ADIÇÃO E SUBTRAÇÃO
1º CASO : Os radicais não são semelhantes
Devemos proceder do seguinte modo:
a) Extrair as raízes (exatas ou aproximadas)
b) Somar ou subtrair os resultados
Exemplos
1) √16 + √9 = 4 + 3 = 7
2) √49 - √25 = 7 – 5 = 2
3) √2 + √3 = 1,41 + 1,73 = 3,14
Neste último exemplo, o resultado obtido é aproximado, pois √2 e √3 são números irracionais (representação decimal
infinita e não periódica)
EXERCÍCIOS
1) Calcule
a) √9 + √4 = (R: 5)
b) √25 - √16 = (R: 1)
c) √49 + √16 = (R: 11)
d) √100 - √36 = (R: 4)
e) √4 - √1 = (R: 1)
f) √25 - ³√8 = (R: 3)
g) ³√27 + ⁴√16 = (R: 5)
h) ³√125 - ³√8 = (R: 3)
i) √25 - √4 + √16 = (R: 7)
j) √49 + √25 - ³√64 = (R: 8)
2º CASO: Os radicais são semelhantes.
Para adicionar ou subtrair radicais semelhantes, procedemos como na redução de termos semelhantes de uma soma
algébrica.
Exemplos:
a) 5√2 + 3√2 = (5+3)√2 = 8√2
b) 6³√5 - 2³√5 = (6 – 2) ³√5 = 4³√5
c) 2√7 - 6√7 + √7 = (2 – 6 +1) √7 = -3√7
EXERCÍCIOS
1) Efetue as adições e subtrações:
a) 2√7 + 3√7 = (R: 5√7)
b) 5√11 - 2√11 = (R: 3√11)
c) 8√3 - 10√3 = (R: -2√3)
d) ⁴√5 + 2⁴√5 = (R: 3⁴√5)
e) 4³√5 - 6³√5 = (R: -2³√5)
f) √7 + √7 = (R: 2√7)
g) √10 + √10 = (R: 2√10)
h) 9√5 + √5 = (R: 10√5)
i) 3.⁵√2 – 8.³√2 = (R: -5.³√2)
j) 8.³√7 – 13.³√7 = (R: -5.³√7)
k) 7√2 - 3√2 +2√2 = (R: 6√2)
l) 5√3 - 2√3 - 6√3 = (R: -3√3)
m) 9√5 - √5 + 2√5 = (R: 10√5)
n) 7√7 - 2√7 - 3√7 = (R: 2√7)
o) 8. ³√6 - ³√6 – 9. ³√6 = (R: -2. ³√6)
p) ⁴√8 + ⁴√8 – 4. ⁴√8 = (R: -2. ⁴√8)
3º CASO: Os radicais tornam-se semelhantes depois de simplificados.
Exemplos
a)5√3 + √12
..5√3 + √2².3
..5√3 + 2√3
..7√3
b)√8 + 10√2 - √50
..√2².√2 +10√2 - √5². √2
..2√2 + 10√2 - 5√2
..7√2
EXERCÍCIOS
1) Simplifique os radicais e efetue as operações:
a) √2 + √32= (R: 5√2)
b) √27 + √3 = (R: 4√3)
c) 3√5 + √20 = (R: 5√5)
d) 2√2 + √8 = (R: 4√2)
e) √27 + 5√3 = ( R: 8√3)
f) 2√7 + √28 = (R: 4√7)
g) √50 - √98 = (R: -2√2)
h) √12 - 6√3 = (R: -4√3)
i) √20 - √45 = (R: -√5)
2) Simplifique os radicais e efetue as operações:
a) √28 - 10√7 = (R: -8√7)
b) 9√2 + 3√50 = (R: 24√2)
c) 6√3 + √75 = (R: 11√3)
d) 2√50 + 6√2 = (R: 16√2)
e) √98 + 5√18 = (R: 22√2)
f) 3√98 - 2√50 = (R: 11√2)
g) 3√8 - 7√50 = (R: -29√2)
h) 2√32 - 5√18 = (R: -7√2)
3) Simplifique os radicais e efetue as operações:
a) √75 - 2√12 + √27 = (R: 4√3)
b) √12 - 9√3 + √75 = (R: -2√3)
c) √98 - √18 - 5√32 = (R: -16√2)
d) 5√180 + √245 - 17√5 = (R: 20√5)
MULTIPLICAÇÃO E DIVISÃO
1º Caso: Os radicais têm o mesmo índice
Efetuamos a operação entre os radicandos
Exemplos:
a) √5 . √7 = √35
b) 4√2 . 5√3 = 20√6
c) ⁴√10 : ⁴√2 = ⁴√5
d) 15√6 : 3√2 = 5√3
2º Caso: Os radicais não têm o mesmo índice
Inicialmente devemos reduzi-los ao mesmo índice
Exemplos
a) ³√2 . √5 = ⁶√2² . ⁶√5³ = ⁶√4 . ⁶√125 = ⁶√500
b)⁵√7 : √3 = ¹⁰√7² : ¹⁰√3⁵ = ¹⁰√49/243
EXERCÍCIOS
1) Efetue as multiplicações e divisões:
a) √2 . √7 = (R: √14)
b) ³√5 . ³√10 = (R: ³√50)
c) ⁴√6 . ⁴√2 = (R: ⁴√12)
d) √15 . √2 = (R: √30)
e) ³√7 . ³√4 = (R: ³√28)
f) √15 : √3 = (R: √5)
g) ³√20 : ³√2 = (R: ³√10)
h) ⁴√15 : ⁴√5 = (R: ⁴√3)
i) √40 : √8 = (R: √5)
j) ³√30 : ³√10 = (R: ³√3)
2) Multiplique os radicais e simplifique o produto obtido:
a) √2 . √18 = (R: 6)
b) √32 . √2 = (R: 8)
c) ⁵√8 . ⁵√4 = (R: 2)
d) ³√49 . ³√7 = (R: 7)
e) ³√4 . ³√2 = (R: 2)
f) √3 . √12 = (R: 6)
g) √3 . √75 = (R: 15)
h) √2 . √3 . √6 = (R: 6)
3) Efetue as multiplicações e divisões:
a) 2√3 . 5√7 = (R: 10√21)
b) 3√7 . 2√5 = (R: 6√35)
c) 2. ³√3 . 3. ³√3 = (R: 6. ³√15)
d) 5.√3 . √7 = (R: 5√21)
e) 12. ⁴√25 : 2. ⁴√5 = (R: 6. ⁴√5)
f) 18. ³√14 : 6. ³√7 = (R: 3. ³√2)
g) 10.√8 : 2√2 = (R: 5√4)
Download

lista enorme de exercícios envolvendo radicais