primas, embalagens, o massa/água devido a processos como o de cozimento e secagem. O – Manufatura (baseados em Desrochers) costuma ser bastante intensivo para alguns tipos de processo. Isto p na indústria de alimentos e em metalúrgicas. Muitas vezes a água u – Stochastic Reward nets (SRNs) por isso ela também é considerada nas saídas deste componente. ppDual pstDual ${M} ${S} ${n} pst tp pp td ${n} PRD Figura 5.17 Componente GSPN para representar p O componente apresentado na Figura 5.17 é uma GSPN defi TPRDi , PRDi , IPRDi , OPRDi , HPRDi , gPRDi , ssPRDi , m 0 PRDi , WPRDi PPRDi = { ppPRDi ,ppDualPRDi ,pstPRDi ,pstDualPRDi } e TPRDi = { td vos conjuntos ordenados de lugares e transições, sua estrutura pode mente como Consumidor Transporte Intermediário Transporte Produtor Modelos CAPÍTULO 5 – PROPOSTA 114 • Parâmetros Ambientais dos Componentes Tabela 5.9 Entradas e saídas dos elementos do componente de fluxos. Inputs Entradas Outputs Saídas poFLWi - - psFLWi - - pstFLWi - - pstDualFLWi - - ptFLWi - - pt0FLWi - - pt1FLWi - - pt2FLWi - - taFLWi insumos, energia detritos,co2 toFLWi insumos, energia - tsFLWi - - tt0FLWi insumos, energia detritos,co2 tt1FLWi insumos, energia detritos,co2 Elemento Element Modelos • Modelo de Otimização – Goal Programming – Metas definidas empiricamente, ou por outro modelo de otimização – Pesos (ωx) definidos empiricamente ou com AHP – Visa à redução do consumo de energia e recursos, geração de detritos, destruição de exergia, geração de GWP e objetivos de negócio (bo) Estudo de Caso • OBJETIVO: Otimizar a utilização das máquinas da linha de produção considerando um possível aumento de 45% na demanda – A demanda precisa ser atendida com um desvio negativo de no máximo 10% – Deve-se definir a quantidade e o tipo das máquinas utilizadas em cada etapa da linha de produção (ex.: na fase de embalagem a vácuo pode-se utilizar 2 máquinas de grande porte e uma de pequeno porte). Estudo de Caso • Linha de produção RN model. Estudo de Caso (a) BPM for the production line. (b) BPM for the vacuum packaging. (d) Part of the SRN equivalent to the BPMN model. Estudo de Caso • Os cenários foram criados utilizando o GP apresentado considerando os seguintes critérios – Cenário 1: atual (referência demanda 4 ton/h) – Cenário 2: otimizado, considerando metas ambientais – Cenário 3: otimizado para demanda maior (45%), sem considerar metas ambientais – Cenário 4: otimizado para demanda maior (45%), considerando metas ambientais • Análise de sensibilidade feita com SRNs their usage. For instance, cellulose casings are used to provide shape to sausages and other products, and are completely discarded after the cooking process. This type of organic waste must be discarded cautiously, generally using composting We estimate this kind of waste based on knowledge of the product’s10composition. Estudo de Caso 012 TABLE III • GP para o cenário 3 P RODUCTION LINE PARAMETERS . the first experiment is simplified becoming: minimize t∈T (ndRt + pdRt ) subject to Qp p∈Pt p + ndRt − pdRt = 5.8, ∀t ∈ T ndRt ≤ 0.58, ∀t ∈ T ndRt pdRt = 0, ∀t ∈ T p∈Pt Parameter Delay Rate Energy Sources Electricity (kWh) Waste Cardboard (kg/ton) Wood (kg/ton) Dense Plastic (kg/ton) Ferrous Metal (kg/ton) Non-Ferrous Metal (kg/ton) Grinder 0.250 4.000 Stage 1 Emulsifier Moister 0.167 0.167 6.000 6.000 36.000 11.000 110.000 3.742 0.152 0.917 0.344 0.036 - - Parameter Small Linker 1.250 0.800 Stage 2 Big Medium Linker Linker 0.556 0.769 1.800 1.300 12.000 - 13.000 - 1.370 3.084 2.227 Stage 3 Dry Chiller Delay Rate Energy Sources Electricity (kWh) Natural Gas (m3/h) Waste Water (liters/ton) Water (liters/h) Film Plastic (kg/ton) 15.000 - Oven Sprinkler Tank 1.175 0.851 0.392 2.554 1.000 1.000 30.000 26.800 - 2.200 - - 353.749 - 342.857 - Packers Big Small Peeler Parameter The third experiment uses the same optimization model as the VacVacuum uum first one, but also increases the goal rate by 45% just as the sec0.370 0.400 0.455 0.200 0.200 0.625 Delay 2.700 2.500 2.200 5.000 5.000 1.600 Rate ond scenario does. Therefore, this experiment also addresses Energy Sources 2.200 17.400 15.300 87.000 2.200 5.000 (kWh) Electricity the environmental goals and utilizations when GR = 5.8. The Waste 6.287 Organic Material number of machines for each pool Q p resultant from the (kg/ton) optimization models are depicted in Table IV. These values The system works as a pipeline, where the tasks are the number of machines in the pool and for each machine, the parameters p , EL p, NG p , Wp , GW Pp, Xloss p are, respectively, its rate, the amount of electricity that it consumes, the amount of natural gas that it consumes, the amount of waste it generates, its GWP, and the exergy losses. Since variable Q p is an integer, the optimization model should be defined as a mixed integer programming (MIP) [11]model. We use the grinder to model production line demand, hence the set T does not take it into account. The objective of the following models is to find the optimal number of machines Q p in each pool, considering a hypothetical situation where could Rt the machines Rt operate at their maximum rate. In this way, a reduction in the t∈T utilization gap of the system can be expected. Let E , W , GW P , Xloss , and R be the weights assigned to reduce energy consumption, waste, GWP, exergy losses and the difference between the goal rate (GR ) and the maximum rate of the pool. These weights were set according to stakep GEL , GNG Rt, GW , GGWRP ,t GXloss , holder expectations. Inpaddition, and GR are p∈P the respective goals for electricity consumption, t natural gas consumption, waste generation, resultant GWP, exergy losses, Rt and task rate. The goal rate GR is equal for every task pursuing a synchronized operation, thus reducing the utilization gap. The deviational variables of the energy Rt Rt source refer to the consumption of electricity (ndEL and pdEL ) p∈P and natural gast (ndNG and pdNG ), although the weight constant is shared between both variables. In addition, the following experiments include a restriction that imposes a lower limit of 10% of the desired rate for each task. The first experiment considers a goal rate of 4 tons/ hour for each task (GR = 4). This objective is the current maximum grinder rate. The goal programming (GP) is defined below. The value of each goal of the GP, except for the goal rate, was defined through a linear programming whose aim was to find its minimal value. The objective of this linear programming is the same expression as the goal constraint, without the deviational variables. Furthermore, all deviational variables and the objective constraints are also removed in the linearp their usage. For instance, cellulose casings are used to provide p∈P to sausages and other products, and are completely shape 10 Qp ∈ N discarded after the cooking process. This type of organic waste ndR ≤ 0.1GR, ∀t ∈ T cautiously, generally using composting ndEL pdEL = ndNG pdNG must = ndW pdWbe = nddiscarded GWP pdGW P = rst experiment is simplified becoming: ndX pdX = ndR pdWe R = 0estimate this kind of waste based on knowledge of the t∈T product’s composition. minimize (nd + pd ) Qp p + ndRt − pdRt = GR , ∀t ∈ T t Estudo de Caso t loss t loss t The evaluation stakeholders also expressed their expectations TABLE III of a considerable increment of demand in the next year. The P RODUCTION LINE PARAMETERS . second and third optimization models were thus constructed Stage 1 with an increment of 45% in the goal rate (GR = 5.8). The Emulsifier Moister Grinder Parameter second experiment was carried out without taking into account 0.167 0.167 0.250 Delay environmental goals, thus the optimization model presented for 6.000 6.000 4.000 Rate the first experiment is simplifiedEnergy becoming: Sources • Para embutimento: subject to Q + nd − pd = 5.8, ∀t ∈ T nd ≤ 0.58, ∀t ∈ T nd pd = 0, ∀t ∈ T Electricity (kWh) minimize t∈T (ndRt + pd Rt ) Waste subject to Qp + p p∈Pt Cardboard (kg/ton) Wood (kg/ton) Dense Plastic (kg/ton) Ferrous Metal (kg/ton) ndRt −Non-Ferrous pdRt = 5.8, ∀t ∈ T Metal (kg/ton) ndRt ≤ 0.58, ∀t ∈ T 36.000 11.000 110.000 3.742 0.152 0.917 0.344 0.036 - - 1) 0.8 SLINKER + 1.3 MLINKER + ndR pdR = 0, ∀t Delay ∈T 1.8 BLINKER + nd_LINKING + p∈P Rate Energy Sources pd_LINKING = 5.8 12.000 Electricity (kWh) hird experiment uses the same optimization modeluses as thethe Gas (m3/h) model as the Natural The third experiment same optimization Waste first one, but also increases the goal rate by 45% just as the secone, but also increases the goal rate by 45% just as the sec-Waterexperiment (liters/ton) also addresses ond scenario does. Therefore, this 2) nd_LINKING <= 0.58 Water (liters/h) the environmental goals and utilizations GR = 5.8. The scenario does. Therefore, this experiment also addresses 1.370 (kg/ton) Film Plasticwhen number of machines for each pool Q p resultant from the nvironmental goals and utilizations when GR models = 5.8. TheParameter Peeler optimization are depicted in Table IV. These values nd_LINKING * pd_LINKING = to0 change used the SRN pictured in Figure 3(d). It is ber of 3) machines for each pool Q were resultant from the throughput of the machines important to highlight that theDelay 0.625 mization models are depicted in Table IV. These valuesRate 1.600 Energy Sources used to change the SRN pictured in Figure 3(d). It isElectricity (kWh) 5.000 Waste rtant to highlight that the throughput of the machinesOrganic Material (kg/ton) 6.287 sed with the SRN are expected to be lower than the t t t Parameter Small Linker 1.250 0.800 Stage 2 Big Medium Linker Linker 0.556 0.769 1.800 1.300 13.000 - 15.000 - 3.084 2.227 Stage 3 Dry Chiller Oven Sprinkler Tank 1.175 0.851 0.392 2.554 1.000 1.000 30.000 26.800 - 2.200 - - 353.749 - 342.857 - Big Vacuum 0.400 2.500 Packers 0.200 5.000 0.200 5.000 Small Vacuum 0.455 2.200 2.200 87.000 15.300 17.400 2.200 - - - - - 0.370 2.700 The system works as a pipeline, where the tasks are of resources, and the consequent occurrence of bottlenecks. Estudo de Caso The results provided by the SRN will thus be closer to the ones presented in the real system. The listing below shows the TABLE IV •UMBER Resultados N OF MACHINES IN THE POOL FOR EACH EXPERIMENT. Pool Current EXP 1 EXP 2 MOISTER 1 1 1 EMULSIFIER 1 1 1 SLINKING 2 2 0 MLINKING 1 0 3 BLINKING 1 2 1 OVEN 6 5 7 SPRINKLER 3 2 3 CHILLINGTANK 5 5 6 PEELER 3 3 4 CHILER 1 1 2 DRY 1 1 2 SVACUUM 1 2 3 BVACUUM 2 0 0 SECPACK 2 2 2 Total 31 28 36 EXP 1: Orders’ rate of 4 with environment goal. EXP 3 1 1 0 0 3 7 3 6 4 2 2 3 0 2 35 Estudo de Caso • Utilization Gap acumulado Demanda de 5,8 ton/h Demanda de 4 ton/h Estudo de Caso Throughput do sistema Consumo relativo de eletricidade GWP relativo Consumo relativo de água Estudo de Caso • Comparação dos cenários – AHP poderia ser utilizado para “extrapolar” os dados encontrados informando qual é o melhor cenário Demanda de 4 ton/h Demanda de 5,8 ton/h Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Estudo de Caso 2 Parte do relatório gerado a partir do programa apresentado nos slides anteriores. Resultados não correspondem à análise apresentada nos slides anteriores Os pesos ao lado podem ser utilizados no GP do modelo de otimização apresentado Conclusões • Métricas de desempenho ambiental e operacional – Exergia provê resultados confiáveis para a utilização de diferentes fontes de energia e maquinário – GWP é uma métrica já bastante aceita comercialmente e utilizada no LCA – Impacto de mudanças no processo/falhas sobre indicadores ambientais • GP evita um experimento fatorial completo – Não representa as relações causais da rede Conclusões • Estudos de caso reais e de validação – – – – Cadeias de suprimentos Avaliação de diferentes políticas de estoque Linha de produção Avaliação da exergia e GWP Links • • • • • • • • • Intergovernamental Panel on Climate Change (IPCC): http://www.ipcc.ch/ United States Environmental Protection Agency (EPA): http://www.epa.gov/ – http://www.epa.gov/climatechange/ Energy Information Administration (EIA, US): http://www.eia.doe.gov/ Department for Environment, Food and Rural Affairs (DEFRA, UK): http://www.defra.gov.uk/ Carbon Trust, UK: http://www.carbontrust.co.uk/ Ministério de Minas e Energia (MME, BR): http://www.mme.gov.br/ Ministério de Ciência e Tecnologia (MCT, BR): http://www.mct.gov.br/ World Energy Council: http://www.worldenergy.org/ Green Peace: http://www.greenpeace.org/ – http://www.greenpeace.org.br/ Referências • • • • • • • • • • • • • • • • • • • D. Simchi-Levi, P. Kaminsky, and E. Simchi-Levi, Designing and managing the supply chain: concepts, strategies and case studies. McGraw-Hill, 2000. “Environmental Protection Agency – EPA”, 2007, last access 10/jan/2009. [Online]. Available: http://www.epa.gov. WEC, 2007 Survey of Energy Resources. World Energy Council, 2007. Ministério de Minas e Energia, “Resenha Energética Brasileira – Exercício de 2008”, 2009. Ministério de Minas e Energia, “Balanço Energético Nacional – Exercício de 2008”, 2009. Empresa de Pesquisa Energética, last access 14/mar/2009. [Online]. Available: http://www.epe.gov.br DEFRA - Department for Environment, Food and Rural Affairs, “Environmental Key Performance Indicators – Reporting Guidelines for UK Business”, 2006. V. Veleva, M. Hart, T. Greiner, and C. Crumbley, “Indicators of sustainable production,” Journal of Cleaner Production, vol. 9, no. 5, pp. 447 – 452, 2001. B. M. Beamon, “Designing the green supply chain,” Logistics Information Management, vol. 12, no. 4, pp. 332–342, 1999. R. Cash and T. Wilkerson, “GreenSCOR: Developing a Green Supply Chain Analytical Tool,” 2003, LMI - Logistics Management Institute. J. Cascio, The Iso 14000 Handbook. ASQ Quality Press, 1999. IPCC, Climate Change 2001: The Scientific Basis. Cambridge University Press, 2001. IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Available: http://www.ipcc-nggip.iges.or.jp/public/2006gl/ G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications, 2nd ed. New York, NY, USA: John Wiley and Sons, 2006. G. Balbo, “Introduction to Stochastic Petri Nets,” LNCS 2090, pp. 84–155, 2001. M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, Modelling with Generalized Stochastic Petri Nets. John Wiley and Sons, 1995. A. Zimmermann and M. Knoke, TimeNET 4.0 User Manual, 2007, http://pdv.cs.tu-berlin.de/∼timenet. A. A. Desrochers and R. Y. Al-Jaar, Applications of Petri Nets in Manufacturing Systems: Modeling, Control, and Performance Analysis. Institute of Electrical & Electronics Enginee, 1994. N. Viswanadham and N. R. S. Raghavan, “Performance analysis and design of supply chains: a Petri net approach,” Journal of Operations Research Society, pp. 1158–1169, 2000.