Aula Teórica 6&7 Princípio de Conservação e Teorema de Reynolds. Derivada total e derivada convectiva Princípio de conservação • A Taxa de acumulação no interior de um volume de controlo é igual ao que entra menos o que sai mais o que se produz menos o que se destrói/consome. – A propriedade pode entrar por advecção ou por difusão. – Os processos de produção/consumo são específicos da propriedade (e.g. Fitoplâncton cresce por fotossíntese, o zoo consome outros organismos a quantidade de movimento é produzida por forças). Control Volumne and accumulation rate Taxa de acumulação da propriedade B: (Taxa de variação da propriedade ) Definindo a propriedade específica “Beta” : dV t0 t t B vc t0 t B vc t B dV t0 dV t0 Fluxo advectivo adv B v .n dA • No caso de a propriedade ser uniforme nas faces: n Q i v .n dA adv B i Q i i 1 Ai • Se a velocidade for uniforme em cada face: Q i U iAi Fluxo Difusivo dif B .n dA .n dA • No caso de o gradiente da propriedade ser uniforme nas faces: n dif B i 1 dir esq Ai l E a equação de evolução fica: dV t0 t dV t0 t v .n dA .n dA • Se as propriedades forem uniformes nas faces e no volume (volume infinitesimal): V t0 t V t t0 Q i i A l l l • Que é a forma algébrica do princípio de conservação l Forma diferencial V t0 t V t t0 Q i i A l l l l V x y z z Az x y z Ax y z A y x z Qi ui A t 0 x t x y t t 0 x y z u y z x u y z x x v x z y v x z y y w x y z w x y z z x x x x x x y z y z x x x x x y y y y y y x z y z y y y y y z z z z z z x y z y z z z z z y Dividindo pelo volume (1) t 0 t t t 0 u y z x u y z x x x y z v x z y v x z y y x y z w x y z w x y z z x y z x x x x x x y z y z x x x x x x y z y y y y y y x z x z y y y y y x y z z z z z z z x y z y z z z z z x y z Dividindo pelo volume (2) t 0 t t t 0 v y v y y y u x u x x x w z w z z y x x x x x x x x x x x x y y y y y y y y y y y y z z z z z z z z z z z z Fazendo o volume tender para zero, obtém-se uma equação diferencial. Fazendo tender o volume para zero t t t dt x j u j x j uj d u j x j x j x j x j x j u j x j x j x j u j x j x j x j Divergência da velocidade. Nula em incompressível. Se positiva o volume do fluido aumenta. Questions • The divergence of the velocity is the rate of expansion of a volume? • Let’s consider a volume of fluid in a flow with positive velocity divergence y V)y+dy u j u)x u)x+dx dy V)y u1 x In case of this figure the volume would increase. x j x1 u1 x1 u 2 x2 u3 x3 Is the rate of increase of distance between faces normal to xx axis. The same for other axis. Questions • The rate change of a property conservative property is the symmetrical of the flux divergence? t u j x j x j x j The functions being derivate are the advective flux and the diffusive flux per unit of area. The operators are divergences of the fluxes. If the fluid is incompressible, the velocity divergence is null t u j x j u j x j u j x j 0 u j x j x j x j uj x j The diffusivity of the specific mass is zero! • That is a consequence of the definition of velocity. • Velocity was defined as the net budget of molecules displacement. • When molecules move they carry their own mass and consequently the advective flux accounts for the whole mass transport. Trabalho computacional • Caso unidimensional, só com difusão: V t 0 t V t t 0 t t t 0 t 0 Q i i A l l l l l x x l x x 1 A A x x x x x x Referencial Euleriano e Lagrangeano • O refencial Euleriano estuda uma zona do espaço (volume de controlo fixo) • O referencial Lagrangeano estuda uma porção de fluido “Sistema” (volume de controlo a mover-se à velocidade do fluido). • O Teorema de Reynolds relaciona os dois referenciais. Teorema de Reynolds • A taxa de variação de uma propriedade num “sistema de fluido” é igual à taxa de variação da propriedade no volume de controlo ocupado pelo fluido mais o fluxo que entra, menos o que sai: d dt dVol sistema d dt dVol VC • (ver capítulo 3 do White) SC v .n dS Sistema e Volume de Control Control Volume Volume that flew in Volume that flew out Taxas de Variação B sistemaI No sistema material de fluido t0 t B sistemaI t0 t B vc No volume de controlo t0 t B vc t0 t No instante inicial o sistema era coincidente com o volume de controlo B vc t0 B sistema 2 t0 A figura permite relacionar o VC em t+dt: B vc t 0 t B sistema t 2 0 t massa _ que _ entra massa _ que _ sai Fazendo o Balanço por unidade de tempo e usando a definição de propriedade específica (valor por unidade de volume) B vc t0 t B vc t0 t B sistema t 2 0 t B sistema t 2 0 t dB dV => B quantidade dV _ que _ entra quantidade t _ que _ sai Fluxo advectivo adv B v .n dA Where v velocity relative to the surface. Is the flow velocity if the volume is at rest. Balanço integral t vc dV d dt sistema dV v .n dA surface The rate of change in the Control Volume is equal to the rate of change in the fluid (total derivative) plus what flows in minus what flows out. Volume infinitesimal t t dV vc V x1 x 2 x 3 d dt d dt dV sistema v .n dA surface V v .n Aentrada v .n A saida d V x 2 x 3 v 1 x 1 x 2 x 3 v 1 x 1 x 1 t t x 1 x 3 v 2 x 2 x 1 x 3 v 2 x Dividing by the volume, 2 21 x 1 x 2 v 3 x 3 x 1 x 2 v 3 x 3 x 3 Derivada total d V v 1 x 1 v 1 x1 x1 v 2 x 2 v 2 x 2 2 1 v 3 x 3 v 3 x 3 x 3 t x1 x2 x3 t Shrinking the volume to zero, But, t 1 d (V ) V d dt dt d dt t vj t V d ( ) V x j dt v v j x j V x j dt d (V ) V j 1 d (V ) vk xk dt x j d ( ) dt v j u k xk Questions • The velocity of an incompressible fluid in a contraction must increase and consequently the pressure must decrease t dV V t 0 t V t 0 t uA x v .n dA .n dA uA x uA x x uA x x u 2 u1 A1 A2 If the velocity increases the acceleration is positive and so is the applied force. In a pipe pressure forces plus gravity forces balance friction forces • If we consider a control volume (e.g. with faces perpendicular and parallel to the velocity it is easy to verify that acceleration is zero and that forces have to balance. • Is the velocity profile a parabola? • Let’s consider a “annular control volume” and perform a force balance u u p ( 2 r r ) ( 2 r r ) x g sin 2 r x 2 r r x r r r r dr p x gsen 1 1 u u u r r r r r r r r r r 1 1 u u u gsen x r r r r r r r r r r p • Fazendo convergir o volume para zero: dp gsen dx u 1 u r r r r 1 u u 1 u r r r r r r r r dp 1 u gsen r dx r r r u dp r r gsen C1 r dx 2 2 u r C1 dp r gsen r dx 2 • When r is zero the velocity gradient is zero, friction is zero and thus C1 must be zero: C u dp r gsen 1 r r dx 2 u r 1 dp r gsen dx 2 2 1 dp r u gsen C2 dx 4 When r=R, velocity is zero and thus 2 1 dp R 0 gsen C2 dx 4 2 1 dp R C2 gsen dx 4 2 1 dp r 2 u gsen R 1 4 dx R Friction and pressure loss in a pipe. p R w 2 RL 2 p L dp dx 2 w 4f V dx 2 D dp 1 2 About the flow in a pipe • The velocity profile is a parabola. • The shear stress is linear. • The velocity decreases with viscosity and increases with the radius square and linearly with the pressure gradient and the gravity. • Gravity action is equivalent to pressure gradient action. Summary • The conservation principle drives to the advection-diffusion equation. • The total derivative represents the rate of change of a portion of fluid while it is moving. The local temporal derivative represents the rate of change of a property in a fixed point of the space. • The laws of physics apply to a portion of fluid. They are responsible for source and sink terms to be added to the advection diffusion equation that then becomes a conservation equation. • The relation between what happens inside a volume of fluid and what happens inside a fixed volume are the fluxes across its boundaries. • The convective derivative represents the contribution of the transport for what happens in a fixed point.