Air Quality Monitoring Network
General info.

The network has been operating for eight years. It
was officially inaugurated on May 31, 1994.

The implementation of this network was part of two conditions that
the CEPRAM (State Council for the Environment) established in its
resolution 620 on July 21, 1992, as a result of the analysis of the
Environmental Impact Assessment Study for the expansion of the
number of companies installed in the Pole.

CETREL developed the project, and carried out the installation and
operation of the network because of its previous environmental
protection activities in the area, such as waste treatment, and disposal
of hazardous wastes.
2
What parameters are measured?

Conventional Pollutants: Particulate matter (Hi-Vol and PM10), sulfur
dioxide, nitrogen oxides (NO e NO2), CO and O3 , which are regulated
under CONAMA standards from 03/1990.

Non conventional pollutants: VOC’s regulated under CEPRAM
resolution 2878 of 2001, and metals (Pb, Cr, Cu, Fe, Ni, As, and Hg).

Meteorological parameters: wind velocity and direction, temperature,
humidity, pluviometric precipitation, solar radiation and pressure.

There is an Acoustic radar that measures meteorological parameters in
the higher layers of the atmosphere for the surroundings of Cetrel.
3
Location of the stations and parameters measured
Station Number
1 – CÂMARA
Type
Location
Parameters measured
SO2, NOx, CO, PM
and organics
SO2
Complete
2 – GRAVATA
Simple
3 – COBRE
Simple
Between the Câmara and the
Prefeitura de Camaçari
Escola Helena C. Magalhães
(Camaçari)
Estação Elevatória do Cobre
4 – SÍTIO
Simple
Lamarão do Passé
5 – LAMARÃO
Complete
Escola Josiane Santos (Lamarão
do Passé)
"Sociedade Amigos de Dias
D’Ávila"
Escola Prof. Anfrísia Santiago
(Nova Dias D’Ávila)
Hospital Geral de Camaçari
6 – BALNEÁRIO Simple
7 – ESCOLA
Complete
SO2, O3,
organics
SO2
PM
and
SO2, NOx, O3, PM and
organics
SO2
SO2, O3, PM and
organics
8 - H. GERAL
Complete
SO2, NOx, CO, O3,
and organics
Obs.: The complete stations (4) also measure meteorological parameters.
4
Meteorological Parameter Stations.
STATION
ESCOLA
LAMARÃO
HOSPITAL
GERAL
CÂMARA
PARAMETER
Temperature
Relative humidity
Wind direction and velocity
Temperature
Relative humidity
Solar radiation
Precipitation
Wind direction and velocity
Atmopheric pressure
Temperature
Relative humidity
Solar radiation
Precipitation
Wind direction and velocity
Wind direction and velocity
5









Pólo

RLAM



SALVADOR
LEGEND
 - Air monitoring stations.
N
NNW
NW
WNW
W
18%
16%
14%
12%
10%
8%
6%
4%
2%
0%
NNE
NE
ENE
E
WSW
ESE
SW
SE
SSW
SSE
S
Air Quality Monitoring Station
8
Analytical Methods

SO2 – UV fluorescence – continuous and automatic.

NOX – Chemoluminescence – continuous and automatic-

O3 – UV Photometry - continuous and automatic.

CO – Infrared associated to correlation filters. Continuous and
automatic.

VOC’s- GC and cryogenic trap for inlet; Sampling every 15 days,
for 24h. The samples are collected in special recipients called
SUMMA CANISTERS, and injected into GC by a cryogenic
concentrator.

Particulate Matter: HI-VOL or High Volume Sampler, sampling
every 6 days for 24 h.

PM10 – This is similar to HI-VOL but it is destined for particles
smaller than 10 m
9
VOC’s
COMPOUNDS
Lim. Detec
(ppbv)
VOC Air Quality
Standard (ppb)
COMPOUNDS
Lim. Detec
(ppbv)
VOC Air Quality
Standard (ppb)
1,1 Dicloroetano
1,1 Dicloroeteno
1,1,1 Tricloroetano
1,1,2 Tricloroetano
1,1,2 Triclorotrifluoretano
1,1,2,2 Tetracloroetano
1,2 Dibromoetano
1,2 Diclorobenzeno
1,2 Dicloroetano
1,2 Dicloroeteno
1,2 Dicloropropano
1,2 Diclorotetrafluoretano
1,2,4 Triclorobenzeno
1,2,4 Trimetilbenzeno
1,3 Diclorobenzeno
1,3 Dicloropropeno (cis)
1,3 Dicloropropeno (trans)
1,3,5 Trimetilbenzeno
1,4 Diclorobenzeno
2.10
2.80
2.00
1.60
3.30
1.20
1.30
1.30
1.30
1.80
1.60
4.60
4.20
1.90
1.50
1.60
1.40
2.00
1.60
10240
61
1750
102
5000
5
100
125
50
1000
NP
NP
278
1420
526
NP
NP
125
50
Benzeno
Bromometano
Cloreto de Metileno
Cloreto de Vinila
Clorobenzeno
Cloroetano
Clorofórmio
Clorometano
Diclorodifluormetano
Estireno
Etilbenzeno
Hexaclorobutadieno
m-p-Xilenos
o-Xileno
Tetracloreto de carbono
Tetracloroeteno
Tolueno
Tricloroeteno
Triclorofluormetano
1.90
7.80
3.70
3.10
1.80
5.10
2.00
2.00
7.20
1.00
1.60
3.70
2.90
1.40
2.10
1.90
1.50
1.90
2.90
5
NP
250
25
50
NP
53
NP
NP
250
500
NP
1230
1230
25
125
250
250
3900
10
VOC’s monitoring
Objectives of Air Quality Monitoring

The main objectives of air monitoring are:
– To evaluate the quality of air in accordance with the
requirements that CONAMA and CEPRAM established for
the protection of densely populated areas in Brazil (Camaçari,
Dias D'Ávila e Lamarão do Passe).
– To guide the companies in lowering or maintaining their
emission levels through adjustment of their processes,
changes in their raw materials, or by installing pollution
control equipment, etc.
– To evaluate the efficiency of the corrective measures that are
implemented.
12
Resources

The network was set up and installed using R$2 million for
purchase of equipment and for the startup. This was carried out
using funds from companies from the Polo. This was done by a
small loan by BNDES. The yearly operational cost is covered by
the companies of the Polo too.

The yearly operational cost is divided between all the
companies that are involved. The cost is shared proportionally
to the emissions of each companies and the investments that
were involved in measuring each pollutant. The budget is
discussed each September, and it must be approved by all of
the companies that are involved.

All companies in the Polo participate in covering the costs. Even
the companies that do not emit significant loads must pay 0.25%
of the costs of monitoring.
13
2001 Results.



2001 was year with little rain, and relatively good for removal of
atmospheric pollutants, mainly in June, July, August and
September.
The inquiry will have to be supported on automatic and
continuous measurements compared to physical-mathematical
models for dispersion of pollutants, through statistical analysis.
These models will allow to calculate the concentrations of
pollutants in any location and time, including places where
measurement is not possible. The RMA of the Pole has some
experience in this, but they want to increase their proficiency in
these matters.
Some research has been done using the model ISCST-3
(Industrial Source Complex Short Term) as is shown in the
Appendix.
14
Sulfur dioxide - SO2



Wind speed has decreased in relation to previous
years for the Lamarao Station, especially for the third
trimester, and to a lesser extent in the second
semester. This has caused a small increase of the
concentration of SO2 in the Small farm and Lamarao
Stations, and to a lesser degree in the Cobre Station.
The Hospital Station has also shown a slight rise in
the concentrations of SO2 from May to November, or
in other words, the hottest months of the year, which
are the worst for dispersion of pollutants.
For 2001 the load of SO2 increased due to an
increase of the emissions by Acrinor, also apparent in
the air quality of this station.
15
Monthy averages of SO2
Estação Lamarão
25
1995
SO2 (ppb)
20
1996
1997
15
1998
10
1999
2000
5
2001
0
Jan
Fev
Mar
Abr
Mai
Jun
Jul
Ago
Set
Out
Nov
Dez
Estação Hospital
25
1995
SO2 (ppb)
20
1996
1997
15
1998
10
1999
2000
5
2001
0
Jan
Fev
Mar
Abr
Mai
Jun
Jul
Ago
Set
Out
Nov
Dez
16
Annual Average for SO2 - 1995 to 2001
The graph shows that the annual average has decreased from 2000
to 2001.
TENDÊNCIA DA CONCENTRAÇÃO MÉDIA ANUAL DO SO2
MEDIDO NA RMA - 1995 A 2001
Concentração Média Anual(ppb)
4,5
4,0
4,1
Padrão de concentração média anual = 30,5 ppb (Conama 03/90)
3,4
3,5
3,4
3,2
3,0
3,0
2,5
2,3
2,1
2,0
1,5
1,0
1995
1996
1997
1998
1999
2000
2001
17
Ozone - O3 (I)


The ozone level exceeded the 1h standard of 81.6
ppb set by CONAMA on 25 occasions. 6 of these
violations occurred on the same day.
In terms of wind directions and speeds, there is no
predominant direction. Moreover, wind has been
detected from many directions, which allows some
speculation where ozone precursors come from.
– From the city of Salvador when the wind blows South,
Southeast and East.
– From the Landulpho Refinery when the wind blows W and
SW.
– The highways close to Camaçari, mainly BR 324, when the wind
blows N.
– In the case of the Cobre Station, since the winds come from NE, it
is impossible to infer on the ozone precursor sources.
18
Ozone - O3 (II)


From a meteorological standpoint, the trajectories of the
precursors are not always straight. The great part of the events
are observed in the morning, suggesting that ozone is carried
over from the previous day. To understand these processes
better more info is necessary regarding the precursors of ozone,
in particular an inventory of the precursors, and the use of a
photochemical model with dispersion and meteorological
conditions coupled to it would be useful.
Comparing the results for Ozone from 1995 to 2001, we observe
that higher concentrations were present when other pollutants
(SO2, CO and NO2). There was an increase of the ozone
concentrations for 2001, probably due to the increase of
production of companies in the POLO, which leads an increase
in fuel consumption. Control of these emissions will be
necessary to prevent further deterioration of the air quality in the
area under the influence of the POLO
19
Ozone - O3
O3 (ppb)
Estação Hospital
550
500
450
400
350
300
250
200
150
100
50
0
1995
1996
1997
1998
1999
2000
2001
Jan
Fev
Mar
Abr
Mai
Jun
Jul
Ago
Set
Out
Nov
Dez
Estação Lamarão
O3 (ppb)
210
180
1995
150
1996
1997
120
1998
90
1999
60
2000
30
2001
0
Jan
Fev
Mar
Abr
Mai
Jun
Jul
Ago
Set
Out
Nov
Dez
20
Carbon Monoxide-CO

CO concentration for the Hospital station has also
increased in comparison to the previous year.
The maximum CO concentrations were below the 35
ppm 1h standard. The concentration peak was in
May, as was the previous year.
Estação Hospital
15
1995
12
CO (ppm)

1996
1997
9
1998
6
1999
2000
3
2001
0
Jan
Fev
Mar
Abr
Mai
Jun
Jul
Ago
Set
Out
Nov
Dez
21
Nitrogen dioxide - NO2
The Hospital and Laramao stations have had different trends than the
previous years, in particular in the second and third semester, where
they are both above concentrations of the previous years.
NO2 (ppb)
Estação Lamarão
300
270
240
210
180
150
120
90
60
30
0
1995
1996
1997
1998
1999
2000
2001
Jan
Fev
Mar
Abr
Mai
Jun
Jul
Ago
Set
Out
Nov
Dez
Estação Hospital
NO2 (ppb)

300
270
240
210
180
150
120
90
60
30
0
1995
1996
1997
1998
1999
2000
2001
Jan
Fev
Mar
Abr
Mai
Jun
Jul
Ago
Set
Out
Nov
Dez
22
Meteorological Parameters
Estação Hospital
Pressue (hPa)
1010

1005
1000
995
990
JAN
FEV
MAR
1995
ABR
1996
MAI
JUN
1997
JUL
1998
AGO
1999
SET
2000
OUT
NOV
DEZ
OUT
NOV
DEZ
OUT
NOV
DEZ
The meteorological
parameters followed the
same pattern of the last
two years.
2001
Estação Hospital
Temperature ( oC)
34
32
30
28
26
24
22
20
JAN
FEV
1995
MAR
1996
ABR
MAI
1997
JUN
1998
JUL
1999
AGO
2000
SET
2001
Estação Hospital
Solar radiation (W/m2)
800
700
600
500
400
300
200
100
JAN
FEV
1995
MAR
1996
ABR
1997
MAI
JUN
1998
JUL
1999
AGO
2000
SET
2001
23
Meteorological Parameters.
Estação Hospital
Umidade Relativa (%)
100
90
80
70
60
JAN
FEV
MAR
1995
ABR
1996
MAI
JUN
1997
JUL
1998
AGO
1999
SET
OUT
2000
NOV
DEZ
NOV
DEZ
NOV
DEZ
2001
Estação SUDIC
Precipitação (mm)
500
400
300
200
100
0
JAN
FEV
1995
MAR
ABR
1996
MAI
1997
JUN
1998
JUL
1999
AGO
SET
2000
OUT
2001
Velocidade do Vento (m/s)
Estação Hospital
6
5
4
3
2
1
0
JAN
FEV
1995
MAR
1996
ABR
1997
MAI
JUN
1998
JUL
1999
AGO
2000
SET
OUT
2001
24
Particulate Matter: HI-VOL

There was a reduction of the year particulate matter
average from 2000 to 2001.
The monthly geometric average of rainfall in 2001
was one of the lowest in seven year, especially for
April, May, June and November, where higher
monthly averages of particulate matter are apparent.
HI-VOL - ESTAÇÃO LAMARÃO
80
70
Concentração (µg/m3)

1995
60
1996
50
1997
1998
40
1999
30
2000
20
2001
10
0
JAN
FEV
MAR
ABR
MAI
JUN
JUL
AGO
SET
OUT
NOV
DEZ
25
Particulate Matter: PM10
The analysis of monthly behaviour shows a
significant increase in the PM10 concentration in the
first filve months of 2001, in relation to the previous
years.
PM10 - ESTAÇÃO LAMARÃO
60
50
1995
1996
40
µg/m 3

1997
1998
30
1999
2000
20
2001
10
0
JAN
FEV
MAR
ABR
MAIO
JUN
JUL
AGO
SET
OUT
NOV
DEZ
26
Occurrence of COV’s in the POLO area
Compound
Standard
(ppb)
Number of
events
L.D.
Number of
infractions
1,1 Dicloroetano
1,1 Dicloroeteno
1,1,1 Tricloroetano
1,1,2 Tricloroetano
1,1,2 Triclorotrifluoretano
1,1,2,2 Tetracloroetano
1,2 Dibromoetano
1,2 Diclorobenzeno
1,2 Dicloroetano
1,2 Dicloroeteno
1,2 Dicloropropano
1,2 Diclorotetrafluoretano
1,2,4 Triclorobenzeno
1,2,4 Trimetilbenzeno
1,3 Diclorobenzeno
1,3 Dicloropropeno (cis)
1,3 Dicloropropeno (trans)
1,3,5 Trimetilbenzeno
1,4 Diclorobenzeno
Benzeno
Bromoetano
Cloreto de Metileno
Cloreto de Vinila
Clorobenzeno
Cloroetano
Clorofórmio
Clorometano
Diclorodifluormetano
Estireno
Etilbenzeno
Hexaclorobutadieno
m-p-Xilenos
o-Xileno
Tetracloreto de carbono
Tetracloroeteno
Tolueno
Tricloroeteno
Triclorofluormetano
10240
61
1750
102
5000
5
100
125
50
1000
NP
NP
278
1420
526
NP
NP
125
50
5
NP
250
25
50
NP
53
NP
NP
250
500
NP
1230
1230
25
125
250
250
3900
---------------2
47
1
-----7
13
--------------------7
---------------4
-----42
-----33
7
----------16
-----5
-----1
-----4
4
----------51
-----69
2,63
2,72
2,40
2,15
3,30
1,34
1,30
1,05
1,29
2,11
0,93
2,13
3,47
0,65
1,66
0,72
1,28
1,69
0,98
0,93
2,89
2,49
3,10
1,53
2,00
2,34
5,29
2,23
9,72
2,16
1,18
3,93
1,50
2,17
1,75
1,64
1,95
2,59
-------------------------1
-----------------------------------------------------------------1
-------------------------------------------------------------------------------------------
Maximum
concentration
(ppb)
---------------16,91
38,64
22,32
-----4,62
9,67
--------------------19,58
---------------20,07
-----7,02
-----17,76
21,06
----------31,50
-----29,62
-----9,07
-----14,63
3,56
----------34,89
-----182,79
%over
standard
-------------------------346,4%
------------------------------------------------------------40,4%
-------------------------------------------------------------------------------------------
Number of samples in 2000=91.
Número total de amostragens
em 2000 = 91
27
Conclusions

The air quality has decreased in the past 6 years.
– For Camacari, from 2000 to 2002, comparing SO2 vs the wind direction, it is
observed that wind direction was very important in the formation of pollution
episodes.
– É preciso um maior acompanhamento dos ventos por parte das empresas
do Pólo, para minimizar as emissões nos níveis críticos, de que os ventos
se dirigirem ao pólo, para Camaçari.
28
Conclusions



Emissions control is suggested. Expansion of the monitoring network is
also recommended.
Recomenda-se um maior controle destas emissões, e expandir a RMA,
conforme a tabela de reavaliação. Bem como, manter direção e
velocidade do vento em todas as outras estações da RMA, inclusive na
nova estação de Leandrinho.
Pollution prevention can be achieved using a model that predicts
pollution with 6-72h.. This could be achieved using MM5.
29
Publication of Results

The results can be sent monthly to the companies
of the Pole, and to other interested parties. Some
companies can request forecasting for daily
episodes.
30
31
Comentários Finais

A Rede encontra-se instalada e em operação rotineira desde
Maio/94.

Os resultados obtidos até o momento estão dentro dos padrões
CONAMA 003/94, exceto para o ozônio e SO2, que tem em
algumas ocasiões ultrapassado os padrão do CONAMA 003/90.

A carga de poluentes emitidas pelas empresas é checada
periodicamente.

Um dos objetivos principais da rede é orientar as empresas no
sentido de reduzir as cargas.

Os dados gerados pela rede são enviados para as empresas do
Pólo mensalmente.

A análise mensal dos parâmetros meteorológicos permitiu a
identificação do período mais crítico para dispersão atmosférica,
que engloba os meses de maio a setembro, períodos semelhantes
ao longo dos anos de operação da Rede.
32
Comentários Finais

De um modo geral essa análise mostrou que a circulação local do
vento de superfície modifica a sua direção e a velocidade sobre a
região de influência do Pólo, em função da topografia e das
alterações no ciclo climatológico sazonal da atmosfera;

A qualidade do ar tem sido classificada como "boa", desde 1994,
ou seja, a concentração dos poluentes tem se mantido sempre
abaixo dos padrões estabelecidos pelo CONAMA 003/90, para os
poluentes, SO2, CO, NO2 e MP. Entretanto o SO2 apresentou
picos de concentração bastante elevados em algumas ocasiões.

Com relação aos compostos orgânicos voláteis, poluentes não
legislados no país, detectou-se que a concentração de alguns
destes poluentes, tende a se elevar no período entre abril a
setembro, devido as condições meteorológicas desfavoráveis à
dispersão;
33
Comentários Finais

À partir de 1996 foi intensificado o monitoramento de poluentes
orgânicos na área de influência do Pólo.

Embora a medição dos parâmetros meteorológicos, no nível da
superfície horizontal, seja bastante representativa do
comportamento do regime microclimático local, em 1997 foi
adquirido um radar acústico, com o objetivo de efetuar medições
do perfil vertical do vento, e da altura da camada de mistura, para
melhor interpretar os resultados obtidos através da Rede de
monitoramento do ar. Observa-se ainda que o vento muda de
direção com a altura, principalmente no regime de microescala em
zona costeira.
34
Download

Air monitoring stations.